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Abstract 
 
 
The derivation of a trigonometric equation for the nine-point, rectangular prismatic 
array is illustrated. In many cases, the equation can be used to reproduce a ninth datum 
at an arbitrary point near the center of the array. New estimators of central tendency are 
more resistant to the distorting effects of an outlier than the arithmetic mean. Examples 
illustrate this property. All of the methods derive from the shifting operator.  
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1. Introduction 
 
 A method for interpolating the eight-point cube by means of the circular or the 
hyperbolic trigonometric functions was recently described [2]. This paper illustrates a 
new method for interpolating nine data in cubical array by means of those functions. 
Operational, polynomial- and exponential-type interpolating equations for prismatic 
arrays are invariant under data translation and rotation but the trigonometric equations 
do not have the advantage of translational invariance [3,4].  
 
 
2. The nine-point rectangular prism 
 
 The first trigonometric equation for interpolating numbers arranged at the 
vertices of a cube applied the identities in Eqs. (1a) and (2a) [2]. Their operational 
interpretations are Eqs. (1b) and (2b), respectively. Eqs. (1b) and (2b) yield Eq. (3). The 
three finite-difference equations (1b), (2b), (3) apply to the 5-point rectangle ACEGI in 
Fig. 1. The vertices of that rectangle can be reinterpreted as vertices A,B,E,H,I, and 
F,G,E,C,D in the rectangular prism illustrated in Fig. 2. 
 
(2)sin(x)cos(x)cos(x+y) – (2)sin(x+y)cos(x)2 + sin(x+y) = sin(x–y)     (1a) 
(F–D)(F+D)(I+A) – (I–A)(F+D)2 + 2E2(I–A) = 2E2(C–G)                    (1b) 
 
(2)sin(x)cos(x)cos(y–x) + (2)cos(x)2sin(y–x) – sin(y–x) = sin(x+y)                (2a) 
(F–D)(F+D)(G+C) + (F+D)2(G–C) = 2E2(G–C+I–A)                                 (2b) 
 
E2 – [FD(I+G–A–C)–F2(A–G)–D2(C–I)] / [2(I–A–C+G)] = 0       (3) 

 
Eq. (3) can be substituted with a new expression for the midpoint D of one side 

of the rectangle in Fig. 1. That new expression is D=(F2–IC+AG)(1/2) [5]. Choose the 
positive root. It contains F2. Let the four-letter sequence BDIG represent the midpoint 
of the corresponding face of the prism in Fig. 2. Substitute BDIG for the letter F in 
substituted Eq. (3). In three dimensions, two five-point rectangles are ABEHI and 
FGECD. By a change of notation, both rectangles can be represented by substituted Eq. 
(3). Multiply the two expressions, simplify the product for convenience, and solve it for 
BDIG. The tedious result is presented in terms of its numerator and denominator, Eqs. 
(4) and (5), respectively. It is the three-dimensional, nine-point analog of the Eq. (6) 
that appears in Ref. [2]. Equation (6) is restricted to positive numbers as data because 
the positive root for D was selected. A single letter represents a number at a vertex in 
Fig. 2. Double-letter combinations represent the product of two single letters. If A .. I 
are 1 .. 9, respectively, then BDIG=11/2. 

 
numerator of BDIG =  



 

Applications of operational calculus                                                                         2097 
 
 
(2E2(H+I–A–B) + BI(I–B) + AH(B–I))2(2E2(C+D–F–G) + DG(D–G) + FC(G–D))2

           (4) 
denominator of BDIG =  
(I+H–A–B)(4(I+H–B–A)E2 – (BI–AH)(H+B–I–A))(F+G–C–D)(4(G+F–C–D)E2  
– (D–G+F–C)(DG–FC))        (5) 
 
BDIG = ([Eq. (4)] / [Eq. (5)])(1/4)       (6) 

 
The right hand side of Eq. (6) above replaces the right hand side of Eq. (7) in 

Ref. [2]. The remaining expressions for the midpoints of sides ACHF, ABGF, CDIH, 
ABDC, and FGIH can be obtained by rotating the cube and reapplying Eq. (6). The new 
algorithm then proceeds starting at Eq. (16) in Ref. [2]. The factors W1 .. W6 are found 
as Eqs. (19)-(24) in Ref. [2]. Eq. (25) in Ref. [2] thus becomes Eq. (7) and similarly for 
the remaining side point expressions that appear as Eqs. (25)-(30) in Ref. [2].  
 
