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Abstract

The present paper discuss the dispersion equation for SH waves in a non
homogeneous monoclinic layer over a semi infinite isotropic monoclinic medium with an
irregularity. The dispersion equation has been obtained. In the isotropic case, when non
homogeneity and irregularity are absent, the dispersion equation reduces to standard SH wave
equation. The dispersion curves are depicted by means of graphs for different size of
irregularity and different values of non-homogeneity parameters. The influence of depth of
irregularity and non-homogeneity parameters on phase velocity has been studied.
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Introduction

Many results of theoretical and experimental studies revealed that a real earth is
considerably more complicated than the models presented earlier. This has led to a need for
more realistic representation as a medium through which seismic waves propagate. The study
of wave propagation in elastic medium with different boundaries is of great importance to
seismologists as well as to geophysicists to understand and predict the seismic behaviour at
different margins of earth. The propagation of Love waves has been studied by many authors
with assuming different forms of irregularities at the interface. Bhattacharya [7] discussed the
dispersion curves for Love wave propagation in a transversely isotropic crustal layer with an
irregularity in the interface. Chattopadhyay et al [3] studied the propagation of SH guided
wave in an internal stratum with parabolic irregularity in the lower interface. The wave
propagation in crystalline media plays a very interesting role in geophysics as also in
ultrasonic and signal processing. Keeping in the mind the fact that the non-homogeneity
characteristic is one of the most generalised elastic conditions inside the earth, many authors
have studied the propagation of different waves in different media with non-homogeneity.
Chattopadhyay [1] studied the Love wave propagation due to irregularity in the thickness of
non-homogeneous crustal layer. Propagation of Love waves in a non-homogeneous stratum
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of finite depth sandwiched between two semi infinite isotropic media has been studied earlier
by Sinha [11].Recently, the propagation of SH waves in an irregular monoclinic crustal layer
has been studied by Chattopadhyay et al [4]. In this paper we have discussed the propagation
of SH waves in a non-homogeneous monoclinic layer overlying a monoclinic half space. The
irregularity is in the form of rectangle. The perturbation technique indicated by Erigen and
Samuels [5] has been used. The dispersion curves are depicted by means of graphs for
different size of irregularity and different values of non-homogeneity parameters. The
influence of depth of irregularity and non-homogeneity parameters on phase velocity has
been studied.

Formulation of the problem
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Fig.1: Geometry of the problem.

We have taken z-axis along the interface between the lower semi infinite medium and the
non-homogeneous monoclinic layer, y-axis is taken downwards as shown in fig.1.The form
of irregularity is assumed rectangular with length s and depth H'. Layer is taken of H
thickness and origin is placed at the middle point of the lower interface irregularity. The
distance of source of disturbance from origin is d withd > H".

The interface between layer and half space is defined as

y =¢h(z) (1)
0 for z S_—S, Z ZE
where h(z) = 2 2
f(z) for _—SSZSE
2 2
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where ¢ = and ¢ <<1.

S

We have the following stain-displacement relations for monoclinic layer
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x’ oy oz
where U,V,W are displacement components in the direction X, y, z respectively, and
S, (i=12,...,6) are the strain components.

Also, the stress-strain relation for a rotated y-cut quartz plate, which exhibits monoclinic
symmetry with x being the diagonal axis are

T,=C,5+C,5,+C;;5, +C.S,,

T2 = C1281 + CZZSZ + C23S3 + C24S4’

T,=C;5, +C,S5,+C,;5,+C,S,, 3)
T4 = C:14Sl + C24SZ + C34S3 + C44S4’

T =Cy5S5 +Cy S,

T =CyS5+Cy S

where T, (i =1, 2,...,6) are the stress components and Cij = Cji (i =12,..., 6) are the elastic

constants.

The equation of motion in the absence of body forces are

T, ot o, _ &
x oy o o
2
o, 0T T _ 0 "
x oy e P
A

x oy a2 P

where p, is the density of the layer.

For the propagation of SH type wave in z-direction with the displacement in the x-direction,
we have

ou 0

T=T,=T,=T,=0,T,=C, = +C, ou ou

u
5 and T6 = C56E+C666_y . &)
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Let we take p,,u, (r =1,2) as densities and displacements of the layer and lower media,
respectively. The non homogeneity in the layer is considered as

1 I vz 1 I vz 1 I vz I vz
C66():C66e ’C56():C56e ’Css()zcsse P =p €

" " "

and the elastic constants of the half-space as C66(2) =Cq » C56(2) =C, ,CSS(Z) =C,, .

