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Abstract

We study a batch arrival queue with a single server providing two- stages of
heterogeneous service with each customer having the option to choose one of the two
types of first stage service followed by one of the two types of second stage service. In
addition, after completion of the two stages of service in succession to each customer, the
server has the option to take a vacation of a random length with probability p or to
continue staying in the system with probability 1-p. Further, the batches arriving at the
system have restricted admissibility into the system. In addition, the policy of restriction
also differs when the server is available in the system and when he is away on vacation.
We derive the steady state queue size distribution at a random epoch and some important
performance measures for this model. Moreover, attempts have been made to unify
several classes of related batch queueing systems.
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1. Introduction

Madan and Choudhury [16] studied a batch arrival queue M * /(G,,G,)/1 with restricted

admissibility of arriving batches and modified server vacations under a single vacation
policy. This single server queueing system provides a two-stage heterogeneous sequential
service to customers. In the present paper, we study a more generalized queueing system

G,, G . . N . -

M * /(GlA G”j/l with restricted admissibility of arriving batches and modified server
1B 2B

vacations under a single vacation policy. In this system too, the server provides two

stages of sequential service. However, each stage of service has two options and a

customer has the option to choose either of the two types first stage service followed by

either of the two types of the second stage service.

The restricted admissibility of arriving batches was first introduced by Madan and Abu-
Dayyeah [14, 15 ] followed by Madan and Choudhury [16]. One finds quite a few papers
in earlier literature on different control models of queueing systems including control of
servers, control of service rates, control of admission of customers and control of queue
discipline. For such papers, the reader is referred to Crabill, Gross and Magazine [6], Rue
and Rosenberg [20], Stidham [21], Neuts [17] and Huang and Mc-Donald [8]. For a few
detailed examples of restricted admissibility models, refer to Madan and Choudhury [16].

The two-stage sequential service was first studied by Madan [12, 13 ] in his two papers.
Bernoulli vacations were studied by many authors including Keilson and Servi [9],
Ramaswamy and Servi [18], Doshi [7] and Takagi [22]. Numerous researchers, including
Baba [1], Choudhury [3], Choudhury and Borthakur [4], Lee and Srinivasan [10], Lee et-
al [11], Rosenberg and Yechiali [19] and Teghem [23] and many others have studied
batch arrival queueing systems under different vacation policies.

2. The Mathematical Model

We consider a batch arrival queueing system, where arrivals occur according to a
compound Poisson process with the batch size random variable ‘X’. Following Madan
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and Choudhury [16], let ¢, (0 <c,<1) be the probability that an arriving batch will be
allowed to join the system during the period of time when the server is busy and c, (0
<c, £1) be the probability that an arriving batch will be allowed to join the system during
the period of time when the server is on vacation. The server provides two stages of
heterogeneous service in succession. The first stage service (FSS) has two options FSSA
or FSSB. The second stage service (SSS) again has two options SSSA or SSSSB. The
service discipline is assumed to be first come, first served (FCFS) for both stages of
service. When a customer’s turn for service comes, he chooses FSSA with probability r,
or FSSB with probability 1—r,. After completion of the first stage service FSSA or
FSSB, a customer enters second stage service and he may choose SSSA with probability
r, or SSSB with probabilityl—r,. Further, it is assumed that the service time S,, for
FSSA and the service times S, for FSSB follows a general probability distribution with
respective distribution functions S,,(x) and S,;(x), respective Laplace-Stieltjes
transform (LST) S,,(6)and S,,(6) and respective finite moments E(S),) and E(S;)
k >1. Similarly, the second stage service times S,, for SSS(A) and S,, for SSS(B)
follow a general probability distribution with respective distribution functions S, , (x)
and S,.(x), respective Laplace-Stieltjes transforms (LST) S,,(@)and S,.(6) and
respective finite moments E(S£,) and E(S5;) k >1. As soon as the second stage service

SSSA or SSSB of a customer is completed, the server may go for a vacation of random
length V with probability p (0 < p <1) or he may continue serving the next customer, if

any, or may stay idle and wait for a customer to arrive at the system. Next, we assume
that the vacation time V of the server follows a general probability distribution with

distribution function V(x), LST V'(#)and finite moments E(V*), k=1, 2 and is
independent of the service times S,,, S,5, S,, and S, and the arrival process. Further,

it is also assumed that if, after returning from a vacation, the server does not find any
customers in the system, even then he joins the system without taking any further
vacations and this policy is termed as single vacation (V) with Bernoulli schedule (BS).

