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Abstract 
 
We study a batch arrival queue with a single server providing two- stages of  
heterogeneous service with each customer having the option to choose one of the two 
types of first stage service followed by one of the two types of second stage service. In 
addition, after completion of the two stages of service in succession to each customer, the 
server has the option to take a vacation of a random length with probability p or to 
continue staying in the system with probability 1-p. Further, the batches arriving at the 
system have restricted admissibility into the system. In addition, the policy of restriction 
also differs when the server is available in the system and when he is away on vacation. 
We derive the steady state queue size distribution at a random epoch and some important 
performance measures for this model. Moreover, attempts have been made to unify 
several classes of related batch queueing systems.   
 
Mathematics Subject Classification: Primary 60K25, Secondary 60 J15  
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1. Introduction 
 
Madan and Choudhury [16] studied a batch arrival queue 1/),/( 21 GGM X  with restricted 
admissibility of arriving batches and modified server vacations under a single vacation 
policy. This single server queueing system provides a two-stage heterogeneous sequential 
service to customers.  In the present paper, we study a more generalized queueing system 
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M   with restricted admissibility of arriving batches and modified server 

vacations under a single vacation policy. In this system too, the server provides two 
stages of sequential service. However, each stage of service has two options and a 
customer has the option to choose either of the two types  first stage service followed by 
either of the two types of the second stage service.  
 
The restricted admissibility of arriving batches was first introduced by Madan and Abu-
Dayyeah [14, 15 ] followed by Madan and Choudhury [16]. One finds quite a few papers 
in earlier literature on different control models of queueing systems including control of 
servers, control of service rates, control of admission of customers and control of queue 
discipline. For such papers, the reader is referred to Crabill, Gross and Magazine [6], Rue 
and Rosenberg [20], Stidham [21], Neuts [17] and Huang and Mc-Donald [8]. For a few 
detailed examples of restricted admissibility models, refer to Madan and Choudhury [16].  
 
The two-stage sequential service was first studied by Madan [12, 13 ]  in his two papers.   
Bernoulli vacations were studied by  many authors including Keilson and Servi  [9], 
Ramaswamy and Servi [18], Doshi [7] and Takagi [22]. Numerous researchers, including 
Baba [1], Choudhury [3], Choudhury and Borthakur [4], Lee and Srinivasan [10], Lee et- 
al [11], Rosenberg and Yechiali  [19] and Teghem [23] and many others have studied 
batch arrival queueing systems under different vacation policies.  
 
 
2. The Mathematical Model  
 
We consider a batch arrival queueing system, where arrivals occur according to a 
compound Poisson process with the batch size random variable ‘X’.  Following Madan  
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and Choudhury [16], let 1c  (0 ≤ 1c ≤1) be the probability that an arriving batch will be 
allowed to join the system during the period of time when  the server is busy  and 2c  (0 
≤ 2c  ≤1) be the probability that an arriving batch will be allowed to join the system during 
the period of time when the server is on vacation. The server provides two stages of 
heterogeneous service in succession. The first stage service (FSS) has two options  FSSA 
or FSSB. The second stage service (SSS) again has two options SSSA or SSSSB.  The 
service discipline is assumed to be first come, first served (FCFS) for both stages of 
service.  When a customer’s turn for service comes, he chooses  FSSA with probability 1r  
or FSSB with probability 11 r− . After completion of the first stage service FSSA or 
FSSB, a customer enters second stage service and he may choose SSSA with probability 

2r  or SSSB with probability 21 r− . Further, it is assumed  that the service time AS1  for 
FSSA and the service times BS1  for FSSB follows a general probability distribution with  
respective distribution functions )(1 xS A  and )(1 xS B , respective Laplace-Stieltjes 
transform (LST) )(*

1 θAS and )(*
1 θAS  and respective  finite moments E( k

AS1 ) and E( k
BS1 ) 

1≥k . Similarly, the second stage service times AS2  for SSS(A) and BS2  for SSS(B) 
follow a general probability distribution with respective distribution functions )(2 xS A  
and )(2 xS B , respective Laplace-Stieltjes transforms (LST) )(*

2 θAS and )(*
2 θBS  and 

respective finite moments E( k
AS2 ) and E( k

BS2 ) 1≥k . As soon as the second stage service 
SSSA or SSSB of a customer is completed, the server may go for a vacation of random 
length V with probability  p )10( ≤≤ p  or he may continue serving the next customer, if 
any, or may stay idle and wait for a customer to arrive at the system. Next, we assume 
that the vacation time V of the server follows a general probability distribution with 
distribution function V(x),  LST )(* θV and finite moments )( kVE , k=1, 2 and is 
independent of the service times AS1 , BS1 , AS2  and BS2  and the arrival process. Further, 
it is also assumed that if, after returning from a vacation, the server does not find any 
customers in the system, even then he joins the system without taking any further 
vacations and this policy is termed as single vacation )( SV  with Bernoulli schedule (BS). 

