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Abstract 

 
Consider a single server retrial queueing system with loss and feedback 

under Non-pre-emptive priority service in which two types of customers arrive 
in a Poisson process with arrival rate λ1 for low priority customers and λ2 for high 
priority customers. These customers are identified as primary calls. The service 
times follow an exponential distribution with parameters μ1 and μ2 for both types 
of customers respectively. The retrial, loss and feedback are introduced for low 
priority customers only. Let k be the maximum number of waiting spaces for high 
priority customers in front of the service station. The high priorities customers 
will be governed by the Non-Pre-emptive priority service.The access from orbit 
to the service facility is governed by the classical retrial policy. This model is 
solved by using Matrix geometric Technique.Numerical  study  have been done 
for Analysis of Mean number of low priority customers in the orbit (MNCO), 
Mean number of high priority customers in the queue(MPQL),Truncation level 
(OCUT),Probability of server free and Probabilities  of server busy with low, high  
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priority customers for various values of λ1 , λ2, μ1 , μ2, p, q, σ and k  in elaborate 
manner and also various particular cases of  this model have been discussed. 
 
Mathematics Subject Classification: 60K25, 65K30 

 
Keywords: Single Server – Stochastic nature – Low priority – high priority –
Non-Pre-emptive priority service – loss-feedback - Matrix Geometric Method – 
Orbit – classical retrial policy 
 
1. INTRODUCTION 

 
Queueing systems in which arriving customers who find all servers and 

waiting positions (if any) occupied may retry for service after a period of time are 
called Retrial queues [1, 2, 7]. Because of the complexity of the retrial queueing 
models, analytic results are generally difficult to obtain. There are a great number 
of numerical and approximations methods are available, in this paper we will 
place more emphasis on the solutions by Matrix geometric method [9, 11, 13].  

 
2. DESCRIPTION OF QUEUEING SYSTEM 
 

Consider a single server retrial queueing system with loss and feedback 
under Non-pre-emptive priority [3, 5, 6] service in which two types of 
customers arrive in a Poisson process with arrival rate λ1 for low priority 
customers and λ2 for high priority customers. These customers are identified as 
primary calls. The service times follow an exponential distribution with 
parameters μ1 and μ2 for both types of customers. The retrial, loss and feedback 
are introduced for low priority customers only. This concept is recently (2009) 
discussed by K.Farahmand and T.Li [8] for single server retrial queueing by 
analytic method. Let k be the maximum number of waiting spaces for high 
priority customers in front of the service station. 

 

2.1 Description of loss and feedback 
 

 The concepts loss and feedback are introduced for low priority customers 
in this paper. If the server is free at the time of the arrival of low priority 
customer, then the arriving call begins to be served immediately by the server. 
After completion of service, if the low priority customer dissatisfied then he may 
re-join the orbit with probability q and with probability (1-q) he leaves the system. 
This is called feedback [4, 10, 12] in queueing theory. If the server is busy at the 
time of the arrival of low priority customer, then due to impatient this low priority 
customer may or may not join the orbit. This is called loss [8] in queueing theory. 
We assume that p is the probability that the low priority customer joins the orbit 
and (1-p) is the probability that he leaves the system without getting service (due 
to impatient).            

 If the server is free at the time of the arrival of high priority customer, 
then the arriving call begins to be served immediately by the server and high 
priority customer leaves the system after service completion.If the server is busy 
then the low priority arriving customer goes to orbit with probability p and 
becomes a source of repeated calls. The pool of sources of repeated calls may be 
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viewed as a sort of queue. Every such source produces a Poisson process of 
repeated calls with intensity σ. If an incoming repeated call (low) finds the server 
free, it is served and leaves the system after service, while the source which 
produced this repeated call disappears.  

If any one of the waiting spaces is occupied by the high priority customers 
then the low priority customers (as a primary call) can not enter into service 
station and goes to orbit with probability p. If the server is busy and there are 
some waiting spaces then the high priority customer can enter into the service 
station and waits for his service. If there are no waiting spaces then the high 
priority customers can not enter into the service station and will be lost for the 
system. Otherwise, the system state does not change. If the server is engaging 
with low priority customer and at that time the higher priority customer comes 
then the high priority customer will get service only after completion of the 
service of low priority customer who is in service. This type of priority service is 
called the Non-pre-emptive priority service. This kind of priority service is 
followed in this paper. 
2.2  Retrial Policy 

Most of the queueing system with repeated attempts assume that each 
customer in the retrial group seeks service independently of each other after a 
random time exponentially distributed with rate σ so that the probability of 
repeated attempt during the interval   (t, t +∆t)  given that  there were n customers 
in orbit at time t  is nσ ∆t + O(∆t). This discipline for access for the server from 
the retrial group is called classical retrial rate policy.The input flow of primary 
calls (low and high), interval between repetitions,service times,interval between 
returns from vacation  are mutually independent.  