G G
Notationally, our model may be denoted by M * /((GIAJ , [ 2AD/l/BS/SV Policy

1B 2B
Queue. Thus, for this system the time required by a unit to complete a service cycle,
which may be called as modified service time, is given by
B=S,,+S,,+V, with probabilityr,r, p,
=S,, +S,s +V , with probabilityr,(L-r, )p,
= S5 +S,,+V, with probability (1-r, )r, p,
= S, + S, +V, With probability (1—r, )1 -, )p,
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=S,, +S,,, with probability r,r,(1-p),

=S,, +S,5, With probabilityr,(1-r,){d- p),
=S, + S, With probability (L—r, )r,(L- p),
=Sy + S5, With probability (1—r, )1 -, ){1- p).

3. Queue Size Distribution at a Random Epoch

In this section, we shall first setup the system state equations for the queue size
distribution at a random point of time by treating the elapsed FSSA time, the elapsed
FSSB time, the elapsed SSSA time, the elapsed SSSB time and the elapsed vacation time
V as supplementary variables. Then we solve these equations and derive the Probability
Generating Function (PGF) for the queue size distribution at a random epoch.

Assuming that the system is in the steady state, we define A =batch arrival rate,
X =batch size (a random variable), a, = Prob [ X =k],

X(z) =) 7"a,, the PGF of X, E[Xy,]=E[X(X —1)..(X =k +1)], the k th factorial
k=1
moment of X.

Further, since S;,(x), S,z (X), S,,(X), S,z (x)and V (x)are distribution functions,
therefore, we have we S,,(0)=0, S,,(0) =1, S;;(0)=0, S;z;(»)=1, S,,(0)=0,
S,a(0) =1, S,;(0)=0, S,;(0) =1, and V() =1, and since the distributions are

. ds,, (x) ds,, (x)
continuous at x =0 , therefore, X)dx = —A7 X)dx = —B37
14 (X) 1-5,,(X) Hyg (X) 1-5, ()
s dx =522y — B2 g vigax = -V e the first order
1-5,,(x) 1-S,5(X) 1-V(x

differential functions (hazard rates).

Let N, (t) be the queue size (including one being served, if any ) at time 't’, S2 (t) be
the elapsed FSSA time at time 't', SJ, (t) be the elapsed FSSB time at time 't',
S?2, (t) be the elapsed SSSA time at time 't', S). (t)be the elapsed SSSB time at time

't"and V ° (t) be the elapsed vacation time at time 't'. For further development of this
model, we introduce the random variable Y (t) as follows:

At time 't',
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Y (t) =0, if the server is idle,

= 1A, if the server is busy with FSSA,
= 1B, if the server is busy with FSSB,
= 2A, if the server is busy with SSSA,
= 2B, if the server is busy with SSSB a,
= 3, if the server is on vacation.

Thus the supplementary variables SJ (), S%(t), Sj.(t), Sos(t)and V°(t) are
introduced in order to obtain a bivariate Markov process {N, (t), L(t)}, where L(t) =0 if
Y(t)=0, L(t)=S () if Y()=1A, L(t)=Sk(t) if Y({t)=1B, L(t)=S;,(t) if
Y(t)=2A, L(t) =Sy (t) if Y()=2B and  L(t)=V°(t) if Y(t)=3 and define the
following probabilities:

Ro(t) = Prob [Ng (t) =0, L(t) =01,

Poan (Xit)dx =Prob [Ny (t) =n, L(t) =S/, (t); X< S, () <x+dx], x>0,n>1,
Pen(X;it)dx=Prob [Ny (t) =n, L(t) =S5 (t); x<Sg(t) <x+dx], x>0,n>1,

Poan (Xit)dx =Prob [Ny (t) =n, L(t) = S7,(t); X< Sy, (t) <x+dx], x>0,n>1,

Pyen (Xit)dx =Prob [Ny (t) =n, L(t) =Sz (t); X <Sp(t) <x+dx], x>0,n>1,
Q,(x;t)dx=Prob [Ny (t)=n, L{t) =V (t); x<V°()<x+dx], x>0,n>0.

