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Abstract 
 
Consider a single server retrial queueing system in which customers arrive in a 
Poisson process with arrival rate λ and negative customers arrive at a rate ν which 
also follows a Poisson process. Let K be the number of phases in the service 
station. The service time has Erlang-K distribution with service rate Kμ for each 
phase. We assume that the services in all phases are independent and identical and 
only one customer at a time is in the service mechanism. If the server is free at the 
time of a primary call arrival, the arriving call begins to be served in Phase 1 
immediately by the server then progresses through the remaining phases and must 
complete the last phase and leave the system before the next customer enters the 
first phase. If the server is busy, then the arriving customer goes to orbit and 
becomes a source of repeated calls. This pool of sources of repeated calls may be 
viewed as a sort of queue. Every such source produces a Poisson process of 
repeated calls with intensity σ. If an incoming repeated call finds the server free, it 
is served in the same manner and leaves the system after service, while the source  
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which produced this repeated call disappears.We assume that the access from 
orbit to the service facility is governed by the classical retrial policy. This model 
is solved by using Matrix geometric Technique. Numerical  study  have been 
done for Analysis of Mean number of  customers in the orbit (MNCO),Truncation 
level (OCUT),Probability of server free and busy for various values of λ , μ , ν,  k 
and σ  in elaborate manner and also various particular cases of  this model 
have been discussed. 
 

Mathematics Subject Classification: 60K25, 65K30 
 
Keywords: Single Server – Stochastic nature – Erlang type service –K phases – 
negative arrival - Matrix Geometric Method – Orbit – classical retrial policy – 
stability 
 
 
1. Introduction 

 
  Queueing systems in which arriving customers who find the server busy 
may retry for service after a period of time is called Retrial queues [1,2,3,8,9,10] 
Because of the complexity of the retrial queueing models, analytic results are 
generally difficult to obtain. There are a great number of numerical and 
approximations methods available, in this paper we will place more emphasis on 
the solutions by Matrix geometric method [11, 12, 13]. 
 
 
2. Description of the Queueing System 

 
Consider a single server retrial queueing system in which customers arrive 

in a Poisson process with arrival rate λ. These customers are identified as primary 
calls. Further assume that negative customers arrive at a rate ν which follows a 
Poisson process. Let k be the number of phases in the service station.Assume that 
the service time has Erlang-k distribution [7] with service rate kμ for each 
phase. We assume that the services in all phases are independent and identical and 
only one customer at a time is in the service mechanism. If the server is free at the 
time of a primary call arrival, the arriving call begins to be served in Phase 1 
immediately by the server then progresses through the remaining phases and must 
complete the last phase and leaves the system before the next customer enters the 
first phase. If the server is busy, then the arriving customer goes to orbit and 
becomes a source of repeated calls. This pool of sources of repeated calls may be 
viewed as a sort of queue. Every such source produces a Poisson process of 
repeated calls with intensity σ. If an incoming repeated call finds the server free, it 
is served in the same manner and leaves the system after service, while the source 
which produced this repeated call disappears. Otherwise, the system state does not 
change.  
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2.1 Negative Arrival 

            Gelenbe (1991) has introduced a new class of queueing processes in 
which customers are either Positive or Negative. Positive means a regular 
customer who is treated in the usual way by a server. Negative customers         
[4, 5, 6, 14, 15] have the effect of deleting some customer in the queue. In the 
simplest version, a negative arrival removes an ordinary positive customer or a 
batch of positive customers according to some strategy. It is noted that the 
existence of a flow of negative arrivals provides a control mechanism to control 
excessive congestion at the retrial group in tele communication and computer 
networks. The control mechanism is such that whenever server is busy, an 
exponential timer is activated. If the timer expires and the server is still busy then 
at random one of the customers who are stored at the retrial pool is automatically 
removed.  A negative arrival has the effect of removing a random customer from 
the retrial group. We assume that the negative customers only act when the server 
is busy.   
 