BDIG = (W1)([Eq. (4)] / [Eq. (5)])(1/4)       (7) 
 
 The letter E in Eqs. (4) and (5) represents the datum at the center of the prism in 
Fig. 2. Its presence means that new algorithm generates an interpolating equation for the 
nine-point prism. However, the new interpolating equation will not necessarily 
reproduce the center point datum unless the value of the exponent NN is properly 
adjusted [2]. In certain cases, no adjustment of NN is necessary. Those cases include 
data that are generated by 2x where x is 1 .. 9 at vertices A .. I, respectively in Fig. 2. 
Other cases include data that represent the circular sines or cosines of 10o .. 90o at 
vertices A .. I, respectively. In other words, some of the properties of the eight-point 
trigonometric interpolating equation described in Ref. [2] are maintained by the nine-
point trigonometric equation described in this paper. Neither the eight- nor the nine-
point trigonometric equations apply to trilinear numbers in prismatic array [2].  

 
For example, let the numbers 13, 23, 33, 43 53, 63, 73, 83, 93 be positioned at 

vertices A .. I in Fig. 2, respectively. The equation interpolating them, as developed 
according to the preceding text, and assigning NN=0, renders R=124.958 at 
(x,y,z)=(0,0,0). If NN is changed to (–0.00285), the center point prediction is much  
closer to the true center point datum, R=125.0. That nine-point interpolating equation, 
with rounded coefficients, appears as Eq. (8) below. 
R = (125.0)cosh(0.1556x)cosh(0.3622y)cosh(1.166z) +         
       (135.9)cosh(0.1556x)cosh(0.3622y)sinh(1.166z) + 
       (144.8)cosh(0.1556x)sinh(0.3622y)cosh(1.166z) + 
       (138.2)cosh(0.1556x)sinh(0.3622y)sinh(1.166z) + 
       (165.4)sinh(0.1556x)cosh(0.3622y)cosh(1.166z) +  
       (155.4)sinh(0.1556x)cosh(0.3622y)sinh(1.166z) +        
       (147.3)sinh(0.1556x)sinh(0.3622y)cosh(1.166z) +     
       (89.51)sinh(0.1556x)sinh(0.3622y)sinh(1.166z)                  (8) 
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Table 1 illustrates the sums of squares of deviations of three equations that 
interpolate the nine-point cube. The quadratic equation appears as Eq. (1) in Ref. [3]. It 
uses the quadratic-term expressions given as Eqs. (14)-(19) therein. The cubic equation 
is described as Eq. (D) in Ref. [6]. The trigonometric equation cited in Table 1 is the 
nine-point method illustrated in this paper. Let its exponent NN be taken as zero. The 
trial data are generated by the monotonic functions applied to the integers 1 .. 9 as A .. I,  
respectively, in Fig. 2. The eight- and nine-point trigonometric equations apply only to 
positive numbers as data [2]. They do not apply to every configuration of positive 
numbers. 
 
 
3. Operational measures of central tendency 
 
 One of the interesting applications of the shifting operator is the development of 
two series of new formulas for the estimation of central tendency. The members of each 
series are tedious expressions but modern computers make them useful for the cited 
purpose. The members of both series require sorted data, and both series require a 
minimum of four measurements. The first series is denoted PXP where the X represents 
the number of data to which a particular formula applies and the trailing P represents a 
polynomial-type estimator. The second series of formulas are denoted PXE where the 
trailing E represents an exponential-type estimator.  

 
The polynomial-type estimators are insensitive to data translation so they 

compete with the arithmetic mean. They have the advantage of exactness on linear 
numbers and their squares whereas the mean does not have the latter property. As 
illustrated by the examples in Refs. [7-9], the formulas offer the promise of greater 
accuracy and greater robustness than the mean. The PXE formulas also promise these 
advantages but they are sensitive to translation of the data. The first three members of 
each series have been described in the Refs. [7-9]. 

 
Below are the numerators and the denominators of the fourth member of the 

polynomial-type estimators. They are separated for the sake of clarity. The numerators 
and denominators of the fourth member of the PXE series follow them. Both P10P and  
P10E estimate the centers of ten sorted numbers. Patterns in the numerators and 
denominators of P10P and P10E are apparent. The patterns assist the generation of 
successive members of each series. Both series appear to be indefinitely extensible.  
 
Numerator of P10P: 
4(z10–z1)2(z9–z2)2(z8–z3)2(z7–z4)2(z6+z5)  
– (z10–z1)2(z9–z2)2(z8–z3)2(z7+z4)(z6–z5)2  
– (z10–z1)2(z9–z2)2(z8+z3)(z7–z4)2(z6–z5)2  
– (z10–z1)2(z9+z2)(z8–z3)2(z7–z4)2(z6–z5)2  
– (z10+z1)(z9–z2)2(z8–z3)2(z7–z4)2(z6–z5)2       (9) 



 

 
Applications of operational calculus                                                                         2099 
 