Notationally, our model may be denoted by PolicySVBS
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Queue. Thus, for this system the time required by a unit to complete a service cycle, 
which may be called as modified service time, is given by  
B = AA SS 21 + +V, with probability prr 21 , 
   = VSS BA ++ 21 , with probability ( )prr 21 1− , 
   = AB SS 21 + +V, with probability ( ) prr 211− ,  
   = BB SS 21 + +V, with probability ( )( )prr 21 11 −− , 
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   = AA SS 21 + , with probability   ( )prr −121 , 
   = BA SS 21 + , with probability ( )( )prr −− 11 21 , 
   = AB SS 21 + , with probability ( ) ( )prr −− 11 21 , 
   = BB SS 21 + , with probability ( )( )( )prr −−− 111 21 . 
 
 
3. Queue Size Distribution at a Random Epoch 
 
In this section, we shall first setup the system state equations for the queue size 
distribution at a random point of time by treating the elapsed FSSA time, the elapsed 
FSSB time, the elapsed SSSA time, the elapsed SSSB time and the elapsed vacation time 
V as supplementary variables. Then we solve these equations and derive the Probability 
Generating Function (PGF) for the queue size distribution at a random epoch.   
 
Assuming that the system is in the steady state, we define =λ batch arrival rate, 

=X batch size (a random variable), =ka  Prob [ kX = ], 

∑
∞

=

=
1

)(
k

k
k azzX , the PGF of X, )]1)...(1([][ ][ +−−= kXXXEXE k ,  the k th factorial 

moment of X. 
 
Further, since )(1 xS A , )(1 xS B , )(2 xS A , )(2 xS B and )(xV are distribution functions, 
therefore, we have we 0)0(1 =AS , 1)(1 =∞AS , 0)0(1 =BS , 1)(1 =∞BS , 0)0(2 =AS , 

1)(2 =∞AS , 0)0(2 =BS , 1)(2 =∞BS ,  and ,1)( =∞V   and since the distributions are  

continuous at  0=x  , therefore, 
)(1

)()(
1

1
1 xS

xdSdxx
A

A
A −

=μ ,
)(1

)()(
1

1
1 xS

xdSdxx
B

B
B −

=μ , 

)(1
)(

)(
2

2
2 xS

xdS
dxx

A

A
A −

=μ , 
)(1

)(
)(

2

2
2 xS

xdS
dxx

B

B
B −

=μ  and 
)(1

)()(
xV

xdVdxxv
−

=  are the first order 

differential functions (hazard rates).   
  

 Let )(tNQ be the queue size (including one being served, if any ) at time ''t , )(0
1 tS A  be 

the elapsed  FSSA time at time ''t , )(0
1 tS B  be the elapsed  FSSB time at time ''t , 

)(0
2 tS A be the elapsed SSSA  time at time ''t ,  )(0

2 tS B be the elapsed SSSB  time at time 
''t and )(0 tV be the elapsed vacation time at time ''t . For further development of this 

model, we introduce the random variable )(tY as follows: 
           
 At time ''t , 
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=)(tY 0, if the server is idle,  
        = 1A, if the server is busy with FSSA, 
        = 1B, if the server is busy with FSSB,  
        = 2A, if the server is busy with SSSA,  
        = 2B, if the server is busy with SSSB a,  
        = 3, if the server is on vacation. 
 

 Thus the supplementary variables )(0
1 tS A , )(0

1 tS B , )(0
2 tS A , )(0

2 tS B and )(0 tV  are 
introduced in order to obtain a bivariate Markov process )}(),({ tLtNQ , where 0)( =tL  if 

0)( =tY , )()( 0
1 tStL A=  if AtY 1)( = , )()( 0

1 tStL B=  if BtY 1)( = , )()( 0
2 tStL A=  if 

AtY 2)( = , )()( 0
2 tStL B=  if BtY 2)( =   and    )()( 0 tVtL =  if 3)( =tY  and define the 

following probabilities: 
  obtR Pr)(0 =  [ ,0)( =tNQ 0)( =tL ], 

  obdxtxP nA Pr);(,1 =  [ ,)( ntNQ = );()( 0
1 tStL A=  dxxtSx A +≤< )(0

1 ], ,0>x 1≥n , 

        obdxtxP nB Pr);(,1 =  [ ,)( ntNQ = );()( 0
1 tStL B=  dxxtSx B +≤< )(0

1 ], ,0>x 1≥n , 

  obdxtxP nA Pr);(,2 =  [ ,)( ntNQ = );()( 0
2 tStL A=  dxxtSx A +≤< )(0

2 ], ,0>x 1≥n , 

  obdxtxP nB Pr);(,2 =  [ ,)( ntNQ = );()( 0
2 tStL B=  dxxtSx B +≤< )(0

2 ], ,0>x 1≥n , 

  obdxtxQn Pr);( =  [ ,)( ntNQ = );()( )0( tVtL =  dxxtVx +≤< )(0 ], ,0>x 0≥n . 
 