Using (5) and (4) we get equation of motion for the monoclinic layer in the form

2 2 2 2
C66, Z,yuzl + 2C56’ 2 ;1 T C55, aa lil + VC56’ %"’ Vcse, % = ,01' aatlil (6)
Yoz z z
and equation of motion for lower isotropic monoclinic semi-infinite medium is
» 07U 07U » 0°U o’u
Ces W;"'zCss 8y522 +Cs 8222 =P, 8'[22 . (7

Here in equation (6) and (7) suffix “1”” and “2” are used for monoclinic layer and lower semi-
infinite medium respectively.

The boundary conditions are as following

(1) The upper surface of monoclinic layer is stress free, i.e. Te=0at y=—-H

M e Mg at y=—H (8)

c./ =L -
56 az 66 ay

(i1) The stresses are continuous at the interface y = gh(z)

%[c%' ~Cy et |e +%[csﬁ' ~Cyleh e =| ¢ - csé"gh'}%Jr c —Css"gh’}%,
oy oz oy oz
(€))
where h'= ahz)
dz
(ii1) The displacements are continuous at the interface y = £h(z)
U, =u, (10)

Solution of the problem

For u,(y,z,t)=U,(y,2)e" (i=1,2...), equation (6) and (7) reduces to
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2 2 2
c66'—aayu; +2C,, T AT ]

oyor > oz’ * oz

+vCy % +p @U, =0

" aZU 2

14 azu 14 azu
C66 —a2 ' 2C56 : :
oy

@4‘(:55 ?+p2a)2U2 =0

where o is circular frequency.

Defining the Fourier transform Ur(y,n) of U ,(y,z) (r=12) as

U, (v.m)= [U, (v, 260z,
We find the inverse Fourier transform as
1 T —inz
U,(y,2)==— [U,(y,me " dn.
2r 7

So the Fourier transform of Egs. (11) and (12) are

— _
du, +(v+al)%+(p12+£jul =0
_dy 2

dd;g du
2+, —2—(p,>)U, =0
dy’? 2" dy (p,")U,
where
Co o C . Cy . Cy’ o’
B’ :L(:s p’ ~ a2 55, 7,8, =-2in 56, 8, = _Zmiu’ p.’ e
P A, Ces Ces Ces P,

Now the solutions of Egs. (13) and (14) are

v+a

U, :e_( : ]y(Acos p,y + Bsin p,y)

3

U, = De_[ﬂye“"*y

2
2 2 2 4 4 2
where p,” = p,> - v *a j: _a)z - CSS' n+ —C56, n’ L ,
4 A C, o

2
a 2 C n a)z C n
p42 — p22 +L — 55” 772 _ —— 56” 772
4 |, s

and A, B, Dare functions of 7.

C
+ 55 2

2161
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(13)
(14)
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(15)
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The displacements in the two media are

U, =i T ei[%jy (Acos p,y +Bsin p3y)e"i’7zd77 (17)
U, = T De{%zjye’p‘*y — e(pﬂ%zjyef[m+a7zjd e "dy (18)
27 Py +2
2

where the second term in the integrand of U, is introduced due to the effect of source at S in

M, [10]. We set the following approximations due to small value of ¢

A=A +As, B=B,+Bs, D=D,+De. (19)

Since the boundary is not uniform at the interface of M, and M, so the term A,B and D

appearing in Eq.(19) are also function of ¢, expanding these terms in ascending powers of &
and keeping in view that ¢ is small and so retaining the term up to the first order of ¢, hence
approximated as in Eq.(19). These assumptions are justified in the real earth model where the
depth H'of the irregular boundary is too small with respect to the length of the boundary s.

Also for small ¢, following approximations can be accepted

e* " =1+ yeh, cos p,eh =1, sin p,eh = p,eh.

where y is any quantity.

