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Abstract 

Parabolic partial differential equation with nonlocal boundary conditions arise in 
modeling of various physical phenomena in areas such as chemical diffusion, 
thermoelasticity, heat conduction process, control theory and medicine science. 
This paper deals with the successful implementation of the positively smoothed 
Pade` schemes (PSP) to two-dimensional parabolic partial differential equations 
with nonlocal boundary conditions.  We considered both Homogeneous and 
Inhomogeneous cases. The numerical results show that these numerical schemes 
are quite accurate.  

Keywords: Fourth order positively smoothed Pade schemes, parabolic partial 
differential equations, nonlocal boundary conditions 

 

1. Introduction 
 
Parabolic partial differential equations (PDEs) with nonlocal boundary conditions 
arise in the mathematical modeling of important applications in sciences [6, 7, 8, 
9, 22]. In the past two decades, a number of numerical methods [1, 7, 10, 17, 18,
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19, 23] for the numerical solution of parabolic PDEs with nonlocal boundary 
conditions have been developed. Twizell et al. [1] reported that some of these 
methods (explicit methods) suffer stability restrictions.  In this paper we consider 
the implementation of both homogeneous positively smoothed Padé (PSP(m)) and 
inhomogeneous positively smoothed Padé (IPSP(m)) schemes for the numerical 
solution of two-dimensional parabolic PDEs with nonlocal boundary conditions. 
The PSP(m) and IPSP(m), numerical schemes of order 2m (where m is a positive 
integer), have recently been developed by Wade et al. [4, 5] and applied to 
various examples from financial mathematics, especially pricing options with 
nonsmooth payoffs.  This is the first application of the PSP(m) and IPSP(m) 
schemes for the numerical solution of parabolic PDEs with nonlocal boundary 
conditions and are based on a combination of positivity preserving Padé [4] and 
diagonal Padé approximants. We will give a brief description of Padé 
approximants in the next section.  
 
 
2. Padé Approximants 
 
If nP ( x ) and mQ ( x )are polynomials of degree n and m respectively, then 

“ n

m

P ( x )
Q ( x )

is a Padé approximation to a function f ( x )” means that 

      1+ += + n mn

m

P ( x )f ( x ) O( x )
Q ( x )

              (2.1) 

In [1], the Padé approximant , ( )n mR z to the exponential function ( ) −= zf z e is 
defined as follows: 
Let 

         = n
n,m

m

P ( z )R ( z )
Q ( z )

                                           (2.2) 

where 

         
0

( )! !
( ) ( )

( )! !( )!=

+ −
= −∑

+ −

n n
n

j
P

n m j n
z z

m n j n j                                                      (2.3) 

and 

     
0

( )! !
( ) ( )

( )! !( )!

m n
m

j
Q

n m j m
z z

m n j n j=

+ −
= ∑

+ −
                                                    (2.4) 

Satisfying 
1

, ( ) ( )
+ +−= +

n mz
n mR z e O z          as  0z → ,                                   (2.5)       
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We will call , ( )n mR z  an ( , )n m −Padé scheme of order ( ).n m+  When n m= , the 
( , )m m − Padé approximants are known as diagonal Padé approximants and are 
denoted by , ( )m mR z .  
 
The positivity preserving Padé schemes are a relatively new research area; they 
have captured the interest of mathematicians and scientists. In the past few years, 
much attention has been devoted to the development of positivity preserving 
schemes and the concept of positivity has emerged prominently because it has 
been found to be an important factor in controlling spurious oscillations. The 
concept of using positivity-preserving Padé schemes has been discussed in a 
number of papers [3, 14, 15, 20, 21].  
 
Definition:  A numerical scheme is called a positivity preserving scheme if the 
graph of its stability function stays above the x-axis and approaches zero 
monotonically. 
The ( )0 2 1, m − −Padé are positivity-preserving schemes. For 1 2 3m , , ,= K , we have 
( )0 1, − Padé,  ( )0 3, −  Padé, ( )0 5, −  Padé, K  as positivity-preserving schemes.  
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Figure 1. Amplification symbols of the first three diagonal Padé approximants of 
exp(-z). 
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Figure 2. Amplification symbols of three positivity-preserving Padé i. e.  (0, 1) – 
Padé,  (0, 3) – Padé and (0, 5) – Padé. 
 