Then, assuming that R, =Lim R,(t), Pa,(X)dx = Lim Poan (X 1)dx,
t—oo ! t—
P, (X)dx = L|m P, (X;1)dXx, Poan (X)dXx = It_im Pyan (X;1)dX, P,g.q (X)dx = Lim

t—o0

P, (X;t)dx, and Q,(x)dx = It_im Q, (x;t)dx, x>0, n>1 exist and are independent of

the initial state, we utilize the argument of Cox [5] and obtain the following Kolmogorov
forward equations under the steady state conditions:
d

dx —— P (X) +[A + 2, (IPs (%) = A(L- Cl)"‘/lclzak ank (X, X>0,n>1, (3.1)
e Plas 00+ [+ 1y (0P () = 201-6) + 26,338, R, (0 X>002L (32
P 00 LAt g WPy (00 = AL+ 6,3, Poyy (0, 21, 33)
d

_X Pog (X) +[A + s (X)]st,n (X)=Al-c,)+ ﬂ’clzak Pognk (x),n>1, (3.4)
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%Qn (xX)+[A+v(X¥)]Q,(x)=A(1-c,) + Acziaan_k (x),x>0,n>1, (3.5)
%Qo () + L2 +V(0)]Qy (X) = A(L—,)Qy (x) X >0, (3.6)

ARy = A= C)Ry + (L= P)| an (P, (00X + (L )| g (X)Pan (0K +] v(30Qy ()0

. x>0, (3.7)

The above set of equations is to be solved under the following boundary conditions
atx=0:

P (0) = 4€1,8,Ry + (1= P)I; [ £150 (X)Py 0,1 ()X + (L= I, [ f126 ()P .5 (X)X
0 0

+ rlTv(x)Qn(x) dxn>1, (3.8)

Pran (0) = 26,(L= )a,Ry + (L= YA )| ton (0Py s (V0K + (L D)L= )] 1z (X0Prg . (X)X

+ L-R)]V(0Q, (0 dx =1, 39)
Paun(©) = 1y [ s O0Pn 2 (OOX 1, [ 1 (0P (00K, 21, (310)
P (0) = = 1) i (OPps (00X + A= )] s (0P (0K, M21,  (311)
Q,0) - pIuZA(x) Py () + pIuZB(x)PaB,M(xmx n20, (312

and the normalizing condition

R+ 3 Ponn (00X 4 [ P, (0 + 3 [ Py (X)X

n=lo n=lo n=1 g

+ iff st,n(X)dX+iTQn(X)dx =1 (3.13)

n=1 n=0 o

Next, we define the following PGFs:
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P (x; Z)=ZZnP1A,n(X)1 x>0, |z [<1; Pg(X; z)=ZZ”PlBVn(x), x>0, |z|<1, (3.14a)

n=1 n=1

PZA(X;Z):iZnPZA,n(X)I x>0, |z[<1; PZB(X;Z):iZnPZB,n(X)1 x>0, |z|<1, (3.14b)
n=1 n=1

PA0:2) =3 2"P,, (0), x50, |2|<1; Py(0:2) =3 2"Py, (0), 30, |2|<1,  (3.140)
n=1 n=1

Pa(0:2) =3 2°P,, ,(0), 20, |Z[€1; Py (0;2) = Y 2"Pyg, 0), x>0, [2[<1, (3.14d)
n=1 n=1

Qx2)=32"Q,(x), 0, |2[<1; Q(0;2) = 3.2'Q, (0), | z[<1. (3.14¢)

n=0 n=0

Proceeding in the usual manner with the equations (3.1) — (3.6), we obtain

Poa(X2) = P,y (0;2)[1~ S, (X)Je ", x>0, (3.15)
Ps (X;2) = P (0; 2)[L— S, ()] "4 x>0, (3.16)
P, (X;2) = P, (0;2)[L - S, ()] ™47, x>0, (3.17)
Pys (X;2) = Pyg (0;2)[L = S5 ()], x>0, (3.18)
Q(x;2) = Q(0; 2)[L-V (x)Je "= * x>0, (3.19)