2.2 Retrial Policy 
 

We assume that the access from the orbit to the service facility follows the 
exponential distribution with rate nσ which may depend on the current number n, 
(n ≥ 0) the number of customers in the orbit. That is, the probability of repeated 
attempt during the interval (t, t +∆t), given that there are n customers in the orbit 
at time t is nσ ∆t. It is called the classical retrial rate policy. The input flow of 
primary calls, interval between repetitions and service time in phases are mutually 
independent. 

 
3. Matrix Geometric Methods 
     

Let  N(t) be  the random variable which represents the number of 
customers in orbit  at time  t  and  S(t) be the random variable which represents 
the phase in which customer is getting  service at time t. 

 
The random process is described as  
 
                        {<N(t) , S(t)> / N(t)=0,1,2,3…;S(t)=0,1,2,3,…,k }  
 
The value of S(t) = 0 for the server being idle and S(t) = i for server being busy 
with the customer in the i th phase (i=1,2,3…,k).The possible state space for 
single server retrial queueing with Erlang-k phases service are 

 
                         { (i , j) / i = 0,1,2,3,… ;  j = 0,1,2,3,…,k } 
 
The infinitesimal generator matrix Q for this model is given below 
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Q = 
 
 
 

 
 
The matrices A00 , An n-1 , An n and An n+1  are square matrices of order k+1, where 
 
 
 
 
 
   A00  =       

 
 
 
 
 
 
 Ann-1  = (aij)  where     aij      =  nσ  if i=  1, j=2  
                                     =   ν    if i = j, i=2, 3, 4,…, k+1 
                                                =   0   otherwise         
 
 
 
 
 Ann =                                  

 
   
 
                                         
       
 
 
 Ann+1  = A0 = (aij)  where         aij    =  λ  if i = j  , i = 2,3,4,…,k+1 
                                                  =  0   otherwise               
 
If the capacity of the orbit is finite say M, then 

 

-λ λ 0 0 … 0 0 

0 -(λ+kµ) kµ 0 … 0 0 

0 0 -(λ+kµ) kµ … 0 0 

0 0 0 -(λ+kµ) … 0 0 

… … … … … … … 

0 0 0 0 … -(λ+kµ) kµ 

kµ 0 0 0 … 0 -(λ+kµ) 

-(λ+nσ) λ 0 0 … 0 0 

0 -(λ+kµ+ν) kµ 0 … 0 0 

0 0 -(λ+kµ+ν) kµ … 0 0 

0 0 0 -(λ+kµ+ν) … 0 0 

… … … … … … … 

0 0 0 0 … -(λ+kµ+ν) kµ 

kµ 0 0 0 … 0 -(λ+kµ+ν) 

A00 A0 O O O …
A10 A11 A0 O O …
O A21 A22 A0 O …
O O A32 A33 A0 …
… … … … … …
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   AMM  =      
 

 
 
 

Let X be a steady-state probability vector of Q and partitioned as                         
X= ( x(0),x(1),x(2), ….) and  X satisfies 
 
       XQ =  0 , Xe = 1 ,where x(i) = ( Pi0  ,  Pi1 , Pi2 , …, Pik )                           (1) 
 
 
4. Direct truncation method 
 
          In this method one can truncate the system of equations in (1) for 
sufficiently large value of the number of customers in the orbit, say M. That is, the 
orbit size is restricted to M such that any arriving customer finding the orbit full is 
considered lost. The value of M can be chosen so that the loss probability is very 
small. Due to the intrinsic nature of the system in (1), the only choice available for 
studying M is through algorithmic methods. While a number of approaches are 
available for  determining the cut-off point  M , The one that seems to perform 
well (w.r.t approximating the system performance measures) is to increase M until 
the largest individual change in the elements of X for successive values is less 
than є a predetermined infinitesimal value. 
 