Then, assuming that 

∞→
=

t
LimR0  )(0 tR ,  

∞→
=

tnA LimdxxP )(,1  ,);(,1 dxtxP nA  

∞→
=

tnB LimdxxP )(,1 ,);(,1 dxtxP nB  
∞→

=
tnA LimdxxP )(,2  ,);(,2 dxtxP nA  

∞→
=

tnB LimdxxP )(,2  

,);(,2 dxtxP nB  and 
∞→

=
tn LimdxxQ )(  ,);( dxtxQn ,0>x 1≥n  exist and are independent of 

the initial state, we utilize the argument of Cox [5] and obtain the following Kolmogorov 
forward equations under the steady state conditions:  

∑
=

−+−=++
n

k
knAknAAnA xPaccxPxxP

dx
d

1
,111,11,1 ),()1()()]([)( λλμλ ,0>x 1≥n ,           (3.1) 

∑
=

−+−=++
n

k
knBknBBnB xPaccxPxxP

dx
d

1
,111,11,1 ),()1()()]([)( λλμλ ,0>x 1≥n ,           (3.2) 

∑
=

−+−=++
n

k
knAknAAnA xPaccxPxxP

dx
d

1
,211,22,2 ),()1()()]([)( λλμλ 1≥n ,                   (3.3) 

∑
=

−+−=++
n

k
knBknBBnB xPaccxPxxP

dx
d

1
,211,22,2 ),()1()()]([)( λλμλ 1≥n ,                   (3.4) 
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∑
=

−+−=++
n

k
knknn xQaccxQxvxQ

dx
d

1
22 ),()1()()]([)( λλλ ,0>x 1≥n ,           (3.5) 

)()1()()]([)( 0200 xQcxQxvxQ
dx
d

−=++ λλ  ,0>x                               (3.6) 

∫ ∫∫
∞ ∞∞

+−+−+−=
0 0

0
0

1,221,22010 )()()()()1()()()1()1( dxxQxdxxPxpdxxPxpRcR BBAA νμμλλ     

                                                                                                          ,  ,0>x                 (3.7) 
The above set of equations is to be solved under the following boundary conditions  
at x = 0: 

∫∫
∞

+

∞

+ −+−+=
0

1,221
0

1,221011,1 )()()1()()()1()0( dxxPxrpdxxPxrpRarcP nBBnAAnnA μμλ   

                                                    + ∫
∞

0
1 )()( dxxQxr nν 1≥n ,                         (3.8) 

∫∫
∞

+

∞

+ −−+−−+−=
0

1,221
0

1,221011,1 )()()1)(1()()()1)(1()1()0( dxxPxrpdxxPxrpRarcP nBBnAAnnB μμλ

  

                                                + ∫
∞

−
0

1 )()()1( dxxQxr nν 1≥n ,                     (3.9) 

∫∫
∞

+

∞

+ +=
0

1,112
0

1,112,2 )()()()()0( dxxPxrdxxPxrP nBBnAAnA μμ ,             1≥n ,                   (3.10) 

∫∫
∞

+

∞

+ −+−=
0

1,112
0

1,112,2 )()()1()()()1()0( dxxPxrdxxPxrP nBBnAAnB μμ ,   1≥n ,              (3.11) 

∫∫
∞

+

∞

+ +=
0

1,2
0

1,22 )()()()()0( dxxPxpdxxPxpQ naBBnAAn μμ  0≥n  ,                                 (3.12)  

 
and the normalizing condition  

 ∑∫ ∑∫∑∫
∞

=

∞ ∞

=

∞∞

=

∞

+++
1 0 1 0

,2,1
1 0

,10 )()()(
n n

nAnB
n

nA dxxPdxxPdxxPR  

      +    ∑∫ ∑∫
∞

=

∞ ∞

=

∞

=+
1 0 0 0

,2 1)()(
n n

nnB dxxQdxxP             (3.13) 

 
Next, we define the following PGFs: 
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∑
∞

=

=
1

,11 ),();(
n

nA
n

A xPzzxP  x>0,  1|| ≤z ; ∑
∞

=

=
1

,11 ),();(
n

nB
n

B xPzzxP  x>0,  1|| ≤z ,      (3.14a) 

∑
∞

=

=
1

,22 ),();(
n

nA
n

A xPzzxP  x>0,  1|| ≤z ; ∑
∞

=

=
1

,22 ),();(
n

nB
n

B xPzzxP  x>0,  1|| ≤z ,    (3.14b) 

∑
∞

=

=
1

,11 ),0();0(
n

nA
n

A PzzP  x>0,  1|| ≤z ; ∑
∞

=

=
1

,11 ),0();0(
n

nB
n

B PzzP  x>0,  1|| ≤z ,       (3.14c) 

∑
∞

=

=
1

,22 ),0();0(
n

nA
n

A PzzP  x>0,  1|| ≤z ; ∑
∞

=

=
1

,22 ),0();0(
n

nB
n

B PzzP  x>0,  1|| ≤z ,     (3.14d) 

