A Further Generalization of the Bernoulli Polynomials and on the 2D-Bernoulli Polynomials $B_{n}^{2}(x, y)$

Burak Kurt
Akdeniz University, Faculty of Arts and Science
Department of Mathematics, 07058-Antalya, Turkey
burakkurt@akdeniz.edu.tr

Abstract

In this work we give some recurrence relations of the new generalized Bernoulli polynomials and numbers. Furthermore a relation is given between $2 D$-Bernoulli polynomials and 2 -variable Hermite Kampé de Feriet polynomials.

Mathematics Subject Classification: Primary 11B68, Secondary 33C99, 34A35

Keywords: Bernoulli numbers and Bernoulli polynomials, Appell polynomials, multidimensional polynomials, Hermite Kampé de Feriet polynomials

1 Introduction

The ordinary Bernoulli numbers and ordinary Bernoulli polynomials are defined by the following generating functions respectively,

$$
\begin{align*}
G(x, t) & =\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad|t|<2 \pi \tag{1}\\
G(t) & =\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}, \quad|t|<2 \pi
\end{align*}
$$

First few of the rational numbers B_{n} are,
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \cdots, B_{2 k+1}=0$ for $k=1,2,3, \cdots$.

Some of the Bernoulli polynomials are
$B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}, B_{2}(x)=x^{2}-x+\frac{1}{6}, B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$,
$B_{4}(x)=x^{4}-2 x^{3}+x^{2}-\frac{1}{30}, \quad B_{5}(x)=x^{5}-\frac{5}{2} x^{4}+\frac{5}{3} x^{3}-\frac{1}{6} x, \cdots$.
Proposition 1.1 The Bernoulli polynomials satisfy the following relations

$$
\begin{gathered}
B_{n}(x+1)=\sum_{k=0}^{n}\binom{n}{k} B_{k}(x), \\
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}(x) y^{n-k}, \\
=\sum_{k=0}^{n}\binom{n}{k} B_{k}(y) x^{n-k}, \\
B_{n}(x+1)-B_{n}(x)=n x^{n-1}, n \geqslant 1, \\
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}, n \geqslant 0, \\
B_{n}^{\prime}= \\
=n B_{n-1}(x), n \geqslant 1 .
\end{gathered}
$$

Definition 1.2 A new class of generalized Bernoulli polynomials $B_{n}^{[m-1]}(x), m \geq$ 1 are defined by means of the generating function defined in a suitable neigbourhood of $t=0$,

$$
\begin{equation*}
G^{[m-1]}(x, t)=\frac{t^{m} e^{x t}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}=\sum_{n=0}^{\infty} B_{n}^{[m-1]}(x) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

([1],[2] and [6]).
For $m=1$, we obtain from (2) the generating function,

$$
G^{[0]}(x, t)=\frac{t e^{x t}}{e^{t}-1}
$$

of classical Bernoulli polynomials $B_{n}^{0}(x)$.
In (2), we take $x=0$, a generalized Bernoulli numbers are

$$
\begin{equation*}
\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}=\sum_{n=0}^{\infty} B_{n}^{[m-1]} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

Since $G^{[m-1]}(x, t)=A(t) e^{x t}$, the generalized Bernoulli polynomials belong to the class of Appell polynomials. From (2), we have

$$
\begin{align*}
B^{[m-1]} & =B^{[m-1]}(0), \tag{4}\\
e^{x t} & =\sum_{h=m}^{\infty} \frac{t^{h-m}}{h!} \sum_{n=0}^{\infty} B_{n}^{[m-1]}(x) \frac{t^{n}}{n!} .
\end{align*}
$$

Since $e^{x t}=\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{n!},(4)$ becomes

$$
\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{h=0}^{n}\binom{n}{h} \frac{h!}{(h+m)!} B_{n-h}^{[m-1]}(x) \frac{t^{n}}{n!}
$$

By comparing the coefficients of the last equation, we obtain

$$
\begin{equation*}
x^{n}=\sum_{h=0}^{n}\binom{n}{h} \frac{h!}{(h+m)!} B_{n-h}^{[m-1]}(x) . \tag{5}
\end{equation*}
$$

From (5), we obtain the first generalized Bernoulli polynomials as follows respectively,

$$
\begin{gathered}
B_{0}^{[m-1]}=m!, \\
B_{1}^{[m-1]}=-\frac{m!}{m+1}, \\
B_{2}^{[m-1]}=\frac{2 m!}{(m+1)^{2}(m+2)}, \cdots
\end{gathered}
$$

and

$$
\begin{gathered}
B_{0}^{[m-1]}(x)=m! \\
B_{1}^{[m-1]}(x)=m!\left(x-\frac{1}{m+1}\right),
\end{gathered}
$$

$$
B_{2}^{[m-1]}(x)=m!\left(x^{2}-\frac{2}{m+1} x+\frac{2}{(m+1)^{2}(m+2)}\right), \cdots
$$