Next, we multiply equations (3.8)-(3.12) by appropriate powers of z" and then take
summation over all possible values of n and use (3.13). Thus we get on simplification

ZPlA (O’ Z) = ﬂ’clrlz[x (Z) _1]R0 + r1 (1_ p)S;A(ﬂ’Cl (1_ X (Z)))PZA(Ov Z)
(- p)S;s(Ac,(1— X (2))Pys (0,2) + zrV " (4c,(1- X (2)))R(0,2),  (3.20)

2P (0,2) = Ac,(1- 1) Z[ X (z) —1IR, + (1— 1,)(L - P)S;(AC, (L— X (2)))P, (0, 2)
(1-1)1- p)S;5(Ac,(1- X (2))P, (0, 2)
+ 2(1- 1)V (A, (1- X (2)))R(0, 2), (3.21)

P,,(0,2) =1,S;, (/101 @-X (Z))PlA (0,2)+1,S5 (/1(:1 (1-X(2)P; (0, Z))’ (3.22)

Pye (0,2) = 1-1,)S;,(Ac, (1= X (2))P.4 (0, 2) + (1 —1,)S;5 (Ac, (1— X (z))P5 (0,2), (3.23)



2278 K. C. Madan

2Q(0,2)=p S;A(/Icl @1-X (Z)))PZA (0,2) + pS;g (/Icl (@-X (Z))PZB 0,2), (3.24)
where

S, (Ac,(1- X (2))) = J'e"cl(l’x(z”xdsu(x) is the z-transform of S,
0
S.s(Ac, (L— X (2))) = | e >4 *®dS , (x) is the z-transform of S,

S, (A, (1- X (2))) = | e "***®ds,, (x) is the z-transform of S,,,

8§ Ot=m—mg O3

S,5(Ac,(1- X (2))) = J'e’“l(l’x(z”deZB(x) is the z-transform of S,,, and
0

V' (ic,(1- X (2))) = Ie”“z(l’x(z”xdv (x) is the z-transform of V.
0

Solving the set of equations (3.20) to (3.24) for P,,(0,z), P;(0,2),P,,(0,2), P,(0,2)
and Q(0, z) we obtain on
simplifying
e tX (-1 R0]< - Qo rna- )+ pVUISLSE - @ r)A-R)IA- )+ PV 1S3 >
~(@- 1) L= nn@- p) + PV 1S5S0 — L@ 1,)[A- P) + PV 15,2555 ]

P.(0,2)=
Z< 1- [(1_ p) + pV*] [rerSIAS;A + rl(l_ rZ)Sl*AS;B + (1_ rl)rZS;AS;B + (l_ rl)(l_ rZ)S;AS;B >
(3.25)
[lC Z[X(Z)—l] R ] rl[(l_ rl)(l_ rz)[(l_ p)+ pV*]Sl*AS;B _(1_ r1)r2[(1_ p)+ pV*]SIAS;A
1 "\ @-n) Eranl- p)+ pV 1SS, - A-R)A-)[A- p)+ PV 18]S ]
Ps(0,2)=

Z<1_[(1_ p)+ pV*] [rlrzsl*AS;A +1,(1-1,)8,,S 55 +(L=1)1,S5,S55 +(1-1)(1-T,)S;,S56 >

(3.26)
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[ﬂCIZ[X (2)-1] Ro] lrl NS, +(@1- rl)rZS;BJ

P2A(01 Z) =
< 1- [(1_ p) + pV*] [rerS;AS;A + '1(1_ rZ)S;AS;B + (1_ ri_)rZS;AS;B + (1_ r1)(l_ rZ)S;AS;B] >
(3.27)
Pelx (2)-1R,] [e-pe-r)sk]
Ps(0,2) =
< 1- [(1_ p)+ pV*] [GrZS;AS;A +6(1-1,)8,,555 + (L= E)1,S;,S5 + (L- 1)1~ rZ)S;AS;B] >
(3.28)
plAcz[X (@) ~1R,] {[r,5Sis + W) 1S5 S5 + [0 1) @-1,)S75]S55 )
Q(0,2) =