∑
∞

=

=
0

),();(
n

n
n xQzzxQ  x>0,  1|| ≤z ; ∑

∞

=

=
0

),0();0(
n

n
nQzzQ   1|| ≤z .      (3.14e) 

 
Proceeding in the usual manner with the equations (3.1) – (3.6), we obtain 
 

xzXc
AAA exSzPzxP ))(1(

111
1)](1)[;0();( −−−= λ , x >0,                                                        (3.15) 

xzXc
BBB exSzPzxP ))(1(

111
1)](1)[;0();( −−−= λ , x >0,                                                        (3.16) 

xzXc
AAA exSzPzxP ))(1(

222
1)](1)[;0();( −−−= λ , x >0,                                            (3.17) 

xzXc
BBB exSzPzxP ))(1(

2122
1)](1)[;0();( −−−= λ , x >0,                                            (3.18) 

xzXcexVzQzxQ ))(1(2)](1)[;0();( −−−= λ , x >0.                                                      (3.19) 
 
 
Next, we multiply equations (3.8)-(3.12) by appropriate powers of  nz  and then take 
summation over all possible values of n and use (3.13). Thus we get on simplification 
 

( ) ),0())(1()1(]1)([),0( 21
*
210111 zPzXcSprRzXzrczzP AAA −−+−= λλ  

       ( ) ),0()(1()1( 21
*
21 zPzXcSpr BB −− λ + ( ) ),,0())(1(2

*
1 zQzXcVzr −λ          (3.20) 

 
( ) ),0())(1()1)(1(]1)([)1(),0( 21

*
210111 zPzXcSprRzXzrczzP AAB −−−+−−= λλ  

        ( ) ),0()(1()1)(1( 21
*
21 zPzXcSpr BB −−− λ  

                                                + ( ) ),,0())(1()1( 2
*

1 zQzXcVrz −− λ          (3.21) 
 

( ) ( )),0()(1(),0()(1(),0( 11
*
1211

*
122 zPzXcSrzPzXcSrzP BBAAA −+−= λλ ,    (3.22) 

 
( ) ( ) ),0()(1()1(),0()(1()1(),0( 11

*
1211

*
122 zPzXcSrzPzXcSrzP BBAAB −−+−−= λλ ,  (3.23) 
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( ) ( ) ),0()(1((),0())(1(),0( 21
*
221

*
2 zPzXcpSzPzXcSpzzQ BBAA −+−= λλ ,   (3.24) 

 
where   

( ) ∫
∞

−−=−
0

1
))(1(

1
*
1 )())(1( 1 xdSezXcS A

xzXc
A

λλ  is the z-transform of AS1 ,  

( ) ∫
∞

−−=−
0

1
))(1(

1
*
1 )())(1( 1 xdSezXcS B

xzXc
B

λλ  is the z-transform of BS1 ,   

( ) ∫
∞

−−=−
0

2
))(1(

1
*
2 )())(1( 1 xdSezXcS A

xzXc
A

λλ  is the z-transform of AS2 ,  

( ) ∫
∞

−−=−
0

2
))(1(

1
*
2 )())(1( 1 xdSezXcS B

xzXc
B

λλ  is the z-transform of BS2 ,  and  

( ) ∫
∞

−−=−
0

))(1(
2

* )())(1( 2 xdVezXcV xzXcλλ  is the z-transform of V. 

 
Solving the set of equations (3.20) to (3.24) for ),,0(),,0(),,0( 211 zPzPzP ABA  ),0(2 zP B  
and ),0( zQ we obtain on 
simplifying

[ ] [ ]
[ ]

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

*
2

*
1

*
21

*
1

*
2

*
211

*
2

*
1

*
21

*
1

*
2

*
211

01

1

)1)(1()1()1()1(1

])1)[(1(])1[(1)1(

])1)[(1)(1(])1[()1(
]1)([

),0(

BABABAAA

BABA

BBBA

A

SSrrSSrrSSrrSSrrpVpz

SSpVprrSSpVprrr

SSpVprrSSpVprrzr
RzXzc

zP

−−+−+−++−−

+−−−+−−−−

+−−−−+−−−
−

=

λ
    

            (3.25) 
 
  

[ ] [ ]
[ ]

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

*
2

*
1

*
21

*
2

*
1

*
211

*
2

*
1

*
21

*
2

*
1

*
211

01

1

)1)(1()1()1()1(1

])1)[(1)(1(])1[()1(

])1[()1(])1)[(1)(1(
]1)([

),0(

BABABAAA

BAAA

AABA

B

SSrrSSrrSSrrSSrrpVpz

SSpVprrSSpVprrzr

SSpVprrSSpVprrr
RzXzc

zP

−−+−+−++−−

+−−−−+−+−+

+−−−+−−−
−

=

λ

                              

(3.26) 
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[ ] [ ]

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

*
121

*
12101

2

)1)(1()1()1()1(1

)1(]1)([

),0(

BABABAAA

BA

A

SSrrSSrrSSrrSSrrpVp

SrrSrrRzXzc

zP

−−+−+−++−−

−+−

=

λ

 