Costabile et al gave the different classical definitions and relations. Also, Costabile et al have defined Bernoulli polynomials as a determinant relation in ([3]). Natalini et al in ([6]) studied on some differential equations which are satisfied the Bernoulli numbers $B_{n}^{[m-1]}(x)$. In ([1]), Bretti et al defined multidimensional extensions of the Bernoulli and Appell polynomials. They defined the $2 D$-Bernoulli polynomials $B_{n}^{[j]}(x, y)$ in ([4]). Also, they gave an explicit forms of the polynomials $B_{n}^{[j]}(x, y)$ in terms of the Hermite-Kampé de Feriet polynomials $H_{n}^{j}(x, y)$ in $([1],[4])$. Subuhi et al in ([7]) gave the HermiteBernoulli polynomials ${ }_{H} B_{n}(x, y)$, Hermite-Euler polynomials ${ }_{H} E_{n}(x, y)$. They proved some recurrence relations between these polynomials. In this work, we made a generalization on a new class of Bernoulli polynomials. We gave some relations in this subject. Also, we gave two equations of the $2 D$-Bernoulli polynomials.

2 Main Theorems

Proposition 2.1 There is a relation between a generalized Bernoulli numbers and a generalized Bernoulli polynomial

$$
\begin{equation*}
B_{n}^{[m-1]}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1]} x^{n-k} \tag{6}
\end{equation*}
$$

Proof. From (2) and (3), we get (6).

Theorem 2.2 Generalized Bernoulli polynomials satisfy the following relations,

$$
\begin{gather*}
B_{n}^{[m-1]}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1]}(x) y^{n-k} \tag{7}\\
=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1]}(y) x^{n-k} . \\
B_{n}^{[m-1]}(a x)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1]}(x)(a-1)^{n-k} x^{n-k}, a \in \mathbb{Z}^{+} . \tag{8}
\end{gather*}
$$

Proof. From (2),

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{[m-1]}(x+y) \frac{t^{n}}{n!} & =\frac{t^{m} e^{(x+y) t}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}} \\
& =\frac{t^{m} e^{x t}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}} e^{y t} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1]}(x) y^{n-k}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the both sides of the above equation, we obtain (7). Proof of (8) is similar to that of (7), so omit it.

Definition 2.3 We consider the generalized Bernoulli number $B_{n}^{[m-1, \alpha]}$ order α as respectively;

$$
\begin{align*}
\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]} \frac{t^{n}}{n!} & =\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\alpha}, \tag{9}\\
\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]}(x) \frac{t^{n}}{n!} & =\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\alpha} e^{x t} .
\end{align*}
$$

For $\alpha=1$ and $m=1$ it reduces to classical Bernoulli number and classical Bernoulli polynomials.

From (1), we have

$$
B_{n}^{[m-1, \alpha]}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, \alpha]} x^{n-k}
$$

Theorem 2.4 The generalized Bernoulli polynomials $B_{n}^{[m-1, \alpha]}(x)$ order α satisfy the following relations;

$$
\begin{gather*}
B_{n}^{[m-1, \alpha]}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, \alpha]}(x) y^{n-k}, \tag{10}\\
B_{n}^{[m-1, \alpha+\beta]}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, \alpha]}(x) B_{n-k}^{[m-1, \beta]}(y) . \tag{11}
\end{gather*}
$$

Proof. From (9),

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha+\beta]}(x+y) \frac{t^{n}}{n!} & =\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{(\alpha+\beta)} e^{(x+y) t} \\
& =\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\alpha} e^{x t}\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\beta} e^{y t} \\
& =\left(\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]}(x) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} B_{n}^{[m-1, \beta]}(y) \frac{t^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, \alpha]}(x) B_{n-k}^{[m-1, \beta]}(y)\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the both sides of the above equation, we arrive at (11). Proof of (10) is similar to that of (11).