< 1- [(1_ p) + pV*] [rl rZSIAS;A +h (l_ rZ)S;AS;B + (l_ rl) rZS;ASIB + (1_ r1) (l_ rZ)S;AS;B] >

(3.29)

where S,, S.s, S,,S,s and V" in equations (3.25) to (3.29) represent
Sia(20,(1-X(2)), Sia(Ac, (1~ X (2)), S;4(Ac, (1~ X (2)), S5 (4, (1~ X(Z)) and

V" (Ac, (- X (Z)) respectively.

Now, from equation (3.15) and (3.25), we obtain

Pu(2) = [ Pun(x, )0
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rl[z _(1_ r.1)r2[(1_ p)+ pV*]S;Asl*B _(1_ r'1)(1_ rz)[(l_ p) + pV*]Sl*BS;B] (S* —l)R
~@-r) - rn[@- p) + PV 185,85 — K (L-1,)[A- p)+ PV 1SS h

<1_ [(1_ p) + pV*] [rerSl*AS;A + rl(l_ rz)S;AS;B + (1_ rl) rZS;Asl*B + (1_ rl)(l_ rZ)S;AS;B] >

(3.30)
Similarly from equations (3.16) and (3.26), we get
Ps(2) = I P (x,z)dx
<I’1[(1—r1)(1—r2)[(1— P)+ PV 182555 —W-)R,[A- P)+ PV 151,55, ] ]>(s 1R
+Q-n) [ nnle-p)+ pV 1SS, - Q-n)a-n)Ie-p)+ pvIsLs )T T

<1_[(1_ p)+ pV*] [rerSl*AS;A +1(1-1,) S5 +(1-1)155,55 +(1_r1)(1_r2)S;AS;B] >

(3.31)

Then from equations (3.17) and (3.27), we get
Pa(2) = J. P, (X, Z)dx
0

[rl rZSIA + (1_ rzl)rZSIB] (S;A _1) Ro

<1_ [(1_ p) + pV*] [r1 rZSI*AS;A +n (1_ rz)SIAS;B + (1_ rl) rZS;AS;B + (1_ r1) (1_ rZ)S;AS;B >

(3.32)



Steady state analysis 2281
Yet again, from equations (3.18) and (3.28), we get
Py (2) = [ Pys (%, 2)0x

0

la-na-r)ss] s -1 R,

(1-]a-p)+ PV 6 580 S50+ 6 (1= 1) S13S3s +A-1) 1, S35 + (LK) (1-1,) 85,555 ] )

(3.33)
Finally from equations (3.19) and (3.29), we get
Q) = [Q(x, )
0
p{[rr, Sia+ 0-1) 1S5 850 + [A- 1) 1)S5 56 ) (1-V7 (3,0~ X (D)) R,
_ 2(1=[0-p)+ V7] [rinSiisia+ 1 A1) SLS5o + -1 183,80 + (L-1) (1-1) S3, 536
(3.34)

Now, the unknown constant R, can be determined by using the normalizing condition
(3.13), which is equivalent to R, +P,,()+ Pz (D) +P,,(D)+ P,z (D) +Q() =1. Thus we

get
R, = (- p), (3.35)
where

p == pMAE(X)c{rE(S;y) + A —1)E(S.p) + LE(S,,) + (1-1,)E(S,5)}]
+ PLAE(X)C{RE(S;,) + A -1)E(S;p) + LE(S,) + (1—1,)E(S,5)} + C,AE(X)E(V)]

= AE(X)[c,(RE(S,) + (- 1)E(Sys) + E(r,S,0 + (1-1,)S,5))+ C, PE(V)] <1

is the utilization factor of this system.
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Note that equation (3.35) gives the steady state probability that the server is idle but
available in the system and it gives the stability condition under which the steady state
solution exists. Further, utilizing the value of R, from (3.35) into equations (3.30)-

(3.34), we have now completely and explicitly determined the queue size PGFs P,,(z),

Ps(2), Pa(z), Py(z)and Q(z). In addition, various system state probabilities can
also be obtained from equations (3.30)-(3.34) on putting z =1. Thus we have

Prob [the server is busy with FSS(A) J= P, , (1) = AC,E(X ) rLE(S,,),
Prob [the server is busy with FSS(B) ]=P,; (1) = Ac,E(X) (1 —r,)E(S;s),
Prob [the server is busy with SSS(A)]=P,, (1) = Ac,E(X)r,E(S,,),

Prob [the server is busy with SSS(B)]=P,; (1) = Ac,E(X)(1—-r,)E(S,;z), and
Prob [the server is on vacation]=Q(1) = pAc,E(X)E(V).