           (3.27) 
 
 

[ ] [ ]

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

*
12101

2

)1)(1()1()1()1(1

)1)(1(]1)([

),0(

BABABAAA

B

B

SSrrSSrrSSrrSSrrpVp

SrrRzXzc

zP

−−+−+−++−−

−−−

=

λ

 

           (3.28) 
 
 
 

[ ] [ ] [ ]

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

*
2

*
121

*
2

*
121

*
12101

)1()1()1()1()1(1

)1()1()1(]1)([

),0(

BABABAAA

BBABA

SSrrSSrrSSrrSSrrpVp

SSrrSSrrSrrRzXzcp

zQ

−−+−+−++−−

−−+−+−

=

λ

 

           (3.29) 
 
 
where  *

2
*
2

*
1

*
1 ,,, BABA SSSS  and *V in equations (3.25) to (3.29) represent  

 
( ) ( ) ( ) ( ))(1(,)(1(,)(1(,)(1( 1

*
21

*
21

*
11

*
1 ZXcSZXcSZXcSZXcS BABA −−−− λλλλ  and  

 
( ))(1(2

* ZXcV −λ  respectively. 
  

 
Now,  from equation (3.15) and (3.25), we obtain 
 

∫
∞

=
0

11 ),()( dxzxPzP AA  
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[ ]
[ ] ( )

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

0
*
1*

2
*
1

*
21

*
1

*
2

*
211

*
2

*
1

*
21

*
1

*
2

*
211

)1()1()1()1()1(1

1
])1)[(1(])1[(1)1(

])1)[(1)(1(])1[()1(

BABABAAA

A
BABA

BBBA

SSrrSSrrSSrrSSrrpVp

RS
SSpVprrSSpVprrr
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=  

                                  (3.30) 
 
 
Similarly from equations (3.16)  and (3.26), we get 
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                              (3.31) 
 
 
Then from equations (3.17) and (3.27), we get  
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=
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22 ),()( dxzxPzP AA  
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                                             (3.32) 
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Yet again, from equations (3.18) and (3.28), we get  
 

∫
∞

=
0

22 ),()( dxzxPzP BB  
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               (3.33) 
 
 
Finally from equations (3.19) and (3.29), we get 
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),()( dxzxQzQ  

 
[ ] [ ] ( )

[ ] [ ]*
2

*
221

*
1

*
221

*
2

*
121

*
2

*
121

*

02
**

2
*
121

*
2

*
121

*
121

)1()1()1()1()1(1

)(1(1)1)(1()1(

BABABAAA

BBABA

SSrrSSrrSSrrSSrrpVpz

RzXcVSSrrSSrrSrrp

−−+−+−++−−

−−−−+−+

=

λ

 

                       (3.34) 
           
Now, the unknown constant 0R  can be determined by using the normalizing condition 
(3.13), which is equivalent to 1)1()1()1()1()1( 22110 =+++++ QPPPPR BABA . Thus we 
get   

)1(0 ρ−=R ,                                  (3.35) 
where       
         

)]()()}()1()()()1()({)([
)}]()1()()()1()({)()[1(

2222211111

222211111

VEXEcSErSErSErSErcXEp
SErSErSErSErcXEp

BBA

BABA

λλ
λρ

+−++−++
−++−+−=

   

( )[ ] 1)())1(()()1()()( 2222211111 <+−++−+= VpEcSrSrESErSErcXE BABλ  

 
is the utilization factor of this  system. 
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Note that equation (3.35) gives the steady state probability that the server is idle but 
available in the system and it gives the stability condition under which the steady state 
solution exists. Further, utilizing the value of 0R  from (3.35) into equations (3.30)-
(3.34), we have now completely and explicitly determined the queue size PGFs )(1 zP A , 

)(1 zP B , )(2 zP A , )(2 zP B and )(zQ .  In addition, various system state probabilities can 
also be obtained  from equations  (3.30)-(3.34) on putting 1=z . Thus we have 
 
Prob [the server is busy with FSS(A) ]= )()()1( 1111 AA SErXEcP λ= , 
Prob [the server is busy with FSS(B) ]= )()1()()1( 1111 BB SErXEcP −= λ , 
Prob [the server is busy with SSS(A)]= )()()1( 2212 AA SErXEcP λ= ,  
Prob [the server is busy with SSS(B)]= )()1)(()1( 2212 BB SErXEcP −= λ ,  and 
Prob [the server is on vacation]= )()()1( 2 VEXEcpQ λ= .  
 
Next, let  denote  the PGF of the queue size distribution at a random epoch can be found 
by adding equations  (3.30)- (3.35).  Thus we have  

)()()()()()( 22110 zzQzPzPzPzPRzP BABAQ +++++= ,           (3.36)  
  
 
4    Particular Cases 
 
 
Case 1  All Arriving Batches Are Allowed to Join the System (No RA Policy) 
 
 
The main results for this case are obtained by letting 121 == cc  in equations (3.30) to  
(3.35), where now  *

2
*
2

*
1

*
1 ,,, BABA SSSS  and *V in these equations  represent 

( ) ( ) ( ) ( ))(1(,)(1(,)(1(,)(1( *
2

*
2

*
1

*
1 ZXSZXSZXSZXS BABA −−−− λλλλ  and 
( ))(1(* ZXV −λ  respectively. 