Corollary 2.5 Generalized Bernoulli numbers $B_{n}^{[m-1, \alpha]}$ order α satisfy the following relation

$$
\begin{equation*}
B_{n}^{[m-1, \alpha]}=\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, l]} B_{n-k}^{[m-1, \alpha-l]}, \tag{12}
\end{equation*}
$$

where $k, l \in \mathbb{Z}^{+}$.
Proof. From (9),

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]} \frac{t^{n}}{n!} & =\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\alpha}=\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{l}\left(\frac{t^{m}}{e^{t}-\sum_{h=0}^{m-1} \frac{t^{h}}{h!}}\right)^{\alpha-l} \\
& =\left(\sum_{n=0}^{\infty} B_{n}^{[m-1, l]} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha-l]} \frac{t^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}^{[m-1, l]} B_{n-k}^{[m-1, \alpha-l]}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the both sides of the above equation, we easily arrive at (12).

In this section, we will prove two relation of a class of $2 D$-Bernoulli polynomials denoted by $B_{n}^{2}(x, y)$ which are a generalization the classical Bernoulli polynomials.

The 2 -variable Hermite Kampé de Feriet polynomials are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{n}^{2}(x, y) \frac{t^{n}}{n!}=e^{x t+y t^{2}} \tag{13}
\end{equation*}
$$

or

$$
H_{n}^{2}(x, y)=n!\sum_{s=0}^{\left[\frac{n}{2}\right]} \frac{x^{n-2 s} y^{s}}{(n-2 s)!(s)!}
$$

([1], [4], [7]).
In [1] Bretti et al defined $2 D$-Bernoulli polynomials by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{2}(x, y) \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} e^{x t+y t^{2}} \tag{14}
\end{equation*}
$$

They proved the following relations between the polynomials $H_{n}^{2}(x, y)$ and $B_{n}^{2}(x, y)$.

$$
\begin{aligned}
B_{n}^{2}(x, y) & =\sum_{h=0}^{n}\binom{n}{h} B_{n-h} H_{h}^{2}(x, y) \\
& =n!\sum_{h=0}^{n} \frac{B_{n-h}}{(n-h)!} \sum_{s=0}^{\left[\frac{h}{2}\right]} \frac{x^{h-2 s} y^{s}}{(h-2 s)!(s)!}
\end{aligned}
$$

and

$$
H_{n}^{2}(x, y)=\sum_{h=0}^{n}\binom{n}{h} \frac{1}{n-h+1} B_{n}^{2}(x, y)
$$

Theorem 2.6 2D-Bernoulli polynomial satisfy the recurrence relation

$$
\begin{equation*}
B_{n}^{2}(x+1, y)-B_{n}^{2}(x, y)=n H_{n-1}^{2}(x, y) \tag{15}
\end{equation*}
$$

Proof. From (14),

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{2}(x+1, y) \frac{t^{n}}{n!}-\sum_{n=0}^{\infty} B_{n}^{2}(x, y) \frac{t^{n}}{n!} & =t e^{x t+y t^{2}} \\
& =t \sum_{n=0}^{\infty} H_{n}^{2}(x, y) \frac{t^{n}}{n!}
\end{aligned}
$$

Since $B_{0}^{2}(x, y)=1$, we have

$$
\sum_{n=1}^{\infty}\left(B_{n}^{2}(x+1, y)-B_{n}^{2}(x, y)\right) \frac{t^{n}}{n!}=\sum_{n=1}^{\infty} n H_{n-1}^{2}(x, y) \frac{t^{n}}{n!}
$$

By comparing the coefficient $\frac{t^{n}}{n!}$ in the both sides of the above equation, we easily arrive at (15).

Acknowledgement This paper was supported by the Scientific Research Fund of Project Administration of Akdeniz University.

References

[1] G. Bretti and P.E. Ricci, Multidimensional extensions of the Bernoulli and Appell polynomials, Taiwanese J. Math. 8 (3) (2004), 415-428.
[2] G. Bretti, P. Natalini and P.E. Ricci, Generalizations of the Bernoulli and Appell polynomials, Abstr. Appl. Anal. 7 (2004), 613-623.
[3] F. Costabile,F. Dell'Accio and M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl. 26 (7)(1) (2006), 1-12.
[4] G. Dattoli,S. Lorenzutta and C. Cesarano, Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl. 19 (7)(3) (1999), 385391 (2000).
[5] G. Dattoli, C. Cesarano and S. Lorenzutta, Bernoulli numbers and polynomials from a more general point of view, Rend. Mat. Appl. 22 (7) (2002), 193-202 (2003).
[6] P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 3 (2003), 155-163.
[7] K. Subuhi, Y. Ghazala, K. Rehana and M. H. N. Ali,Hermite-based Appell polynomials: properties and applications, J. Math. Anal. Appl. 351 (2) (2009), 756-764.

Received: November, 2009