Next, let denote the PGF of the queue size distribution at a random epoch can be found

by adding equations (3.30)- (3.35). Thus we have
Po(2) =Ry + Py (2) + Pg(2) + P, (2) + Pg (2) + 2Q(2), (3.36)

4 Particular Cases
Casel All Arriving Batches Are Allowed to Join the System (No RA Policy)

The main results for this case are obtained by letting ¢, =c, =1 in equations (3.30) to
(3.35), where now S.,, S;5, S,A,S,5 and V "in these equations represent
Sia(A(1=X(2)), S5 (2= X(2)), S;4(AL-X(2)), S36(2(1-X(2)) and

V(A - X (Z)) respectively.

Case 2 The System Has Two First Stage Services (FSSA and FSSB) and
Only One Second Stage Service (SSSA)

The main results of this case are obtained by letting r, =1 in equations (3.30) to (3.35).

Thus we obtain
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<rl[z Q- p)+ PV 1S5S, + PV 1,585 ]> (s, 1R
—@-n) - nl@-p)+ VIS8, + BV ISLS ) T

PlA(Z) =
(L-[@-p)+ pV ] [nS;A850 + @-1)85,85 ])
<r1[— (A-r)[a- p)+ PV 185,53 ] ]> (s, 1R
FU-n)zrnla-p)+pVISLS VIS T
PlB (Z) _
(L-a-p)+ pv ] [rSiS50 +@-1)S5,55 ])
(4.2)
lrl Sl*A +(1- rl)S;BJ (S;A _1) R
PZA(Z) = =
(1-la-p)+ pv'] 68585+ @-1)S3,S3])
Ps(2)=0
p< [rl SIA +(1- rl) SIB]S;A> <1_V*(AC2 1-X (Z))> Ro
Q) -
2(1-[@-p)+ V][5 57, S50+ -1 S50 S35 )
RO = (l_ p) ’
where

p=Q0-pAEX)c{rE(S;y) + A—1)E(Sss) + E(S,4)}]

+ PLAE(X)C{nE(S,4) + 1 -1)E(S;s) + E(S,)}+ CAE(X)E(V)]

2283

(4.1)

4.3)

(4.4)

(4.5)

(4.6)
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= AE(X)[c,(RE(S,) + (1 - 1)E(Sys) + E(S,4)+C, pE(V)] <1

is the utilization factor of this system.

Case 3 The System Has Only One First Stage Service (FSSA) and

Two Second Stage Services (SSSA and SSSB)
The main results of this case are obtained by letting r, =1 in equations (3.30) to (3.35).
Thus we obtain

*

2(s;, ~1)R,

Pa(2) ~ (4.7)
<1_ [(l_ p) + pV*] I:rZSI*AS;A +(1-1,)8,55 >

Ps(z)=0 (4.8)

r Sl*A (S;A _1) Ro
Pa(2) = (4.9)

<1_ [(1_ p)+ pV*] [rZS;AS;A +(1- rz)S;AS;BD

[(1_ rZ)SIB][S;B _1] Ro
P(z) = (4.10)

(1-a-p)+ pv ] 68030 + @-1)5856 )

p <[r281*A]S;B> <1—V*(2C2(1— X (Z)))> Ry
Q(z) = (4.11)

2(1-[- p)+ PV 6803830 + - 1,)8,,856 )

R, = (L p), (4.12)
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where
p == p)AE(X)C{E(S;a) + LE(S,0) + (1-1,)E(S;5)}]
+ PLAE(X)C{E(S,4) + LE(S,) + (1—1,)E(S,5)}+ C,AE(X)E(V)]

= AE(X)[ey(RE(S1) + L= 1)E(Ss) + LE(S,0) + (1= 1,)E(Sye)) + €, PE(V)] <1
is the utilization factor of this system.