 
 
Case 2  The System Has Two  First Stage Services (FSSA and FSSB) and  
   Only One Second Stage Service (SSSA) 
 
 The main results of this case are obtained by letting 12 =r  in equations (3.30) to (3.35).  
 
Thus we obtain  
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(4.2) 
  

)(2 zP A   = 

[ ] ( )
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=                                                         (4.3) 

 
)(2 zP B = 0                                                                                                                      (4.4) 

 
 

)(zQ    
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                                                   (4.5) 

 
)1(0 ρ−=R ,                                             (4.6) 

where       

         
)]()()}()()1()({)([

)}]()()1()({)()[1(

2211111

211111

VEXEcSESErSErcXEp
SESErSErcXEp
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ABA
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λρ

++−++
+−+−=
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( )[ ] 1)(()()1()()( 2211111 <++−+= VpEcSESErSErcXE ABλ  

 
is the utilization factor of this  system. 
 
Case 3  The System Has Only One  First Stage Service (FSSA) and  
   Two Second Stage Services (SSSA and SSSB) 
The main results of this case are obtained by letting 11 =r  in equations (3.30) to (3.35). 
Thus we obtain  

)(1 zP A    
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)1()1(1

1
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−

=                                        (4.7) 

 
)(1 zP B = 0                               (4.8) 

 

)(2 zP A  
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)(2 zP B   

[ ][ ]

[ ] [ ]*
2

*
12

*
2

*
12

*

0
*
2

*
12

)1()1(1

1)1(

BAAA

BB

SSrSSrpVp

RSSr

−++−−

−−

=                                                          (4.10) 

 

)(zQ  
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                                                           (4.11) 

 
)1(0 ρ−=R ,                                           (4.12) 
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where       

         
)]()()}()1()()({)([
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SErSErSEcXEp
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λρ

+−+++
−++−=

   

( )[ ] 1)()()1()()()1()()( 2222211111 <+−++−+= VpEcSErSErSErSErcXE BABAλ  

 
is the utilization factor of this  system. 
 
 
Case 4  The System Has only One First Stage Service (FSSA) and Only One  
    Second Stage Service (SSSA) 
 
The main results of this case are obtained by letting 11 =r   and 12 =r  in equations (3.30) 
to (3.35). Thus we obtain 
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)(1 zP B = 0                           (4.14) 
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)(2 zP B = 0                      (4.16) 
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                      (4.17) 

)1(0 ρ−=R ,                                           (4.18) 
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where       

         
)]()()}())({)([

)}]()({)()[1(

2211

211

VEXEcSESEcXEp
SESEcXEp

A

AA

λλ
λρ

+++
+−=

   

( )[ ] 1)(()()( 2211 <++= VpEcSESEcXE Aλ   is the utilization factor of this  system. 

 
 
The results of case 4 agree with Madan and Choudhury [16]. The reader is referred to 
this paper for all further particular cases of this case.  
 
 
5   Mean Queue Size and Mean Waiting Time in the Queue   
      
In this section we derive the mean queue size of  this 
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⎝
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 queue. Let QL  be the mean queue size at a 

random epoch, then 

QL = 
1

)(
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2
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+
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)1(2
()1()()()1()()(2)()( 2222111121

22
2

22

ρ
λ

−
−++−++ BABA SErSErSErSErVEcpcVEpcXE

+ 
)1(
)(

ρ
ρ

−
RXE ,                                                                                   (5.1) 

 
where  ( )[ ])()()1()()()1()()( 2222211111 VpEcSErSErSErSErcXE BABA +−++−+= λρ  

and 
)(2

))1(()(
XE

XXEXE R
−

=  is the mean residual batch size. 

 
If the above system has no FSSB service and no SSSB service, then we have 0)( 1 =BSE , 

0)( 2 =BSE ,  11 =r  and 12 =r . With these substitutions, the main result (5.1) reduces to 
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ρ
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++ AA SESEVEcpcVEpcXE + 

)1(
)(

ρ
ρ

−
RXE ,           (5.2) 

 
where  ( )[ ])()()()( 2211 VpEcSESEcXE AA ++= λρ  
 
Note that (5.2) is the result for the ( ) RASVBSGGM X ///1/,/ 21  studied by Madan and 
Choudhury [16].  
 
      Next,  If we have 121 == cc  ( no RA policy), then from (5.1) we obtain 
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222

ρ
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−
−++−++ BABA SErSErSErSErVpEVpEXE  

      + 
)1(
)(

ρ
ρ

−
RXE

,                                                                                                              (5.3) 

where  ( )[ ])()()1()()()1()()( 22221111 VpESErSErSErSErXE BABA +−++−+= λρ . 
 