 

5. Stability condition 
 
Theorem :   

The inequality 1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
 is the necessary and sufficient condition for system to 

be stable. 
Proof: 
Let Q be an infinitesimal generator matrix for the queueing system (without 
retrial) 
The stationary probability vector X satisfies   
                                     XQ = 0   and   Xe=1                  (2) 
Let R be the rate matrix and satisfing the equation                                 
                                    A0+RA1+R2 A2  =0      (3) 
The system is stable if sp(R) <1   

-(λ+Mσ) λ 0 0 … 0 0 

0 -(kµ+ν) kµ 0 … 0 0 

0 0 -(kµ+ν) kµ … 0 0 

0 0 0 -(kµ+ν) … 0 0 

… … … … … … … 

0 0 0 0 … -(kµ+ν) kµ 

kµ 0 0 0 … 0 -(kµ+ν) 
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We know that the Matrix R satisfies sp(R) <1 if and only if                               
                                   ΠA0e <   ΠA2e      (4) 
where Π = (π1,…,πk) and satisfies 
                                   ΠA = 0 and Πe =1     (5) 
 and 
                                  A=A0+A1+A2      (6) 
                                        
 Here A0, A1 and A2 are square matrices of order k and  
  
 A0   = λ I , where  I is the identity matrix of order k. 
 
 
 
 
 
 
      A1   =                                
 
 
 
 
     A2 = (aij)  where     aij    =  kµ     for  i= 1,  j = k 
                                   =   ν       for i = j  and  i = 1,2,3,…,k   
                                              =   0       otherwise                      
By substituting  A0 ,  A1 ,  A2  in  equations  (4) ,(5) and (6)  ,we get 

    1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
                                         

The inequality 1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
 is also a sufficient condition for the retrial queueing 

system to be stable.  Let Qn be the number of customers in the orbit after the 
departure of nth customer from the service station. We first prove the embedded 

Markov chain {Qn, n≥0} is ergodic if   1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
. {Qn, n≥0} is irreducible and 

aperiodic. It remains to be proved that {Qn, n≥0} is positive recurrent. The 
irreducible and aperiodic Markov chain {Qn, n≥0} is positive recurrent if | ψm| <∞ 
for all m  and lim m →∞ sup   ψm   < 0 , where  
 
                      ψm   = E( (Qn+1 - Qn) / Qn =m)        ( m=0,1,2,3,4,5,…) 

                      ψm    =   λ ν
μ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

 -   
m
λ

λ σ
⎛ ⎞
⎜ ⎟+⎝ ⎠

 

 
 

-( λ+kµ+ν) kµ 0 … 0 0 

0 -( λ+kµ+ν) kµ … 0 0 

0 0 -( λ+kµ+ν) … 0 0 

… … … … … … 

0 0 0 … -( λ+kµ+ν) kµ 

0 0 0 … 0 -( λ+kµ+ν) 
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If   1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
, then | ψm| <∞ for all m   and lim m →∞ sup   ψm < 0 

Therefore the embedded Markov chain {Qn, n≥0} is ergodic. 
 
 
6. Analysis of steady state probabilities 

   
In this paper we are applying the Direct Truncation Method to find the 

Steady state probability vector X. Let M denote the cut-off point for this 
truncation method.The steady state probability vector   X(M)  is now partitioned   
as  X(M)  = (x(0) , x(1), x(2) , …..x(M)) which satisfies  X(M)  Q =  0 , X(M)  e = 1, 
where  x(i) = (Pi0,Pi1, Pi2 ,…,Pik)  i =0, 1, 2,3,…,M .   

The above system of equations is solved by exploiting the special structure of 
the co-efficient matrix. It is solved by GAUSS-JORDAN elementary 
transformation method. Since there is no clear cut choice for M, we may start the 
iterative process by taking, say M=1 and increase it until the individual elements 
of x do not change significantly. That is, if M* denotes the truncation point then  

 
          || xM*(i)  -  xM*-1(i)  ||∞  < є   ,where є is an infinitesimal quantity. 
 
