Applied Mathematical Sciences, Vol. 4, 2010, no. 44, 2193 - 2199

On Non-Existence of Some (1,2)-Optimal Codes

Vinod Tyagi

Department of Mathematics, Shyam Lal College (E) Shahdra, Delhi-110032, India vinodtyagi@hotmail.com

Navneet Singh Rana

Research Scholar, Department of Mathematics University of Delhi, Delhi-110007, India nsrana13@hotmail.com

Abstract

This paper presents the non-existence of certain blockwise burst error correcting (1,2)-Optimal linear codes over GF(q) (q is a prime) where the code length n is divided into two sub-blocks of lengths n_1 and n_2 ; (n = $n_1 + n_2$). An (n = $n_1 + n_2$, k) linear code that corrects all bursts of length $b_1=1$ in the first sub-block of length n_1 and all bursts of length $b_2=2$ (fixed) in the second sub-block of length n_2 , and no other error pattern, will be called as (1,2)-Optimal linear code.

Mathematics Subject Classification: 94B20

Keywords: Optimal codes, Burst-error, Parity-check matrix, Hamming weight

1. INTRODUCTION

In many communication systems, the information is stored in various parts (subblocks) of the code length. Therefore we partition the code length into various sub-blocks in such a way that the pattern of errors in each sub-block is known. So, when we consider error correction in such a system, we correct errors which occur in the same sub-block. This results in fast and accurate error detection and correction. Hence there is need to study blockwise error correcting codes in detail. Blockwise burst error correcting (1,2)-Optimal linear codes were first introduced by Dass and Tyagi [2] in 1982. The parameters of such codes were obtained as a particular case of a bound given by the same authors [3] in 1980 on the number of parity check digits required for an $(n = n_1 + n_2, k)$ linear code. The bound proved by Dass and Tyagi is as follows:

Theorem: The number of parity-check digits in an (n, k) linear code correcting all bursts of length b_1 (fixed) in the first sub-block of length n_1 and all bursts of length b_2 (fixed) in the second sub-block of length n_2 $(n = n_1 + n_2)$, is at least

$$\log_{q} [1 + \{ (n_{1} - b_{1} + 1)q^{b_{1} - 1} + (n_{2} - b_{2} + 1)q^{b_{2} - 1} \} (q - 1)].$$

The bound may also be put as follows:

$$q^{n-k} \ge 1 + (n_1 - b_1 + 1)(q - 1)q^{b_1 - 1} + (n_2 - b_2 + 1)(q - 1)q^{b_2 - 1}$$
(1.1)

The definition of burst used here is CTD-burst [4] according to which "A burst of length b (fixed) is a vector whose all the non-zero components are confined to some b-consecutive positions, the first of which is non-zero and the number of its starting positions in an n-tuple is first n-b+1 positions". This definition is a modification by Dass [4] on the definition of a burst due to Chien and Tang [12] and has been found very useful in error analysis experiments on telephone lines [7], in the study of convolutional codes where the code word is in the form of semi-infinite sequence and in communication channels where errors do not occur near the end of a vector.

Dass and Tyagi [2] considered (1.1) as equality, i.e.

$$q^{n-k} = 1 + \left[(n_1 - b_1 + 1)(q - 1)q^{b_1 - 1} \right] + \left[(n_2 - b_2 + 1)(q - 1)q^{b_2 - 1} \right]$$
(1.2)

and obtained a class of optimal codes for $b_1 = 1$ and $b_2 = 2$ (fixed) for the binary case. These codes were named as (1,2)-Optimal codes and were obtained for two subblocks for total code length upto 50; $(n_1 + n_2 \le 50)$. The codes are optimal in a specific sense as they are capable of correcting all single errors in the first sub-block of length n_1 and all bursts of length 2 (fixed) in the second sub-block of length n_2 and no other error pattern.

2. NON-BINARY (1,2)-OPTIMAL CODES

Some possibilities for the existence of non-binary (1,2)-optimal codes have recently been explored by Buccimazza, Dass and Jain [1], Dass, Iembo and Jain [5], [6], Tyagi and Rana [15], [14], Rana [8], [9]. In fact, Tyagi and Rana [14] have also given a table for values of q \leq 19 that works as a ready reckoner to check if a particular (n = n₁ + n₂, k) optimal code exist or not for given values of the parameters.

Example: For q = 3, we find that (4+4, 5) code should exist (from Table in [14]). If we consider the following matrix

	(0)	0	1	1				2)	
H =	0	1	0	1	1	1	1	0	
	1	0	0	2	1	2	0	1)	

as the parity check matrix for the desired code, then it can be verified that the code which is the null space of H corrects all single errors in the first sub-block of length 4 and all burst of lengths 2 (fixed) in the second sub-block of length 4 and no other error. Thus (4+4, 5) code is (1, 2)-Optimal.