 
3. MATRIX GEOMETRIC METHODS     

 
Let  N(t) be  the random variable which represents the number of low 

priority customers in the orbit  at time  t  and  P(t) be the random variable which 
represents the number of high priority customers in the  queue (in front of the 
service station) at time t and S(t) represents the server state at time t.  The random 
process is described as {< N(t) , P(t), S(t) >/ N(t)=0,1,2,3,4…; P(t)=0,1,2,3…k; 
S(t)=0,1,2}.S(t) takes the values 0 ,1,or 2 depends on the  server idle ,busy with 
low priority customer, busy with high priority customer at time t respectively.  
The possible state spaces are 

{ (u,v,w) /u = 0,1,2,3,… ; v = 0;w=0,1,2 }U  
{(u,v,w)/ u = 0,1,2,3,... ; v=1,2,3…k; w=1,2}  

 
The infinitesimal generator matrix Q is given below 

 
            
                               Q = 

 
 
 

A00 A0 O O O …
A10 A11 A0 O O …
O A21 A22 A0 O …
O O A32 A33 A0 …
… … … … … …
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A00,   A01, An n-1, Ann, An n+1 are square matrices of order 2k+3  
Notations:    
#1 = -(λ1+ λ2)    #2    = -(pλ1+ λ2+(1-q)μ1)  #3  = -(pλ1+ λ2+μ2)     #5    = -(pλ1+ μ1)                  
#6  = -(pλ1+ μ2)  #8   = -(nσ+ λ1+ λ2)   #9  =  -(Mσ+ λ1+ λ2)  #10  = -(λ2+μ1)  
#11 = -( λ2+μ2)   #12 =  -(pλ1+ λ2+μ1) 

         
 
 
  A00 = 
          
 

 

 
    

Ann-1 = (aij)   where    aij   = 0     for all i and j except i = 1 and j = 2    
                                    a12 = nσ   
 

         
 
 
Ann =         
 
 
 
 
 
 
 
Ann+1=A0       
 
 
 
 
If the capacity of the orbit is finite say M then  
 

         
 
AMM =          
 
 

#1 λ1 λ2 0 0 0 0 … 0 0 0 0 
(1-q)µ1 # 12 0 λ2 0 0 0 … 0 0 0 0 
µ2 0 #3 0 λ2 0 0 … 0 0 0 0 
0 0 (1-q)μ1 #12 0 λ2 0 … 0 0 0 0 
0 0 μ2 0 #3 0 λ2 … 0 0 0 0 
… … … … … … … … 0 0 … … 
0 0 0 0 0 0 0 … #12 0 λ2 0 
0 0 0 0 0 0 0 … 0 #3 0 λ2 
0 0 0 0 0 0 0 … 0 (1-q)μ1 #5 0 
0 0 0 0 0 0 0 … 0 µ2 0 #6 

#8 λ1 λ2 0 0 0 0 … 0 0 0 0 
(1-q)μ1 #12 0 λ2 0 0 0 … 0 0 0 0 
μ2 0 #3 0 λ2 0 0 … 0 0 0 0 
0 0 (1-q)μ1 #12 0 λ2 0 … 0 0 0 0 
0 0 μ2 0 #3 0 λ2 … 0 0 0 0 
… … … … … … … … … … … … 
0 0 0 0 0 0 0 … #12 0 λ2 0 
0 0 0 0 0 0 0 … 0 #3 0 λ2 
0 0 0 0 0 0 0 … 0 (1-q)μ1 #5 0 
0 0 0 0 0 0 0 … 0 µ2 0 #6 

#9 λ1 λ2 0 0 0 0 … 0 0 0 0 
μ1 #10 0 λ2 0 0 0 … 0 0 0 0 
μ2 0 #11 0 λ2 0 0 … 0 0 0 0 
0 0 μ1 #10 0 λ2 0 … 0 0 0 0 
0 0 μ2 0 #11 0 λ2 … 0 0 0 0 
… … … … … … … … … … … … 
0 0 0 0 0 0 0 … #10 0 λ2 0 
0 0 0 0 0 0 0 … 0 #11 0 λ2 
0 0 0 0 0 0 0 … 0 μ1 - μ1 0 
0 0 0 0 0 0 0 … 0 µ2 0 -µ2 