 

7. Special cases 
 
1. As ν→0, the above model reduces to Single server retrial queueing 

system with erlang-k type service. 
2. If K=1 and  ν→0 , this model becomes the Single server retrial queueing 

model and our numerical results coincide with the following closed form 
of  Number of customers in the orbit in the steady state [9] 

           Mean Number of Customers in the orbit =  ( )
(1 )
ρ λ ρσ

ρ σ
+
−

     

3. As σ→∞  and  ν→0 ,the closed form of number of customers in the orbit 
tends to length of the queue in standard queueing system with Erlang type 
service  

                                Lq =  
21

2 1
k

k
ρ
ρ

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

       

       For many values of λ, μ, K and very high values of σ (>10000), the above   
       result coincides with our numerical results. 

 
 

8. Systems performance measures  
 

In this section some important performance measures along with formulas 
and their qualitative behaviour for various values of λ, μ, k , ν and σ  are  
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studied. Numerical study has been dealt in very large scale to study these 
measures. Defining 
P( n , 0)  =  Probability that there are n  customers in the orbit and  server  
                   is free    
P( n , i)  =   Probability that there are n  customers in the orbit and  server  
                   is busy with customer in the  ith  phase  

 
 
1. The probability mass function of Server state 

Let S(t) be the random variable which represents the phase in which 
customer is getting  service at time t .  

 S  :        0                 1               2                  3          …             k   

   P  :  
0

( ,0)
i

p i
∞

=
∑   

0

( ,1)
i

p i
∞

=
∑   

0

( , 2)
i

p i
∞

=
∑     

0

( ,3)
i

p i
∞

=
∑    …       

0

( , )
i

p i k
∞

=
∑       

2. The Mean number of busy servers                  

MNBS =  
0 1

( , )
k

i j

p i j
∞

= =
∑∑       

3. The probability mass function  number of customers in the orbit 
 
Let X(t) be the random variable  representing the number of customers in 
the orbit. 

 Prob (No customers in the orbit) = 
0

(0, )
k

j
p j

=
∑  

 Prob ( i customers in the orbit)   = 
0

( , )
k

j
p i j

=
∑   

4. The Mean number of customers in the orbit 

      Mnco = 
0 0

( ( , ))
k

i j
i p i j

∞

= =
∑ ∑   

5. The probability that the orbiting customer is blocked  

            Blocking Probability = 
1 1

( , )
k

i j
p i j

∞

= =
∑∑  

6. The probability that an arriving customer enter into service 

immediately  

           PSI         =   
0

( ,0)
i

p i
∞

=
∑
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9. Numerical Study 
 

 The Numerical study is done subject to the condition that the parameters 

  λ, μ, ν satisfy the stability condition 1λ ν
μ

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
 

       From the following tables we conclude that 
 

• Mean number of cutomers in the orbit decreases as σ increases. 
• Mean number of cutomers in the orbit decreases as ν increases   
•  As the number of phases K increases, Mean number of customers in   

the orbit decreases 
   
Table 1: Mean number of customers in the orbit for λ =6, μ=10, K= 5,  
               ν = 2 and various values of σ  
 

Sigma O_cut Mnco P0 P1 
10 16 0.768 0.4857 0.5143 
20 15 0.5914 0.4701 0.5299 
30 15 0.5236 0.4633 0.5367 
40 15 0.4875 0.4594 0.5406 
50 15 0.4649 0.457 0.543 
60 15 0.4495 0.4553 0.5447 
70 14 0.4383 0.454 0.546 
80 14 0.4298 0.4531 0.5469 
90 14 0.4231 0.4523 0.5477 
100 14 0.4177 0.4517 0.5483 
200 14 0.3929 0.4488 0.5512 
300 14 0.3844 0.4478 0.5522 
400 14 0.3801 0.4473 0.5527 
500 14 0.3776 0.447 0.553 
600 14 0.3758 0.4468 0.5532 
700 14 0.3746 0.4466 0.5534 
800 14 0.3737 0.4465 0.5535 
900 14 0.373 0.4464 0.5536 

1000 14 0.3724 0.4464 0.5536 
2000 14 0.3698 0.446 0.554 
3000 14 0.3689 0.4459 0.5541 
4000 14 0.3685 0.4459 0.5541 
5000 14 0.3682 0.4459 0.5541 
6000 14 0.3681 0.4458 0.5542 
7000 14 0.3679 0.4458 0.5542 
8000 14 0.3678 0.4458 0.5542 
9000 14 0.3678 0.4458 0.5542 
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Table 2: Mean number of customers in the orbit for λ =5, μ=10, ν = 2,  
               σ=100 and various values of K. 
 