After closely observing the table (in [14]) for different values of q, it was found that in many cases (1,2)-Optimal codes do not exist even though the values of the parameters n_1 , n_2 and k satisfy equation (1.2). These values of the parameters are listed below in Table-1.

<u>q</u> 3	n ₁			Possible Codes
5	1	<u>n</u> 2 5	<u>k</u> 3	Possible Codes (1 + 5, 3)
	1	5	5	(1+3, 5)
5	1	7	5	(1 + 7, 5)
	6	6	9	(6+6, 9)
	11	5	13	(11 + 5, 13)
7	1	9	7	(1 + 9, 7)
	8	8	13	(8 + 8, 13)
	15	7	19	(15 + 7, 19)
	22	6	25	(22 + 6, 25)
	29	5	31	(29 + 5, 31)
11	1	13	11	(1 + 13, 11)
	12	12	21	(12 + 12, 21)
	23	11	31	(23 + 11, 31)
	34	10	41	(34 + 10, 41)
	45	9	51	(45+9,51)
	56	8	61	(56 + 8, 61)
	67	7	71	(67 + 7, 71)
	78	6	81	(78 + 6, 81)
	89	5	91	(89 + 5, 91)
13	1	15	13	(1 + 15, 13)
	14	14	25	(14 + 14, 25)
	27	13	37	(27 + 13, 37)
	40	12	49	(40 + 12, 49)
	53	11	61	(53 + 11, 61)
	66	10	73	(66 + 10, 73)
	79	9	85	(79 + 9, 85)
	92	8	97	(92 + 8, 97)
	105	7	109	(105 + 7, 109)
	118	6	121	(118 + 6, 121)
	131	5	133	(131 + 5, 133)
÷	101	5	100	(101 + 0, 100)
q	1	q+2	q	(q+3,q)
	q + 1	q+1	2q-1	(2q + 2, 2q - 1)
	2q + 1	q	3q - 2	(3q + 1, 3q - 2)
	3q + 1	q-1	4q - 3	(4q, 4q - 3)
	$\frac{1}{q^2 - 4q + 1}$	 6	$\frac{1}{q^2 - 4q + 4}$	$(q^2 - 4q + 7, q^2 - 4q + 4)$
	$q^2 - 3q + 1$	5	$\frac{q^2 - 3q + 3}{q^2 - 3q + 3}$	$((q^2 - 3q + 1) + 5, q^2 - 3q + 3)$

Values of n_1 , $n_2 (\ge 5)$ and k for n - k = 3 and possible codes

Table 1

This situation arises mainly for codes when $n_2 \ge 5$ and n - k = 3. In this paper, we prove that such (1,2)-Optimal codes do not exist.

3. NON-EXISTENCE OF (1,2)-OPTIMAL CODES

Proving non-existence of certain category of perfect codes has been an interesting exercise [13], [11], [10]. It may be noted that $((q^2 - 3q + 1) + 5, q^2 - 3q + 1)$ 3) code over GF(q) exist theoretically (Table 2). However, we illustrate in our next theorem that it is not possible to form a parity check matrix for this code, so that it does not become (1,2)-Optimal code.

Theorem: (1,2)-Optimal $((q^2 - 3q + 1) + 5, q^2 - 3q + 3)$ code over GF(q), does not exist.

Proof: We prove this theorem by assuming that such codes exist. So, let us suppose that H denotes the parity check matrix for $((q^2 - 3q + 1) + 5, q^2 - 3q + 3))$ code. The matrix H is formed by first constructing 2nd sub-block. Once 2nd sub-block is constructed, we will be left with exactly $(q^2 - 3q + 1)$ number of 3tuples (non-zero), which can be placed as the columns in the first sub-block of H in any order. Therefore our main problem is to construct the second sub-block of H. Since n-k = 3, therefore, the most trivial way in which the first three columns of 2nd sub-block can be constructed, is to take the q-ary representation of the numbers 1, q, q^2 i.e. (0 0 1), (0 1 0) and (1 0 0) columnwise.

Therefore, we get the matrix form of first three columns of 2nd sub-block of H as

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ as first three columns of second sub-block of H and let fourth column in the 2nd sub-block of H be $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Fifth column can be taken as one of

the first three columns. Let this be (1 0 0). Then the complete 2nd sub-block of H becomes:

(1)	0	0	Х	1)		
0	1	0	у	0		
0	0	1	Z	0		
2nd Sub-block						

Suppose S denote the set of all the non-zero 3-tuples over GF(q). Then

$$\mathbf{S} = \mathbf{GF}(\mathbf{q})^3 \sim \{(0, 0, 0)\}.$$

 \therefore | S | = (q³ - 1).