Case 4 The System Has only One First Stage Service (FSSA) and Only One
Second Stage Service (SSSA)

The main results of this case are obtained by letting r, =1 and r, =1 in equations (3.30)
to (3.35). Thus we obtain

*

z (s, 1R,

Pa(z) ~ (4.13)
<1_ [(1_ p) + pV*] [Sl*AS;A]>

Ps(2)=0 (4.14)

*

S;A (SZA _1) Ro
P,a(2) = (4.15)

(1-la-py+ pv][sisia])

P (2)=0 (4.16)

PS5, (L-V (3,0~ X (2)))) Ry
Q) - (4.17)

(1-[a-p+ pv][s081

R, =(1-p), (4.18)
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where
p=1-p)AE(X)c{E(S;s) + E(S;0)}]
+ PIAE(X)C{E(S,4)) + E(S,)}+ ¢, AE(X)E(V)]

= 2JE(X)[c,(E(S,) + E(S,, )+ ¢, pE(V)] <1 isthe utilization factor of this system.

The results of case 4 agree with Madan and Choudhury [16]. The reader is referred to
this paper for all further particular cases of this case.

5 Mean Queue Size and Mean Waiting Time in the Queue

In this section we derive the mean queue size of this

G G
M X /((GMJ , ( 2AB/l/ BS/SV /RA queue. Let L, be the mean queue size at a
1B 2B

random epoch, then

L= dPQ(z)}

Q dz

=, ZECON e (RE(SE) + U= R)E(SE) + RE(SL) + U= R)E(S, + 20LE(SEG,))

2(1-p)
+
QZ(E(X))Z[ngE(\/ 2) + 2pC1C2E(\/)(r1E(SlA) +(1-1)E(S;) +LE(S,,) +(1-1,)E(S, )]
2(1-p)

1-p)

where p = ZE(X)[c,(KLE(S;,) + (L -1)E(S;p) + LE(S,4) + (L= 1,)E(S,5))+ €, PE(V)]
E(X(X -1))
2E(X)

and E(XR) = is the mean residual batch size.

If the above system has no FSSB service and no SSSB service, then we have E(S,;) =0,
E(S,;) =0, r,=1and r, =1. With these substitutions, the main result (5.1) reduces to
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2(EX))[e2(E(S2) + E(S2,) + 2E(S,)E(S,))]

o 20— p)
A EC [pefEV ) + 2000 EVIESL) + EG, rEXKD) g
2(1- p) 1-p)

where p = jvE(X)[Cl(E(SlA) + E(SZA))+ C, pE(V)]

Note that (5.2) is the result for the M * /(G,,G, )/1/BS/SV / RA studied by Madan and
Choudhury [16].

Next, If we have ¢, =c, =1 (no RA policy), then from (5.1) we obtain
o PEOOVRESE) + 0= r)E(SE) + LE(SE) + (- R)E(SE, + 265 E(SIE(,))
2(1-p)
L AEXOS[PEV ?) + 2pEV)(E(S,,) + A= 1)E(S,0) + LE(S,) + L-1,)E(S )]
2(1-p)

L

Q

L+ PE(Xg)
1-p)
where p = 2E(X)[(LE(S,y) + (L= 1)E(S;5) + LE(S,0) + (L—1,)E(S6))+ PE(V)].

(5.3)

Note that (5.3) gives the mean queue size at a random epoch for the

G G
M X /U “\J , ( 2AD/l/ BS/SV queue without RA policy.
GlB 2B

Further, with E(S,;) =0 (no FSSB service), E(S,;) =0(no SSSB) , E(V) = i,
|4

E(V?) = % and E(Xz) =0, the resultin (5.3) will reduce to the result obtained by
|4
Madan [12] for the case of single arrivals and exponential server vacations.