K σ Ocut Mnco P0 P1 

5 100 11 0.2529 0.5354 0.4646 
6 100 11 0.2483 0.5351 0.4649 
7 100 11 0.2449 0.5348 0.4652 
8 100 11 0.2424 0.5346 0.4654 
9 100 11 0.2405 0.5345 0.4655 

10 100 11 0.2389 0.5344 0.4656 
11 100 11 0.2376 0.5343 0.4657 
12 100 11 0.2365 0.5342 0.4658 
13 100 11 0.2356 0.5341 0.4659 
14 100 11 0.2348 0.5341 0.4659 
15 100 11 0.2342 0.534 0.466 
16 100 11 0.2336 0.534 0.466 
17 100 11 0.2331 0.5339 0.4661 
18 100 11 0.2326 0.5339 0.4661 
19 100 11 0.2322 0.5338 0.4662 
20 100 11 0.2318 0.5338 0.4662 
21 100 11 0.2314 0.5338 0.4662 
22 100 11 0.2311 0.5338 0.4662 
23 100 11 0.2309 0.5337 0.4663 
24 100 11 0.2306 0.5337 0.4663 
25 100 11 0.2304 0.5337 0.4663 

 
 
Table 3: Mean number of customers in the orbit for λ =5, μ=10, 
σ=100, K=5 and various values of ν. 
 

ν σ Ocut Mnco P0 P1

0.2 100 13 0.3370 0.5044 0.4956 
0.4 100 13 0.3249 0.5085 0.4915 
0.6 100 13 0.3137 0.5125 0.4875 
0.8 100 13 0.3032 0.5162 0.4838 
1.0 100 12 0.2935 0.5198 0.4802 
1.2 100 12 0.2843 0.5232 0.4768 
1.4 100 12 0.2758 0.5265 0.4735 
1.6 100 12 0.2677 0.5296 0.4704 
1.8 100 12 0.2601 0.5326 0.4674 
2.0 100 11 0.2529 0.5354 0.4646 
2.2 100 11 0.2462 0.5382 0.4618 
2.4 100 11 0.2397 0.5408 0.4592 
2.6 100 11 0.2337 0.5434 0.4566 
2.8 100 11 0.2279 0.5458 0.4542 
3.0 100 11 0.2224 0.5481 0.4519 
3.2 100 11 0.2172 0.5504 0.4496 
3.4 100 11 0.2122 0.5526 0.4474 
3.6 100 10 0.2074 0.5547 0.4453 
3.8 100 10 0.2029 0.5567 0.4433 
4.0 100 10 0.1985 0.5587 0.4413 
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10. Graphical Study 
 
Figure 1.  Mean Number of customers in the orbit for λ = 6  μ =10   ν = 2  K=5  
                  various  values of σ.   
  
 
 

 
 
 
 
 

Figure 2.  Mean Number of customers in the orbit for λ = 5  μ =10   ν = 2  σ =100 
                  and various  values of K.   
 
 
 
  
 

 
 
Figure 3.  Mean Number of customers in the orbit for λ = 5  μ =10   K = 5  σ =100 
                  and various  values of ν.  
 
  
  
 
 

 
 
11. Conclusion 
 
It is observed from numerical and graphical studies that Mean number of 
customers in the orbit decreases as the retrial rate increases, the probabilities for 
the server being idle, busy are dependent over retrial rate. The various special 
cases discussed in section 7 are particular cases of this research work. This  
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research work can further be extended by introducing various parameters like 
vacation policies, second optional services etc., 
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