Let A denote the set of all the syndromes corresponding to the error pattern of first three columns (i.e. $1^{st}-2^{nd}$, $2^{nd}-3^{rd}$, including the vectors (0 0 1), (0 0 2),...,(0 0 q-1)) of second sub-block in H. Then

A = {(0, 0, 0)
$$\neq$$
 (a, b, c) \in GF(q)³ | a = 0 or c = 0}

Also, if $B = S \sim A$, then

B = {(a, b, c) \in GF(q)³ | a \neq 0 and c \neq 0}

Therefore |A| = (q-1)(2q+1) and $|B| = q(q-1)^2$.

Clearly
$$S = A \cup B$$
 and $A \cap B = \phi$

So that |S| = |A| + |B|.

Then for H to be the parity check matrix of $((q^2 - 3q + 1) + 5, q^2 - 3q + 3))$ code, each of the (q - 1) elements in the set C given by

 $C = \{(ax, ay, az + 1) \mid 0 \neq a \in GF(q)\}$

must not belong to A.

But there is an element
$$\left(\frac{q-1}{z}x, \frac{q-1}{z}y, 0\right)$$
 of C which belongs to A,

(:: for each
$$0 \neq z \in GF(q)$$
, $\frac{q-1}{z}z+1=0$ in $GF(q)$)

which is a contradiction to the above assumption.

Therefore it is not possible to add the fourth column in the second subblock of H and hence we are unable to find the second sub-block in H which may yield different syndromes in the respective error pattern-syndrome table. Hence the result.

4. CONCLUSION AND REMARKS

In this paper, we have shown the non-existence of (1,2)-Optimal $(n_1 + n_2, k)$ codes over GF(q) for n - k = 3 and $5 \le n_2 \le q + 2$.

However, the problem needs further investigation to find the possibility of the non-existence of (1,2)-Optimal ($n = n_1 + n_2$,k) codes over GF(q), for n - k = 4 and $m \le n_2 \le q(q + 1) + 2$, where

$$\mathbf{m} = \begin{cases} 12 & \text{if } \mathbf{q} = 3 \\ 16 & \text{if } \mathbf{q} = 5 \\ 28 & \text{if } \mathbf{q} = 7 \\ \dots & \dots & \dots \end{cases}$$

and for higher values of n - k.

REFERENCES

[1] B. Buccimazza, B.K. Dass and S. Jain, 'Ternary (1,2)-Optimal linear codes'; J. Interdisciplinary Mathematics, 7(1) (2004), 71-77.

[2] B.K. Dass and V.K. Tyagi, 'A New type of (1,2)-optimal Codes Over GF(2)'; Indian Journal of Pure & Applied Mathematics, 13(7) (1982), 750-756.

[3] B.K. Dass and V.K. Tyagi, 'Bounds on blockwise Burst Error Correcting Codes'; J. Information Sciences, 29 (1980), 157-164.

[4] B.K. Dass, 'On a burst error correcting code'; J. Info. Optimiz. Sciences, 1 (1980), 291-295.

[5] B.K. Dass, R. Iembo and S. Jain, '(1,2)-optimal codes over GF(5)'; J. Interdisciplinary Mathematics, 9(2) (2006), 319-326.

[6] B.K. Dass, R. Iembo and S. Jain, '(1,2)-Optimal Codes Over GF(7)'; Quality, Reliability and Information Technology, Trends and Future Directions, Narosa Pub. House, India, 2006.

[7] M.A. Alexander, R.M. Cryb and D.W. Nast, 'Capabilities of the telephone network for data transmission'; Bell. System Tech. J., 39(3) (1960).

[8] N.S. Rana, '5-ary Optimal Linear Codes'; Proceedings of **ICRTMA-09** (2009).

[9] N.S. Rana, '7-ary Optimal Linear Codes'; Accepted for Publication in **"Bulletin of Pure and Applied Mathematics"**, Vol. 5, No. 1 (2011).

[10] R. Dasakalov and E. Metodia, 'The Non-Existence of Ternary [284, 6, 188] Codes'; Problems of Information Transmission 40(2) (2004), 135-146.

[11] R. Hill and K. Traynor, 'The Non-Existence of Certain Binary Linear Codes'; IEEE Transactions on Information Theory, 36(4) (1990), 917-922.

[12] R.T. Chien and D.T. Tang, 'On definition of a Burst'; IBM J. Res. Development, 9(4) (1965), 292-293.

[13] T. Etzion, 'Constructions for Perfect 2-Burst Correcting Codes'; IEEE Transactions on Information Theory, 47(6) (2001), 2553-2555.

[14] V.K. Tyagi and N.S. Rana, 'A Family of (b₁, b₂)-Optimal Codes Over GF(q)'; **Global Journal of Pure and Applied Mathematics**, 4(3) (2008), 193-207.

[15] V.K. Tyagi and N.S. Rana, '(1,2)-Optimal Codes Over GF(3)'; Advances in Theoretical and Applied Mathematics, 3(4) (2008).

Received: November, 2009