Note that (5.3) gives the mean queue size at a random epoch  for the  
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⎠
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⎝

⎛
 queue without RA policy.   

Further, with 0)( 1 =BSE  (no FSSB service), 0)( 2 =BSE (no SSSB) , 
ν
1)( =VE , 

2
2 2)(

ν
=VE  and 0)( =RXE ,  the result in (5.3) will reduce to the result obtained by 

Madan [12]  for the case of single arrivals and exponential server vacations. 
 

Further, in addition to 121 == cc  (no  RA  policy), if we have )(0)( 2
22 AA SESE == , 

)(0)( 2
22 BB SESE ==  (no second stage service)  and  0=p  (no server vacations), then 

(5.3) will reduce to  
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Q
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RXE ,                                        (5.4) 
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where  ( )[ ])()1()()( 1111 BA SErSErXE −+= λρ . 
 

Note that (5.4) gives the mean queue size for SVBS
G
G

M X //1//
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 queue with two first 

stage services (FSSA and FSSB) and no second stage service, without vacation policy 
 
Next, let QW  be the mean waiting time of an arbitrary customer for our general model 
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⎛
 queue. Then utilizing Little's formula in 

equation (5.1), we may write 

 
a

Q
Q

L
W

λ
= ,                                                         (5.5) 

where, following the admissibility  assumptions of our model,  aλ , the actual arrival rate  
of batches is  given by 
 

λλ =a 1c  (proportion of non-vacation time)  + 2cλ (proportion of vacation time)  
                                              (5.6) 

Note that in section 3, we found  
 
The proportion of vacation time= )()(2 VEXEcpλ .                          (5.7) 
 
Consequently,   
 
the proportion of non-vacation time including the first and second service times and the 
idle time=1- )()(2 VEXEcpλ .                                        (5.8) 
 
Then utilizing (5.7) and (5.8) into equation (5.6), we obtain the actual arrival rate as  
 

λλ =a 1c  [ ])()(1 2 VEXEcpλ−  + 2cλ [ ])()(2 VEXEcpλ                                          (5.9) 
 
 
Remark: One may verify that when 0=p (no vacations), then (5.9) reduces to  

1ca λλ = , which is (as it should be) the actual arrival rate in case of no vacations, and 
further when 12 cc =  (same rate of restriction at all times), then also 1ca λλ = . Further  
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note that in both cases, we get λλ =a for the case when 11 =c  (no restricted 
admissibility). 
 
 
6   Mean Busy Period  
 
We define the busy period as the length of time interval during which the server remains 
busy and this continues till the instant when the server becomes free again. This busy 
period is equivalent to the ordinary busy period generated by the units which arrive 
during the vacation period plus an idle period, which we may call as generalized idle 
period. We now define the following events: 

=0T length of the generalized idle period 
=bT length of the busy period. 

 
Now since 0T and bT generate an alternating renewal process, therefore we may write 

][Pr1
][Pr

)(
)(

0 b

bb

Tob
Tob

TE
TE

−
= .                                  (6.1) 

 
Now, from section 3, we have 

][[Pr bTob = )()()1()()1()1( 12211 BEXEcPAPPP BABA λλ=+++ ,                              (6.2) 
where )()1()()()1()()( 22221111 BABA SErSErSErSErBE −++−+= . 
 
Again due to the well-known property of the Poisson input queueing system, we have 

)(1)( 0 VpETE
a

+=
λ

.                        (6.3) 

Next, utilizing (6.2) and (6.3) into (6.1), we get on simplifying 

[ ] [ ])()(1
)()()(

)()(1
)(

)(
1

1

1

1

BEXEc
BEVEXEpc

BEXEc
BEc

TE
a

b λ
λ

λλ −
+

−
= ,                                               (6.4) 

where aλ  is given by (5.9). 
  Now if we take p =0  (i.e. no server vacations), then equation  (5.8) gives 1ca λλ =   and 
consequently (6.4) will  now reduce to  

)()(1
)()(

1 BEXEc
BETE b λ−

= ,                                                                                (6.5) 

which is the mean busy period for an ordinary 1// GM X  queueing system with RA 
pollicy. Note that this result agrees with the result obtained by Chaudhry  [4] for c1=1 (i.e 
no RA during the busy period ) 
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Further, it is clear that the fraction of time the server remains in the generalized idle  state 

0T  ( i.e. idle  plus on vacation)  is equivalent  to                                   
)()(

)(

0

0

bTETE
TE
+

.                                      

(6.6) 
Now, using )( 0TE and )( bTE from (6.3) and (6.4) in the expression (7.6) and simplifying 
it , one may verify that  

)()(
)(

0

0

bTETE
TE
+

= )()()1( 2 VEXEpc λρ +−  

  = Prob [ the server is idle] + Prob [server is on vacation] 
  = Prob [ 0T ],                     (6.7) 
as it should be. 