The ( , )n m − Padé approximation of the matrix exponential −kAe  is approximated 
by 
     1

,{ ( )} ( ) ( )kA
m n n me Q kA P kA R kA− −≈ − ≡                                                      (2.6) 

where k  is the time step and A is a tridiagonal matrix. 
The approximation of the matrix exponential kAe−  by the (2,2)− Padé, denoted by 

2,2 ( )R kA  yields the method 

       ( ) ( )1
2 2 2 2

1
1 1 1 1
2 2 2 2n nv I kA k A I kA k A v

−

+ = + + − +                                 (2.7) 

The (0,3) − Padé approximation to the matrix exponential −kAe , denoted by 

0,3 ( )R kA yields  

         ( ) 1
2 2 3 3

1
1 1
2 6n nv I kA k A k A v

−

+ = + + +                                                          (2.8) 

The matrix A is a tridiagonal matrix. The number of diagonals of A increases with 
the powers of A. For example 2A  is a five diagonal matrix, 3A  is seven and 4A  is  
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a nine diagonal matrix and so ill-conditioning of the matrix A comes into picture.  
The condition number of a matrix A denoted by ( )cond A and is defined by 
                 1( ) .cond A A A−=                                                                  (2.9) 
The condition number of a matrix measures the sensitivity of the solution of a 
system of linear equations to errors in the data. It gives an indication of the 
accuracy of the results from matrix inversion and the linear equations solutions. 
This can also cause computational difficulties and make the schemes 
computationally less efficient.  
 
Techniques that employ partial fraction decomposition of rational functions 
handle this difficulty very effectively.  Gallopoulos and Saad [11] have used (m, 
m) – Padé (diagonal Padé) and constructed parallel algorithms using the 
factorizations. Khaliq et al. [2] has used the diagonal and subdiagonal Padé 
approximations in factored and partial fraction forms. They have used partial 
fraction forms of diagonal and subdiagonal Padé approximations to construct the 
following efficient algorithm.  

Algorithm for homogeneous case:  

 Step 1. For 1 21, 2, , ,= +Ki q q  solve ( )− =i i skA c I y v . 
 Step 2. Compute  ( <m n )       

       
1 1 2

1

1
1 1

2 Re( )
+

+
= = +

= +∑ ∑
q q q

n i i i i
i i q

v w y w y                    (2.10) 

 Step 3. Compute ( =m n )        

      
1 1 2

1

1
1 1

( 1) 2 Re( )
q q q

m
n s i i i i

i i q
v v w y w y

+

+
= = +

= − + +∑ ∑                              (2.11) 

Algorithm for inhomogeneous case:  

Step 1. For 1 21, 2, , ,i q q= +K  solve 
*

1
( ) ( )

m

i i i s i j s j
j

kA c I y w v kw f t kτ
=

− = + +∑  for iy . 

Step 2. Compute   ( <m n )              

     
1 1 2

1

1
1 1

2 Re( )
q q q

n i i
i i q

v y y
+

+
= = +

= +∑ ∑                                           (2.12) 

Step 2. Compute  ( =m n )               

  
1 1 2

1

1
1 1

( 1) 2 Re( )
q q q

m
n s i i

i i q

v v y y
+

+
= = +

= − + +∑ ∑                                          (2.13) 
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Using partial fraction decomposition technique, we can write 

0,3 ( )R kA and 2,2 ( )R kA  respectively as 

    ( ) 11
1 1 1 2 2[ 2 Re( ) ]−−
+ = −− +n nv w kA c I vkA c I w                            (2.14) 

   ( ) 1
1 [ 2 Re ]−
+ = −+n nv I kA cI vw                              (2.15) 

 
In the next section, we will give a brief description of PSP (m) and IPSP (m) 
numerical schemes. 
 