 
Denominator of P10P: 
8(z10–z1)2(z9–z2)2(z8–z3)2(z7–z4)2 – 2(z10–z1)2(z9–z2)2(z8–z3)2(z6–z5)2  
– 2(z10–z1)2(z9–z2)2(z7–z4)2(z6–z5)2 – 2(z10–z1)2(z8–z3)2(z7–z4)2(z6–z5)2 
– 2(z9–z2)2(z8–z3)2(z7–z4)2(z6–z5)2                                                                         (10) 
 
Numerator of (P10E)2: 
 
4(z10–z1)2(z9–z2)2(z8–z3)2(z7–z4)2(z6+z5)2  
– (z10–z1)2(z9–z2)2(z8–z3)2(z7+z4)2(z6–z5)2  
– (z10–z1)2(z9–z2)2(z8+z3)2(z7–z4)2(z6–z5)2  
– (z10–z1)2(z9+z2)2(z8–z3)2(z7–z4)2(z6–z5)2  
– (z10+z1)2(z9–z2)2(z8–z3)2(z7–z4)2(z6–z5)2      (11) 
 
Denominator of (P10E)2: 
16(z10–z1)2(z9–z2)2(z8–z3)2(z7–z4)2 – 4(z10–z1)2(z9–z2)2(z8–z3)2(z6–z5)2  
– 4(z10–z1)2(z9–z2)2(z7–z4)2(z6–z5)2 – 4(z10–z1)2(z8–z3)2(z7–z4)2(z6–z5)2 
– 4(z9–z2)2(z8–z3)2(z7–z4)2(z6–z5)2                                                                         (12) 
 
 An outlier is a datum that gives the impression of not being a member of a series 
of repeated measurements. The arithmetic mean has been criticized for its sensitivity to 
the distorting effects of outliers. In contrast to this undesirable property of the mean, 
center point estimates rendered by the PXP and the PXE formulas are resistant to an 
outlier. This property is illustrated in Table 2 for the four polynomial-type estimators 
P4P, P6P, P8P, P10P as well as for the four exponential-type estimators P4E2, P6E2, 
P8E2 and P10E2. Note that it is the squares of the center point estimates that are 
rendered by the PXE formulas.  The sorted numbers used for the following illustrations 
are taken from Rousseuw [1]. The first datum in the series of Rousseeuw’s ten numbers  
is incremented by an added error so that it gradually assumes the role of an outlier. A 
formula such as P4P or P4E2 uses only the first four members of the series taken from 
left to right. Formulas P6P and P6E2 use the first six numbers from left to right. 
 
95+error, 93, 92, 90, 88, 86, 83, 80, 75, 40      (13) 

 
The columns in Table 2 headed by the abbreviation AVG represent the 

arithmetic mean of four, six, eight, or ten numbers taken from left to right in the 
preceding series. The upper left, upper right, lower left, and lower right quadrants in 
Table 2 use 4, 6, 8, and 10 data, respectively. The entries for (AVG) illustrate that as the 
error increases, the mean also increases. The mean changes so much that an error of 
5000 makes it an unrecognizable approximation of its true value when the error was 
zero. The operational estimates do not show this adverse effect. The operational 
estimates change somewhat as the error increases but they are essentially the same no  
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matter what number for the error is assumed. That is, the operational center points of 
Rousseeuw’s numbers are nearly the same whether the error is zero or 5000.  
 
 The operational measures of central tendency combine two desirable properties: 
enhanced accuracy in known cases [7-9] and enhanced resistance to an outlier in many 
other cases. See Table 2. There is no reason to think that these desirable properties will 
be nullified on application of the formulas to laboratory data. The rationale for the 
operational formulas has been summarized in Ref. [9] but the formulas therein have 
awkward formulations. See Refs. [7,8] for commentary on Ref. [9].  
 
 
4. Discussion 

 
There seems to be no popular nine-point analog of the trilinear equation for the 

cube in Fig. 2. Even so, nine positive numbers A .. I in Fig. 2 can be represented in 
many ways and some of them are exact on trilinear numbers. The preference for linear 
relationships is partly a tradition: the straight line will always be with us. However, the 
tradition does not exclude alternatives that contain curvature coefficients. Among them  
 
are the operational equations that contain second-order coefficients and others that 
contain second- and third-order coefficients. Polynomial, trigonometric, and 
exponential laws often fit natural phenomena better than straight lines.  
 

When the exponent NN is zero in both trigonometric methods, the nine-point 
method described in this paper typically renders lower sums of squares of deviations 
from simple trial surfaces that the eight-point method [2]. This remark applies primarily 
to data that are monotonic-increasing or -decreasing. Compare the entries in Table 1 to 
the like entries in Table 1 of Ref. [2]. The author can supply a Maple® worksheet for 
the nine-point trigonometric interpolating equation described above [10]. 