Further, in additionto ¢, =c, =1 (no RA policy), if we have E(S,,) =0=E(SZ,),

E(S,5) =0=E(SZ;) (no second stage service) and p =0 (no server vacations), then
(5.3) will reduce to

Ly PECOFESL) s a-nEEH]  AEXR)

= , 54
@ 2(1- p) @-p) G4
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where p = lE(X)[(rlE(SlA) +(1- rl)E(SlB))]'

G
Note that (5.4) gives the mean queue size for M * /(GlJlll BS /SV queue with two first
2
stage services (FSSA and FSSB) and no second stage service, without vacation policy
Next, let W,, be the mean waiting time of an arbitrary customer for our general model

G G
M * /H “\J , ( 2AJJ/l/BSlSVlRA queue. Then utilizing Little's formula in

GlB 2B
equation (5.1), we may write
W, m: (5.5)
Q ﬂ, ! .

where, following the admissibility assumptions of our model, A,, the actual arrival rate
of batches is given by

A, = A ¢, (proportion of non-vacation time) + A c, (proportion of vacation time)

(5.6)
Note that in section 3, we found

The proportion of vacation time= pAc,E(X)E(V). (5.7)
Consequently,

the proportion of non-vacation time including the first and second service times and the
idle time=1- pAc,E(X)E(V). (5.8)

Then utilizing (5.7) and (5.8) into equation (5.6), we obtain the actual arrival rate as
Ay =2 ¢ [L- pAC,E(X)E(V)] + 4 ¢, [pAc,E(X)E(V)] (5.9)
Remark: One may verify that when p =0 (no vacations), then (5.9) reduces to

A, =Ac,, which is (as it should be) the actual arrival rate in case of no vacations, and
further when c, = c, (same rate of restriction at all times), then also A, =Ac,. Further
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note that in both cases, we get A, =A for the case when c, =1 (no restricted
admissibility).

6 Mean Busy Period

We define the busy period as the length of time interval during which the server remains
busy and this continues till the instant when the server becomes free again. This busy
period is equivalent to the ordinary busy period generated by the units which arrive
during the vacation period plus an idle period, which we may call as generalized idle
period. We now define the following events:

T, =length of the generalized idle period

T, =length of the busy period.

Now since T,and T, generate an alternating renewal process, therefore we may write
E(T,)  Prob[T,]
E(T,) 1-Prob[T,]

(6.1)

Now, from section 3, we have
Prob[[T,]= P, (@) + Pg (1) + Py, (A) + Pyg (1) = A, AE(X)E(B), (6.2)
where E(B) = rlE(SlA) + (1_ rl)E(SlB) + rzE(SzA) + (1_ rz)E(st) .

Again due to the well-known property of the Poisson input queueing system, we have

ET)) =+ PENV). (6.3)
Next, utilizing (6.2) and (6.3) into (6.1), we get on simplifying
Ery—_ GEB)  pe2E(OEMV)EE) (6.4

2,L-c,AE(X)E(B)] [-cAE(X)E(B)]
where A4, is given by (5.9).

Now if we take p =0 (i.e. no server vacations), then equation (5.8) gives 1, =Ac, and
consequently (6.4) will now reduce to
ET) =D

1- 4 c,E(X)E(B)

which is the mean busy period for an ordinary M * /G /1 queueing system with RA
pollicy. Note that this result agrees with the result obtained by Chaudhry [4] for ¢;=1 (i.e
no RA during the busy period )

(6.5)
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Further, it is clear that the fraction of time the server remains in the generalized idle state

T, (i.e.idle plus on vacation) is equivalent to &
E(T,) +E(T,)

(6.6)
Now, using E(T,)and E(T,) from (6.3) and (6.4) in the expression (7.6) and simplifying
it , one may verify that

E(o) - (1 p)re, prE()EV)

E(T,) +E(T,)

= Prob [ the server is idle] + Prob [server is on vacation]

=Prob [ T,]., (6.7)
as it should be.

G G
If our general system M /((G“J , [ 2AD/l/ BS/SV /RA has no FSSB service and

1B 2B
no SSSB service, then we have E(S,;) =0, E(S,;) =0, r,=1and r, =1. With these
substitutions, E(B) in (6.2) will become E(B) = E(S,,) + E(S,,) and consequently the
main results (6.1) — (6.4) found above would agree with Madan and Choudhury [16].
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