Using the boundary conditions (i), (ii), (iii) and after simplification, we obtain
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B 4+aiz d ' ' ’
-8c,e (>3) {2ikC56 tan p,H +2p,C,, +(v+a,)C, tan p3H}

A= 0 ,
" 7[p4+i]d . ' ' '
—8C, e’ {2|kC56 -2p,Cy; tan p;H +(v+a,)Cy }
B, = R
0 G(k)
D e " E,+E, +E,+E
=————— (F +E,+E+E,},
(2p4+a2)G(k){ FEAESE]
_{Rl (2 p,.Co +a,C, +2ikC,," ) + ZRZ}{ZikC%' tan p;H +2p,Ci +(v+a,)Cy tan p3H}
o 600 ’
_{R1 (2 p,Ce +a.C, +2ikC," ) +2R, } {2ikC56’ -2p,Cy, tan p,H +(v+a, )C%'}
B = :
‘ G(k)
_ Es+E
b6k

E, = 4ikp,C,, Cq tan p,H +2ika,Cy, Cy' tan p;H +4p,p,Cy, Cy +2p,a,C Cy
E,=2p,(v+a)Cy Cy tan p;H +a,(v+a)C, 'Cy tan p,H —4ikp,Cy'Cs, +4p,’C,,” tan p,H,
E, =4ik (v +8,)Cy Cy, tan p;H +(v+2,)" Cy tan p;H —4k*Cy, tan p,H +4ik (v +8,)C, Cy tan p,H,
E, =4k’C,,"Cy, tan p,H —4ikp,C,,"C,, —2ik (v +a,)C;,'C, tan p,H,
E, =R, (~4IkCy, tan p;H ~4p.C ~2(v+a,)C, tan pH ),
E, =R (4k2C56'2 tan p;H —4p,’C,,” tan p,H —4ik (v +a,)C, C;, tan p,H —(v+a, )2 C,* tan p,H ),
G(k) = —4k’Cy,” tan p,H —4ikp,C,, C,," tan p,H +4k’C,,"C,, tan p,H
4p,’C,. " tan p,H +4ik (v +2,)C Cy tan p,H +(v+2,)" C,” tan p,H
-4p, p4C66”C66' - 4ikp3C56”C66, —2ik (V + )Cssncser tan p;H -2 p3a2C66”C66’
-2p,(v+a)Cy Cy tan p;H —a, (v +a,)C, 'C, tan p,H —2ika,C,'C ;" tan p,H.

With the help of above obtained values the displacement in the monoclinic layer is given by

a, a 14 ﬁ - 14
4C66”e[p4+2]dezy L S{Rz +R, (C% (p4 + 5 )+ ikCs, j}

1 o0
U=-—
- [0 G(k) Y
4C e
x{(2ikC56' tan p,H +2p,C, +(v+a,)Cy, tan p,H )cos P,y (20)

+(2ikC56' -2p,C,, tan p;H +(v+a1)C66')sin p3y} e k.

From Eq. (1), the interface for the rectangular irregularity gives

h(1)= %sin (%) (21

Further on simplification, we get
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R2+RI{C (p4 2j+|kc56}_2scé6 T{ (k - i)+t//(k+i)}—sm( sz (22)

n=k-A4

where y(k—-21)=|(B,+B,+B,+B;+B,+B,+B,+B,+B,,+B,)

(23)

a
(p4+22]G(k)
B, = [p +ﬁj2+lkc ”(p +a—j {—4ik(v+a)C 'C,." tan p,H

) 4 > c 4 5 1) ~56 ~66 3

66
~2(v+a,)" Cy'Cy," tan p,H +8ikp,C,; Cy." —8p,2Cys Cy, " tan p,H +8p,’C,,* tan p,H
+8ik (v+a,)Cy Cy, tan p,H +2(v+a, )2 C,~ tan p;H —8k’C,,” tan p,H
+8k’C, Cy, " tan p;H —8ikp,C C,," —4ik (v +a,)C, C,,” tan p,H

2
a. - ! n - ! " ! n
B, = ( Py +?2) {_Slkp4056 Cq tan p;H —4ika,C,,C,;" tan p,H —8p;p,C, C,
—4p,a,C,/C, —4p,(v+a)C,C,." tan p, H —2a, (v+a)C,'C,." tan p;H } ,

"

B, =i

(p4 j{8 p,’C,* tan p,H —8ikp,C,,'C,, —8k’C,,” tan p,H +8k’C,, C.," tan p,H
+2(v6i a,)’ Cy,* tan p,H +8ik (v +a,)C,,C,, tan p,H —4ik (v +a,)Cy,"C,, tan p;H }
:—(p4 +%)C66' {8ikp3(v+al)c5 "+4p,(v+a) Cy —4p*(v+8,)Cy tan p,H