3. Positively Smoothed Pade Schemes 
 
The PSP(m) and IPSP(m) numerical schemes are designed by Wade et al. [4, 5]  
to take advantage of the positivity-preserving Padé schemes. These numerical 
schemes use two steps of positivity-preserving Padé followed by the diagonal 
Padé schemes. For example for m = 2, we have PSP(2) and IPSP(2) schemes of 
order 4 which use two steps of the (0, 3) – Padé followed by the (2,2) – Padé 
schemes. We present PSP(m) scheme followed by the IPSP(m) scheme.  

Homogeneous Case: PSP(m)   

Wade et al. [4] introduced Positively Smoothed Padé (PSP(m)) schemes for 
homogeneous parabolic partial differential equations. The PSP(m) numerical 
schemes are of order 2m. For 00 k k< ≤  and nonnegative integer n , let nt nk= and 

{ } 0n n
v ∞

=
be the numerical approximations for { } 0

( )n n
u t ∞

=
with 0v v= . Let m be a 

positive integer, and p the number of special starting steps. The family of PSP(m) 
schemes [4] is as follows: 

         0, 2 1
1

,

( ) 0 ;

( ) .
m n

n
m m n

R kA v n p
v

R kA v n p
−

+

≤ <⎧⎪= ⎨ >⎪⎩
                           (3.1) 

For simplicity of notation, sr is utilized for the starting scheme 0, 2 1( )mR kA−  and 

mr for the main scheme ,m mR . The particular value of p which works best is not 
known. But in [4] numerical experiments as well as convergence results show that 
p is never required to be larger than 2 in the PSP family. 

For m = 2, we have PSP(2) numerical scheme as follows: 
 

      0, 3
1

2,2

( ) 0 2;

( ) 2.+

≤ ≤⎧⎪= ⎨ >⎪⎩

n
n

n

R kA v n
v

R kA v n
                                                            (3.2) 
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( )

( )

11
1 1 2

1 1

2 Re

2 Re

( ) 0 2;

2.

−−

+ −

−

−

⎧⎡ ⎤− + ≤ ≤⎪⎣ ⎦= ⎨
⎡ ⎤+ >⎪⎣ ⎦⎩

n

n

n

w kA cI

I kA cI

kA c I w v n
v

w v n
        (3.3) 

 
where 

1c 1.596071637983321523112854143997= − (Real Pole) 

2c 0.701964181008339238443597292801 1.80733949445202185357645984296i= − −

1w 1.4756865177957207165190465751319=  

2w 0.737843258897860358259523287566 0.365017840801028472444437629792i= − +
 
PSP(2) scheme uses 2 steps of (0,3)− Padé scheme followed by (2, 2)−  Padé 

scheme. Using this smoothing criteria a second order scheme PSP(2) can be 

written as: 

1. First two time steps of  (0,3)−  Padé scheme 

( ) 11
1 1 1 2 02 Re( )w kA cIv kA c I w v−− −⎡ ⎤= − +⎣ ⎦  

( ) 11
2 1 1 2 12 Re( )w kA cIv kA c I w v−− −⎡ ⎤= − +⎣ ⎦  

2. Remaining time steps of (2,2)−  Padé scheme 

( ) 1
1 2 Re , 2.n nI kA cIv w v n−
+ −⎡ ⎤= + >⎣ ⎦  

First two time steps of (0,3)−  Padé scheme  are sufficient to capture the spurious 
oscillations of (2,2)−  Padé scheme  in PSP(2) scheme. 
 
Inhomogeneous Case: IPSP(m)     
Wade et al. [5] also developed positively smoothed Pade schemes for 
inhomogeneous parabolic partial differential equations and used the notation 
(IPSP). The family of IPSP (m) schemes is as follows: 

  
0, 2 1

1
1

,
1

( ) ( ) ( ) 0 ;

( ) ( ) ( ) .

m

m n i n i
i

n m

m m n i n i
i

R kA v k P kA f t k n p
v

R kA v k P kA f t k n p

−
=

+

=

⎧
+ + ≤ <⎪⎪= ⎨

⎪ + + >
⎪⎩

∑

∑

τ

τ
                  (3.4) 
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The formula to obtain iP  in [5] is 

   1
1 0

! ( )( ) ( ) , 0,1,2, , 1.
( ) !