0 0 0 0 0 0 0 … 0 0 0 0 
qµ1 pλ1 0 0 0 0 0 … 0 0 0 0 
0 0 pλ1 0 0 0 0 … 0 0 0 0 
0 0 qµ1 pλ1 0 0 0 … 0 0 0 0 
0 0 0 0 pλ1 0 0 … 0 0 0 0 

… … … … … … … … … … … … 
0 0 0 0 0 0 0 … pλ1 0 0 0 
0 0 0 0 0 0 0 … 0 pλ1 0 0 
0 0 0 0 0 0 0 … 0 qµ1 pλ1 0 
0 0 0 0 0 0 0 … 0 0 0 pλ1 
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Let x be a steady-state probability vector of Q and partitioned as  
 x = ( x(0),x(1),x(2),… ) and  x  satisfies 
  xQ =  0 , xe=1.                                                                (1)  
Where   x(i) =   ( Pi00  ,  Pi01 , Pi02 , Pi11  ,  Pi12 , Pi21  ,  Pi22 , …, Pik1,  Pik2 )   
                                                                                                    i=0,1,2,3…   
4. Stability condition 

 
Theorem: 
The inequality (F)(λ1/µ1) < 1 where  S1= (1+G)*(p/(1-q)),   
S2= ((1-x)(1- π2k - π2k+1)+xπ2k+1)(1+ λ2 / (1-q)µ1)  F=S1/S2, x = λ2/μ2  , 
G = t+t2+t3+…+tk-1

  is the necessary and sufficient condition  for the system to be 
stable. If K→∞, the above stability condition becomes (pλ1 / (1-q) μ1 + λ2/μ2) < 1  
Proof: 
Let Q be an infinitesimal generator matrix for the queueing system 
The stationary probability vector X statisfying   
                                    XQ = 0  and  Xe=1            (2) 
Let R be the rate matrix and satisfing the equation                                 
                                    A0+RA1+R2A2  =0            (3) 
The system is stable if sp(R) < 1   
We know that the Matrix R satisfies sp(R) < 1 if and only if                               
                                   ΠA0e <  ΠA2e             (4) 
and Π  = ( π0,π1,π2,...,π2k,π2k+1) satisfies 
                                   ΠA   = 0              (5) 
                                   Πe    = 1             (6) 
 where                        A=A0+A1+A2                (7)                                 
 
A0 , A1 and A2 are square matrices of order 2k+2 
 
 
 
 
 
A0 = 
 
 
 
 
 
 
A2 = (aij)   where       aij  = (1-q) µ1    if i = 1 and j = 1 
                                                     aij = µ2             if i = 2 and j = 1  
                                   aij  =  0             otherwise 
 
 
 

  pλ1 0 0 0 0 0 … 0 0 0 0 
  0 pλ1 0 0 0 0 … 0 0 0 0 
  0 qμ1 pλ1 0 0 0 … 0 0 0 0 
  0 0 0 pλ1 0 0 … 0 0 0 0 
  0 0 0 qμ1 pλ1 0 … 0 0 0 0 
  0 0 0 0 0 pλ1 … 0 0 0 0 
… … … … … … … … … … … 
  0 0 0 0 0 0 … pλ1 0 0 0 
  0 0 0 0 0 0 … 0 pλ1 0 0 
  0 0 0 0 0 0 … 0 qμ1 pλ1 0 
  0 0 0 0 0 0 … 0 0 0 pλ1 
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A1 = 
 
 
 
 
 
By substituting  A0 ,  A1 ,  A2  in  equations (5) and  (7) ,we get 
                                        π1    =  xπ0 

                 π2i    = ti π0                     i  =  1,2,3…k-1 
                                                            πi      =  x(πi-2+πi-1)   i  =  3,5,7…2k-1 

      π2k    = (λ2 / (1-q)µ1) tk-1π0 
                                   π2k+1      = xπ2k-1  
From (6),  π0+π1+ π2+π3+ π4+π5……+ π2k-1+π2k+π2k+1 =1 
By substituting πi values in the above equation we get 
       π0(1+G) = [(1-x)(1- π2k- π2k+1 ) + xπ2k+1]  
 From (4),    (p/(1-q))(λ1/μ1) <  π0 (1+ λ2 /(1-q)µ1) 
By substituting π0 we get                            