If our general system RASVBS
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⎛
 has no FSSB service and 

no SSSB service, then we have 0)( 1 =BSE , 0)( 2 =BSE ,  11 =r  and 12 =r . With these 
substitutions, E(B) in (6.2) will become )()()( 21 AA SESEBE +=  and consequently  the 
main results (6.1) – (6.4)  found  above would agree with  Madan and Choudhury [16]. 

 
 
 
 

References 
 
[1] Y, Baba, On the Mx/G/1 queue with vacation time, Operations Research Letters, 

5(1986), 93- 98. 
 
[2] M.L. Chaudhray, The queueuing system Mx/G/1 and its ramification, 

 Naval Research Logistic Quarterly, 26(1979), 667–674.  
 
[3] ,G. Choudhury, An Mx/G/1 queueing system with a setup period and  

a vacation period, Queueing Systems, 36(2000), 23-38. 
  

[4] G. Choudhury and A. Borthakur (2000), The Stochastic decomposition results of  
batch arrival Poisson queue with a grand vacation process, Sankhya , Ser.-B , 62   
(3)(2000), 448 – 462. 

 
[5] D.R. Cox, The analysis of non-Markovian stochastic process by inclusion of 

supplementary variables, Proceeding of Cambridge Philosophical Society, 
51(1955), 433-441.  



 

Steady state analysis                                                                                                     2291 
 
 
 
[6] T. Crabill,, D. Gross and M. Magazine,  A classified bibliography of research on 

optimal design and control of queues , Operations Research, 25(1977), 219-232. 
 
[7] B.T. Doshi, Queueing systems with vacations – A survey, Queueing Systems, 

1(1986), 29-66. 
 
[8] A. Huang and D. McDonald, Connection admission control for constant bit rate 

traffic at a multi-buffer multiplexer using the oldest-cell-first discipline, Queueing 
Systems, 29(1988), 1-16. 

 
[9] J. Keilson and L.D. Servi, Oscillating random walk models for GI/G/1 vacation 

systems with Bernoulli Schedule, Journal of  Applied  Probability, 23(1986), 790 
-802 . 

 
[10] H.S. Lee, and M.M. Srinivasan, Control policies for the Mx/G/1 queueing 

systems, Management Sciences, 35(1989), 708-721. 
  
[11] H.W. Lee, S.S. Lee, and K.C. Chae, Operating characteristic of Mx/G/1 queue 

with N-policy, Queueing Systems, 15(1994), 387-399 . 
 
[12]   K.C. Madan,  On a Single Server Queue with Two-Stage Heterogeneous Service 

and Bernoulli Schedule Server Vacations, Egyptian Statistical Journal, 40 
(1)(2000), 39-55.  

 
[13] K.C. Madan, On a single server queue with two stage heterogeneous service and 

deterministic server vacations, International Journal of Systems  Science, 
32(2001, 113-125 . 

 
[14] K.C. Madan and W. Abu-Dayyeh, Restricted admissibility of batches into an 

Mx/G/1 type bulk queue with modified Bernoulli schedule server vacations, 
ESSAIM : Probability and Statistics, 6(2002), 113-125. 

 
[15]  K.C. Madanand W. Abu-Dayyeh, Steady state analysis of a single server bulk 

queue with general vacation times and  restricted admissibility of arriving batches, 
Revista Investigacion Operacional, 24(2)(2002),113-123. 

 
 [16]  K. C. Madan and G. Choudhury, Steady State Analysis of an M/(G1,G2)/1 Queue 

with Restricted Admissibility of Arriving batches and Modified Bernoulli Server 
Vacations Under a Single vacation Policy, Journal of Probability and Statistical 
Science, Vol. 2(2)(2004), pp 167-185. 

 



 

2292                                                                                                                  K. C. Madan 
 
 
 
[17] M.F. Neuts, The M/ G/1 queue with limited number of admission or a limited 

admission period during each service time, Technical Report No. 978(1984), 
University of  Delaware, USA.  

  
[18] R. Ramaswami, and L.D. Servi, The busy period of the M/G/1 vacation model 

with a Bernoulli schedule,  Stochastic Models, 4(1988), 507-521. 
 
[19] E. Rosenberg, and U. Yechiali, The Mx/G/1 queue with single and multiple 

vacations under LIFO service regime, Operations Research Letters, 14(1993), 
171-179. 

 
[20] R.C. Rue,  and M. Rosenshine, Some properties of optimal control policies for 

entries to an M/M/1 queue, Naval Research Logistic Quarterly, 28(1981), 520-
532. 

  
[21] S. Stidham, Optimal control of admission to a queueing system, IEEE Trans 

Automat Control. AC – 30(1985), 705-713. 
 
[22] H. Takagi, Queueing Analysis, Vol-1 Vacation and Priority Systems, North 

Holland, Amsterdam, 1991. 
  
[23] L.J. Teghem, On a decomposition result for a class of vacation queueing  
  systems, Journal of Applied Probability, 27(1990),  227-231.   
 
 
Received: November, 2009 