js l
l
i i l

i j

l zP z r z l s
z j+

= =

⎛ ⎞−
= − = −⎜ ⎟− ⎝ ⎠

∑ ∑ Kτ                   (3.5) 

where 0, 2 1mr R −=  or ,m mR respectively. 
For m = 2, we have IPSP(2) numerical scheme as follows: 
 
IPSP(2) scheme uses 2 steps of (0,3)− Padé scheme followed by (2, 2)−  Padé 

scheme. Using this smoothing criteria a second order scheme IPSP(2) can be 

written as: 

1. First two time steps of  (0,3) −  Padé scheme 

 1 1 22 ( )sv y R y+ = +     

where 

( )1 1 1 11 1 12 2− = + + τ + + τs s skA c I y w v kw f ( t k ) kw f ( t k )and

( )2 2 2 21 1 22 2− = + + τ + + τs s skA c I y w v kw f ( t k ) kw f ( t k )  

1c 1.5960716379833215231128541439= −  

2c 0.701964181008339238443597292801 1.80733949445202185357645984296i= − −

1w 1.47568651779572071651904657513=  

2w 0.73784325889786035825952328757 0.36501784080102847244443762979i= − +
 

11 12

21 22

w 0.25964745169791, w 0.3128364277412 0.472314917248i
w 0.66492666056455, w 0.3505493716099 0.494190545719i

= = − +
= = −

 

1
3 3

6
−

τ =  and 2
3 3

6
+

τ = . 

2. Remaining time steps of (2, 2) −  Padé scheme 

1 2 ( )s sv v R y+ = +   
where 
   ( ) 1 11 1 12 2− = + + τ + + τs s skA cI y wv kw f ( t k ) kw f ( t k )  

3 1 732050807568877 6 10 39230484541327= − − = − +c . i, w . i  
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11 120 86602540378 3 232050807569 0 86602540378 0 23205080757= − + = +w . . i, w . . i
 
 
In the next section, we will demonstrate the implementation of PSP(2) and 
IPSP(2) (both schemes are of order 4) on model problems taken from the 
literature. 
 
 
 
4. Numerical Experiments 

 

We consider two model problems from the literature [1, 13, 16], for which exact 
solutions are known.  We apply PSP (2) and IPSP (2) to these model problems. 
The errors between the exact and numerical solutions are shown in the tables for 
each problem. The graphs of numerical and smoothed solutions are also shown. 

 
Problem 1. (Ishak [13]) 
 
Consider the two-dimensional diffusion problem 

       
2 2

2 2 ; 0 , 1, 0u u u x y t
t x y

α
⎛ ⎞∂ ∂ ∂

= + < < >⎜ ⎟∂ ∂ ∂⎝ ⎠
                   (4.1) 

subject to the initial condition 
     ( , ,0) (1 ) , 0 1, 0 1xu x y y e x y= − ≤ ≤ ≤ ≤                     (4.2) 
and the boundary conditions  

 
1

(0, , ) (1 ) , 0 1, 0 1,
(1, , ) (1 ) , 0 1, 0 1,
( ,0, ) , 0 1, 0 1,
( ,1, ) 0, 0 1, 0 1,

t

t

x t

u y t y e t y
u y t y e t y
u x t e t x
u x t t x

+

+

= − ≤ ≤ ≤ ≤

= − ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤

                               (4.3) 

and nonlocal boundary condition 
1 (1 )

0 0
( , , ) 2(11 4 ) , 0 1, 0 1.

x x tu x y t dxdy e e x y
−

= − ≤ ≤ ≤ ≤∫ ∫                              (4.4) 

The exact solution is given by  
( , , ) (1 ) x tu x y t y e += −                                                         (4.5) 
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Table 1. Exact and PSP(2) solutions of two-dimensional Diffusion Problem 

x y Exact Solution PSP(2) Abs. Rel. Error 
0.0 0.0 2.71828183 2.71828183 0.0000e+000 
0.1 0.1 2.70374942 2.70375192 2.4977e-006 
0.2 0.2 2.65609354 2.65609807 4.5307e-006 
0.3 0.3 2.56850767 2.56851445 6.7828e-006 
0.4 0.4 2.43311998 2.43312813 8.1475e-006 
0.5 0.5 2.24084454 2.24085289 8.3525e-006 
0.6 0.6 1.98121297 1.98122030 7.3253e-006 
0.7 0.7 1.64218422 1.64218962 5.3975e-006 
0.8 0.8 1.20992949 1.20993254 3.0498e-006 
0.9 0.9 0.66858944 0.66859040 9.5485e-007 
1.0 1.0 0.00000000 0.00000000 0.0000e+000 