       (1+G)(p/(1-q))(λ1/µ1) < ((1-x)(1- π2k - π2k+1)+xπ2k+1)(1+λ2 / (1-q)µ1) 
Therefore   (F)(λ1/µ1) < 1    
The inequality (F)(λ1/μ1) < 1  is also a sufficient condition for the retrial queueing 
system to be stable.  Let Qn be the number of customers in the orbit after 
departure nth customer from the service station.We first prove the embedded 
Markov chain  {Qn , n≥0} is ergodic if  (F)(λ1/μ1) <  1 is readily to see that  {Qn , 
n≥0} is irreducible and aperiodic. It remains to be proved that {Qn, n≥0} is 
positive recurrent. The irreducible and aperiodic Markov chain     {Qn , n≥0} is 
positive recurrent if | ψi| <∞ for all i and  lim i →∞ sup   ψi <0  where  
                      ψi   = E( Qn+1  -  Qn / Qn =i)    ( i=0,1,2,3,4,5….) 
                      ψi   = (F)(λ1/μ1)   -  iσ / (pλ1 + λ2+iσ) 
If   (F)(λ1/μ1)<1 , then | ψi| <∞ for all i and  lim i →∞ sup   ψi  <0 
Therefore the embedded Markov chain {Qn , n≥0}  is ergodic. 
If K→∞   then π2k→0 and π2k+1→0 and G→λ2/µ1.  
The above stability condition becomes (pλ1 / (1-q) μ1) + (λ2/μ2) < 1  
 
5. Analysis of steady state probabilities 

 
We are applying Direct Truncation Method to find Steady state probability 
vector x. Let M denote the cut-off point or Truncation level. The steady state 
probability vector   x(M)  is now partitioned   as x(M)  = (x(0), x(1), x(2) , …..x(M)) 
 
 
 

  #2 0 λ2 0 0 0 … 0 0 0 0 
  0 #3 0 λ2 0 0 … 0 0 0 0 
  0 (1-q)μ1 #12 0 λ2 0 … 0 0 0 0 
  0 μ2 0 #3 0 λ2 … 0 0 0 0 
  0 0 0 (1-q)μ1 #12 0 … λ2 0 0 0 
  0 0 0 μ2 0 #3 … 0 λ2 0 0 
… … … … … … … … … …  
  0 0 0 0 0 μ1 … #12 0 λ2 0 
  0 0 0 0 0 μ2 … 0 #3 0 λ2 
  0 0 0 0 0 0 … 0 (1-q)μ1 #5 0 
  0 0 0 0 0 0 … 0 μ2 0 #6 
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and  x(M)    satisfies            x(M)  Q =  0 , x(M)  e=1.    
Where   x(i) =   ( Pi00  ,  Pi01 , Pi02 , Pi11 , Pi12 , Pi21,  Pi22 ,. . . ., Pik1,  Pik2 )     
                                                                                                   i=0,1,2,3…M 
The above system of equations is solved exploiting the special structure of the co-
efficient matrix. It is solved by Numerical method such as GAUSS-JORDAN 
elementary transformation method. Since there is no clear cut choice for M, we 
may start the iterative process by taking, say M=1 and increase it until the 
individual elements of  x do not change significantly. That is, if M* denotes the 
truncation point then  
 

          || xM*(i)  -  xM*-1(i)  ||∞  <  e   where e is an infinitesimal quantity. 
 

6. Special cases 

a) This model becomes Single Server Retrial queueing system with non-pre-
emptive priority service if  q→0 and p→1 

b) This model becomes Single Server Retrial queueing system and results 
coincide with analytic solutions given by Falin and Templeton for various 
values  of λ1, (λ2 →0) , μ1, (μ2 →∞), q→0 , p→1,σ and K  

c) This model becomes Single Server Standard Queueing System  and 
coincide with standard results if  λ2 →0 , μ2 →∞ , q→0 , p→1 and σ→∞ 
 

7. Systems performance measures 
 
We can find various probabilities for various values of λ1,  λ2 , μ1, μ2 , p,q, σ 
and K and the following system measures can be easily study with these 
probabilities 
 

a) The probability mass function of  Server state 

Let S(t) be the random variable which represents the server state at time t .  
     S  :           0idle                       1low                2high       

          P :                
0

( ,0,0)
i

p i
∞

=
∑          

0 0

( , ,1)
k

i j

p i j
∞

= =
∑∑      

0 0

( , , 2)
k

i j

p i j
∞

= =
∑∑       

b) The probability mass function of  number of customers in the orbit 
Let X(t) be the random variable which represents the number of low 
priority  customers in the orbit.  
No.of low priority customers (orbit)                         Probability            

              i       
2

0 1
( , , )

k

j l
p i j l

= =
∑∑ + p(i,0,0)   
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c) The Probability mass function of number of high priority customers 
in the queue. 

Let P(t) be the random variable which represents  number of high priority 
customers in the queue at time t.  