—2ik(v+a) Cy tan p,H —(v+a) C, tan p,H +8ikp,’C,, tan p,H +8p,’C, }
Cy tan p,H +2(v+a)’ C, tan p;H

B, = —v[ P, +%)C66' {4ik(v+ a,

)
~8ikp,C.. +8p,’C, tan p,H }
B, = ( P, +%){8k2 p:Css  +8ikp,’Cy Cy, tan p,H —4k* (v +a,)Cy,” tan p,H
+2ik (v +a,)" C Cy, tan pyH }
( p, + ]{Sk C,, tan p;H —8ikp,C,, C,, —4ik (v+a,)Cy, Cy, tan p,H },
2
B, = ( D, + %) {—8/1kC56'C56" tan p,H +8i4p,C,/C,," +4iA(v+a)C, C," tan p,H } :
B, =| p, +%){—8Mk2c56'c55” tan p,H —8Kkp,C,, C,," —4iAk (v +a,)C,, C,," tan p;H }

B,=|p, +?j{4/1k(v+a )Cy? tan p,H —2iA(v+a,)’ Cy, Cy tan p,H

—81kp,C,,* —8iip,’C,C,. tan p,H +8ilkC.'C,, tan p,H +81kp,C,'C,,
+42k (v +a,)Cq C,4 tan p,H
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Here the argument of y/(k — 1) is because of 17+ 4 =k . Following the asymptotic formula of

Willis [10] and neglecting the terms containing 2/S and higher powers of 2/s for large

s, we get

j fy(k—-2)+y(k+ ﬂ)}—sm( jdﬂ = 52w(k) my (K), (cf. Tranter [6]). (24)
Hence on using Eq. (24) on Eq. (22) one can have

R, +R, { (p4 j+|k056 } 2sC,, w(k) = 2066”1'1//0() (25)

Therefore, in view of Eq. (25) the displacement in the monoclinic layer is

T e
Ulz—ij ac,'e e zaj {(2ikc56'tan p,H+2p,C,,.

2z ! 2
_mG(k){l—sz(k)e[p )

#(v+2,)C tan PyH oo poy +(2KC,, 2P,y tan puH +(v+2,)C Jsin pyyfe dk

Since the value of this integral depends entirely on the contribution of the poles of the

Integrand, the dispersion equation for SH waves is given by
4 4+a—2 d
G(k){l—%w(k)e(p :) ]:0. (26)

The poles are located at the roots of the Eq.(26) which has been examined in our study of

shear waves (Achenbach [8]). Solving Eq. (26) with the help of Eq. (23) and setting
p; =kP,, p, =kP,, 8 =kA and a, =kA,

1/2 1/2
2 ! 2 2 " 2 "2
wherep-[c__css_v CJ P_{cﬁ N ]
37 2 ' 2 " >4 " 2 "7 >
B c, 4 c, Co P C,

"

A,=—2ic;6' and A =—

66 66

2 4 2 )
tand || S-S oV G Ly log g 27)
182 ' 4k2 2 1 2
1 C66 C66
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J :L1L3+L2L4 :Lst_L1L4
1

L>+L> 77 LP+L)

and L, =8HX’R,P’C,C, -8k’PPC,C, —-8HPC,C, +8HKP, Ci”csé”2
66

+8HK’P’C,” +2HkV*PC,,”

66
L, =-8HkP,PC,C, -8HK’PPC,C. —8HVK’PC, C,,
L, =4kvP,C,C, —8k*P’C,*-2v’C,*-2HkV’PC,C, -8HX’P,P’C,C,"
' Cy

+8HK’P,P’Cy? +2HKV’P,Cy > —4H'VK*PC,'C" +4H VK’ C | =
Coo

" CGGN _V3 H ,Csé,z —4H ’sz P32C66'2 +8H ’szc 2

56 >

—4H"vK’C,,

66

L, =4H"vk’P,C,/C, +4HVK’P,C, C,,  —8HX’P’C,° Cuo _on "VkC,,’ Cs

" 14

66 66

-8Hk’P’C,/C,, —2H"V’kC,/C,, .
The real part of the Eq. (28) gives the dispersion equation of SH waves.