 

Figure 1. Numerical Solution of (2, 2) – Padé 
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Figure 2.  Smoothing of  (2, 2) – Padé using PSP(2) smoothing technique 

 
Problem 2  
 
Consider the two-dimensional inhomogeneous diffusion problem  

  ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

∂
∂

+
∂
∂

=
∂
∂ − 422

2

2

2

2

yxe
y
u

x
u

t
u t ,   1,0,0 <<> yxt                                 (4.6) 

The problem has nonsmooth data with initial condition 
    0 1=u( x, y, )                                   (4.7) 
and the boundary conditions  

2

2

2

2

(0, , ) 1 , 0 1, 0 1,
(1, , ) 1 (1 ) , 0 1, 0 1,
( ,0, ) 1 , 0 1, 0 1,
( ,1, ) 1 (1 ) , 0 1, 0 1,

−

−

−

−

= + ≤ ≤ ≤ ≤

= + + ≤ ≤ ≤ ≤

= + ≤ ≤ ≤ ≤

= + + ≤ ≤ ≤ ≤

t

t

t

t

u y t y e t y
u y t y e t y
u x t x e t x
u x t x e t x

                   (4.8) 

and nonlocal boundary condition  
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1 1

0 0

2( , , ) 1
3

−= +∫ ∫ tu x y t dxdy e .                                            (4.9) 

The exact solution is 2 21 −= + +tu( x, y,t ) e ( x y ) .                 (4.10) 

Table 2. Exact and IPSP(2) solutions of the Inhomogeneous Diffusion Problem 

x y Exact Solution IPSP(2) Abs. Rel. Error 
0.0 0.0 1.000000000000 1.000000000000 0.0000e+000 
0.1 0.1 1.007357588823 1.007357544940 4.3563e-008 
0.2 0.2 1.029430355294 1.029430344090 1.0884e-008 
0.3 0.3 1.066218299411 1.066218275375 2.2543e-008 
0.4 0.4 1.117721421175 1.117721395910 2.2604e-008 
0.5 0.5 1.183939720586 1.183939704400 1.3671e-008 
0.6 0.6 1.264873197643 1.264873162720 2.7610e-008 
0.7 0.7 1.360521852348 1.360521824917 2.0162e-008 
0.8 0.8 1.470885684699 1.470885931022 1.6747e-007 
0.9 0.9 1.595964694698 1.595965248352 3.4691e-007 
1.0 1.0 1.735758882343 1.735758882343 0.0000e+000 

 

Figure 3. Numerical Solution of (2, 2) – Padé 
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Figure 4. Smoothing of (2, 2) – Padé by PSP(2) smoothing technique 

In order to verify numerically whether the PSP (2) scheme leads to higher 
accuracy, we can evaluate the numerical solution. Tables 1 and 2 show the exact 
solution, the numerical results of PSP (2) scheme, and the error between the exact 
and numerical solutions for various values of x and y, when t =1. The graph of 
Padé – (2, 2) shows spurious oscillations, which are captured by PSP (2) scheme. 

 

5. Conclusions 
 
In this work, we have employed PSP (2) and IPSP (2) numerical schemes of order 
4 for the solutions of two dimensional diffusion equations with nonlocal boundary 
conditions on four boundaries. The problems considered consist of both 
homogenous and inhomogeneous cases. To verify the accuracy of these schemes 
for parabolic problems with nonlocal boundary conditions, the errors between the 
exact and numerical solutions are computed. Numerical results show that the PSP  
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(2) and IPSP (2) schemes are efficient and provide very accurate results. We have 
demonstrated with time evolution graphs computational performance for the two 
model problems. These numerical schemes have promise due to their efficient 
implementation in solving higher degree of polynomial matrices that arise with 
Padé schemes as well as the potential to implement in parallel. 
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