  No.of high priority customers (queue)             Probability             

                   0         
2

0 0

( ,0, )
i l

p i l
∞

= =
∑∑                                      

         j                  
2

0 1
( , , )

i l
p i j l

∞

= =
∑∑      

d) The Mean number of high priority customers in the queue 

       MPQL                       =  
2

1 0 1
( ( , , ))

k

j i l
j p i j l

∞

= = =
∑ ∑∑   

e) The Mean number of  low priority customers in the orbit 

      MNCO                      =  (
2

0 0 1
( ( , , )

k

i j l
i p i j l

∞

= = =
∑ ∑∑ +p(i,0,0) ) ) 

f) The probability that the orbiting customer (low) is blocked  

            Blocking Probability = 
2

1 0 1
( , , )

k

i j l
p i j l

∞

= = =
∑∑∑  

g) The probability that an arriving customer(low/high) enter into 

service  station immediately  

            PSI                            =  
0

( ,0,0)
i

p i
∞

=
∑  

9.      NUMERICAL STUDY 
 
The values for parameters λ1, λ2, μ1, μ2, p, q will be chosen so that it satisfies the 
stability condition discussed section 5 
 
From the following tables we conclude that 

• Mean number of cutomers in the orbit decreses as σ increases. 
• Probabilities P0, P1 and P2   are independent of σ. 
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Table 1: System Measures for λ1=10   λ2 = 5   μ1 = 20  μ2 = 25    p = 0.8  q = 0.2    K = 6 
 

Sigma Ocut P0 P1 P2 MNCO MPQL 
10 48 0.2667 0.5333 0.2000 3.5767 0.2580 
20 44 0.2667 0.5333 0.2000 2.4769 0.2580 
30 43 0.2667 0.5333 0.2000 2.1102 0.2580 
40 42 0.2667 0.5333 0.2000 1.9269 0.2580 
50 42 0.2667 0.5333 0.2000 1.8170 0.2580 
60 42 0.2667 0.5333 0.2000 1.7436 0.2580 
70 42 0.2667 0.5333 0.2000 1.6913 0.2580 
80 42 0.2667 0.5333 0.2000 1.6520 0.2580 
90 42 0.2667 0.5333 0.2000 1.6214 0.2580 

100 42 0.2667 0.5333 0.2000 1.5970 0.2580 
200 42 0.2667 0.5333 0.2000 1.4870 0.2580 
300 42 0.2667 0.5333 0.2000 1.4503 0.2580 
400 42 0.2667 0.5333 0.2000 1.4320 0.2580 
500 42 0.2667 0.5333 0.2000 1.4210 0.2580 
600 42 0.2667 0.5333 0.2000 1.4137 0.2580 
700 42 0.2667 0.5333 0.2000 1.4084 0.2580 
800 42 0.2667 0.5333 0.2000 1.4045 0.2580 
900 42 0.2667 0.5333 0.2000 1.4015 0.2580 

1000 42 0.2667 0.5333 0.2000 1.3990 0.2580 
2000 42 0.2667 0.5333 0.2000 1.3880 0.2580 
3000 42 0.2667 0.5333 0.2000 1.3843 0.2580 
4000 42 0.2667 0.5333 0.2000 1.3825 0.2580 
5000 42 0.2667 0.5333 0.2000 1.3814 0.2580 
6000 42 0.2667 0.5333 0.2000 1.3807 0.2580 
7000 42 0.2667 0.5333 0.2000 1.3802 0.2580 
8000 42 0.2667 0.5333 0.2000 1.3798 0.2580 
9000 42 0.2667 0.5333 0.2000 1.3795 0.2580 

 
10. Graphical Study 
 
 
Fig 1. Mean No. of low priority customers in the orbit for λ1 = 10   λ2=5    μ1 =20   μ2=25   
             p = 0.8  q = 0.2   K = 6    and σ  varies from 10 to 90 
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Fig 2. Mean No. of low priority customers in the orbit for λ1 = 10   λ2 = 5    μ1 = 20   μ2 = 25   
             p = 0.8  q = 0.2  K = 6   and σ  varies from 100 to 900  
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Fig 3. Mean No. of low priority customers in the orbit for λ1 = 10   λ2 = 5    μ1 = 20   μ2 = 25   
             p = 0.8  q = 0.2  K = 6    and σ  varies  from 1000 to 9000  
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11. Conclusions 
 

It is observed from sections 9 and 10 that Mean number of low priority 
customers in the orbit decreases as the retrial rate  increases, the Probabilities for 
the server being idle, busy with low priority customers independent of  retrial rate.  
From this study, we further state that mean number of customers in the orbit 
increases as the probability q increases and it decreases as the probability p 
decreases.The various special cases which have been discussed in section 7 are 
particular cases of this research work. This research work can further be extended 
by introducing various vacation policies.  
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