The dispersion relation for the SH waves is
2 4 2 2
tand [ S -Cs VG hylog (28)
B~ ¢, 4k oc”

Particular cases

Case 1: When v=0,C," =C.." =, and C,,' =0 the dispersion relation (28) reduces to
2 ' "
tan \/[C—z—c;i+—c56’2 ] kH ¢ = 35
A, Ces  Cos I
where J, = 2P, (4H KP2C, 11, —4P.C, ., + 4HKPC," )(8H kP.P.2C,."
-8 P52C66'2 —8HKR Pszcés!ﬂz ) +64H"k*P;’ P6C56'2C66,1u2 )

2
3, =(SHKRPIC,” ~8PC,> ~SHKRRPIC,/ s, +64HK*RIC,°C,.",
2 ! 2 2
P.= C_Z_C;S,JrCS_i’ P = 1_C_2
s c, Cc.° \" 5

which is the result obtained by Chattopadhyay et al [4] for SH waves, propagating in an
irregular monoclinic layer lying over an isotropic half space.
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Case 2: When v=0,H'=0,C," =C.." =, and C,;' =0 the dispersion relation (28)

reduces to
2

2 ' 5 :uZ 1 2
tan [C—z—C;i+—C56’2] kH } = P
B’ Cy Cq A S o o
Coosl gzt 0
)21 Ce Ce

which is the result obtained by Chattopadhyay and Pal [2] for SH waves, propagating in a
regular monoclinic layer lying over an isotropic half space.

Case 3: When v=0,C, =C,, =4, C,/ =0,C,, =C,," = 11, and C,,' =0 the dispersion
relation (28) reduces to

2
fan [6_2_1} ot
B Jg
where J; =2P, (4H ’kpszﬂlﬂz — 4R, +4H kP72ﬂ12 )(8H kR P72,Ul2
- 8P72ﬂ12 —8HkR, P72,u1/12 ),

Jy= (8H KPP 1" =8P, 11" —8H KPP 14,14, )2 >

c’ c?

S S e

which is the result obtained by Chattopadhyay [1] for SH waves, propagating in an irregular
isotropic layer lying over an isotropic half space.

Case 4: When v=0,H'=0,C,/ =C,, =, C,, =0,C,, =C,," =, and C,,' =0 the
dispersion relation (28) reduces to

5 ﬂz,/l_czz
tan{ (C——lj kH} P

5 — which is the classical SH wave equation.
1

°

1

1

Numerical examples

For the case of an irregular non-homogeneous monoclinic layer lying over monoclinic half
space, we take the following data
(1) For monoclinic layer, [9]

C,, =94x10°N/m?, C,, =—11x10°N/m’,
C,o =93x10°N/m’, p, =7,450Kg/m’.

(i1) For monoclinic half space, [9]



2168 A. Chattopadhyay, S. Gupta, A. K Singh and S. A. Sahu

C..' =57.94x10°N/m’, C,, =—-17.91x10°N/m?,
C, =39.88x10°N/m’, P, =2,649Kg/m’.

The effect of non-homogeneity and irregular boundary on the propagation of plane SH waves
propagating in non-homogeneous monoclinic layer with rectangular irregularity lying over a
monoclinic half spaces has been depicted by means of graphs, which are shown in fig. 2 and

3. These graphs give the variation of non-dimensional phase velocity (C/ ﬁ1) with respect to
non-dimensional wave number kH for different values of non-homogeneity parameter
(vH)and different size of irregularity. It is observed that as the size of irregularity (H'/H)

increases, the phase velocity decreases. Also, the presence of non-homogeneity increases the
phase velocity for the corresponding wave number. Evidently, the dispersion curve gets
steeper for the higher values of irregularity.

1.09 : ;
1 for H/H=0.0

2 for H/H=0.15
1.08} 3 for H/H=0.30 ||
T 1.07} R

=y
S 1.08" R
1.05} R
1.04} R
| | | | | |

0 05 25 3 35 4 45 5

kH ———>

Fig. 2: Curve of ¢/ 3, versus kH for vH =0.0.
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1.09

1 for H/H=0.0
2 for H/H=0.15
3 for H/H=0.30

1.08 +

1.07 +

clpy ——>

1.06 - .
1.05¢ .
1.04¢ .
0 05 25 3 35 4 45 5
kH ———>
Fig. 3: Curve of ¢/ f, versus kH for vH =0.5.
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