 
Let the coefficients of the arguments of the sine and cosine functions be 

determined as described in Section 2 and let a term be added to the expression for the 
prismatic array. It now contains nine coefficients external to the trigonometric functions 
including the added term. There are also nine data including the center point datum. 
Alternative external coefficients can usually be obtained by forming nine simultaneous 
equations and solving them for the external coefficients. This approach is easier than 
adjusting the value of the exponent NN. It can also be applied with various assignments 
for exponent NN. A selection of trigonometric interpolating equations for the nine-point 
array can therefore be generated at pleasure.  

 
Operational estimators of central tendency are so tedious that computer 

assistance is essential. Their numerators and denominators adhere to patterns that can be 
discerned on examination. The formulas can apparently be extended indefinitely to  
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accommodate more data. Table 2 provides evidence that the operational formulas resist 
the distorting influence of an outlying datum better than the mean. The operational 
formulas are often more accurate than the mean, as well [7,8]. The entries in the table 
were obtained by 10-digit precision to minimize the effects of error propagation. Copies 
of formulas for four to sixteen ordered numbers can be supplied by the author.   

 
 A recent paper describes the generation of exponential equations for eight- and 
nine-point prismatic arrays [4]. It is therein stated that the ranges searched for the 
numerical values of J, K, and L should not include unity. This statement seems to be too 
strong. When convergence is possible, modern software usually finds the appropriate 
values of J, K, L even if the searched ranges include unity. If the x-, y-, and z-
coefficients in the trilinear equation for the eight-point cube are greater or less than 
zero, the corresponding values of J, K, and L are often greater or less than unity, 
respectively. Although it is not an infallible guide, this observation may assist the 
assignment of the ranges to be searched for the numerical values of J, K, and L in the 
exponential method [4].   
 
 
 
Table 1. Approximate sums of squares of deviations of three interpolating equations 
from typical trial surfaces. The equations are based on different approaches to the nine-
point cube. The data are generated by applying the listed functions to the integers 1 .. 9 
at vertices A .. I, respectively, as in Fig. 2. The coefficient NN in the trigonometric 
equation is taken zero. The quadratic equation is formed from Eqs. (14)-(19) in Ref. [3]. 
Eq. (D) is taken from Ref. [6].  
 
 
 

Function* Quadratic 
equation  

Cubic 
equation (D)

Trigonometric 
equation (text) 

M2 0 0 15.2 
M3 1201 0 1852 
2M 10063 1463 0 
sinh(M/2) 33.2 2.87 0 
tan(9Mo) 1.53 0.393 0.443 
cosh(M/2) 32.5 2.92 0 
cosh(M/2) + M 32.5 2.92 1.24 
(M)cosh(M/2) 4737 540 16.4 
(5)sin(10Mo) + 
cos(10Mo) 

0.00563 0.000294 0 

             *M = (5+x/2+y+5z/2) 
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Table 2. Center point estimates as obtained by the arithmetic average (AVG)  
and two series of operational center point estimators. Estimates are obtained  
after adding an error to the largest of four, six, eight, and ten sorted numbers.  
The original numbers appear in the line for Eq. (13). Estimates as rendered by 
the 4-, 6-, 8- and 10-point polynomial-type and exponential-type formulas are  
denoted by the suffixes P and E, respectively. The entries have been rounded.  
 
 
Error P4P P4E AVG  P6P P6E AVG 
0 92.50 92.50 92.50  91.06 91.06 90.67 
1 92.49 92.49 92.75  91.04 91.04 90.83 
5 92.47 92.47 93.75  91.02 91.02 91.50 
10 92.48 92.48 95.00  91.02 91.02 92.33 
50 92.49 92.49 105.0  91.03 91.03 99.00 
100 92.50 92.49 117.5  91.03 91.03 107.3 
500 92.50 92.50 217.5  91.04 91.04 174.0 
1000 92.50 92.50 342.5  91.04 91.04 257.3 
5000 92.50 92.50 1343  91.04 91.04 924.0 
        
Error P8P P8E AVG  P10P P10E AVG 
0 89.02 89.02 88.38  87.03 87.03 82.20 
1 89.02 89.02 88.50  87.03 87.03 82.30 
5 89.01 89.01 89.00  87.03 87.03 82.70 
10 89.01 89.01 89.63  87.03 87.03 83.20 
50 89.01 89.01 94.63  87.03 87.03 87.20 
100 89.01 89.01 100.9  87.03 87.03 92.20 
500 89.01 89.01 150.9  87.03 87.03 132.2 
1000 89.01 89.01 213.4  87.03 87.03 182.2 
5000 89.01 89.01 713.4  87.03 87.03 582.2 
 

 
 
                                       G    H     I 

                                                               D    E     F 
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Fig. 1. The nine-point rectangle. 
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Fig. 2. The nine-point rectangular prism. It is abbreviated 
by the word cube in the text. 
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