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Abstract. I-WARP is based upon a nonhomogeneous Poisson approach to model breakage rates in individual
water mains. The structural deterioration of water mains and their subsequent failure are affected by many
factors, both static (e.g., pipe material, pipe size, age (vintage), soil type) and dynamic (e.g., climate, cathodic
protection, pressure zone changes). I-WARP allows for the consideration of both static and dynamic factors
in the statistical analysis of historical breakage patterns. This paper describes the mathematical approach and
demonstrates its application with the help of a case study. The research project within which I-WARP was
developed, was jointly funded by the National Research Council of Canada (NRC), and the Water Research
foundation (formerly known as the American Water Works Association Research Foundation – AwwaRF) and
supported by water utilities from USA and Canada.

1 Introduction

The use of statistical methods to discern patterns of historical
breakage rates and use them to predict water main breaks has
been widely documented. Kleiner and Rajani (2001) pro-
vided a comprehensive review of approaches and methods
that had been developed prior to their review. Since then,
several more methods have been proposed, such as those by
Park and Loganathan (2002), Mailhot et al. (2003), Dridi et
al. (2005), Giustolisi et al. (2005), Watson et al. (2006), Gius-
tolisi and Berardi (2007), Boxall et al. (2007), Le Gat (Le
Gat, Y.: Extending the Yule Process to model recurrent fail-
ures of pressure pipes, private communication, 2008.) and
Economou et al. (2008) to name but a few.

Many factors, operational, environmental and pipe-
intrinsic factors, jointly affect the breakage rate of a water
main. While not all pipes are created equal (even pipes of
the same material and size), it is normally assumed that pipes
that share a specific intrinsic property, such as material, or
diameter, can be expected to have the same breakage pat-
tern, all else being equal. However, non-pipe-intrinsic factors
may have varying effect on the breakage patterns of different
pipes, even if all else is equal. For example, two pipes of
the same material, diameter, age, etc. can be impacted dif-
ferently by climate. These differences are due to variability
for which we may never have enough data to account. At the
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same time, it is unreasonable to perform a statistical anal-
ysis on the breakage pattern of a single pipe because there
often are insufficient breaks to conduct a credible analysis.
For this reason, the forecasting of breaks in individual water
mains has proven to be quite a challenge.

In this paper we present I-WARP (Individual Water mAin
Renewal Planner), which is a tool to analyse the historical
breakage patterns of individual water mains. I-WARP is
based on the assumption that breaks on an individual pipe oc-
cur as a non-homogeneous Poisson process (NHPP). NHPP
has been suggested by others to model the same phenomenon
(e.g., Constantine and Darroch, 1993; Røstum, 2000; Jarrett
et al., 2003, among others). The approach proposed here
differs from others in that allows for the consideration of
dynamic factors, while existing NHPP approaches consider
only static factors (i.e., pipe-intrinsic).

The rest of this paper is organised as follows: Sect. 2 pro-
vides the theoretical background for the model, Sect. 3 dis-
cusses issues related to the use of specific covariates, Sect. 4
describes the Zero-Inflated Poisson concept, which is pro-
vided as an option in I-WARP, Sect. 5 provides details on the
testing and validation of I-WARP results, Sect. 6 provides
a case study to illustrate the model application and Sect. 7
provides summary and conclusions.
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2 Non-homogeneous Poisson-based model

In the proposed model we assume that breaks at yeart for an
individual pipei are Poisson arrivals with mean intensityλi,t.
Therefore, the probability of observingki,t breaks is given by

P(ki,t)=
λ

ki,t

i,t ·exp(−λi,t)

ki,t!

λi,t =exp[αo+θτ(gi,t)+αzi +βpt+γqi,t] (1)

whereαo is a constant,τ(gi,t) is the age covariate, andθ is its
coefficient,gi,t is the age of pipei at yeart; zi is a row vector
of pipe-dependent covariates (e.g., length, diameter, etc.) and
α is a column vector of the corresponding coefficients;pt is
a row vector of time-dependent covariates (e.g., climate) and
β is a column vector of the corresponding coefficients;qi,t is
a row vector of both pipe-dependent and time-dependent co-
variates (e.g., number of known previous failure – NOKPF,
cathodic protection) andγ is a column vector of the corre-
sponding coefficients. Note that ifτ(gi,t)= gi,t then the aging
is exponential, i.e.,λ is an exponential function of pipe age,
whereas ifτ(t)= loge(gi,t) thenλ becomes a power function
of pipe age. Yeart is taken relative to the first year for which
breakage records are available. Coefficients are obtained us-
ing the maximum likelihood method.

3 Covariates

3.1 Pipe-dependent

Pipe-dependent covariates can be considered explicitly in the
probabilistic model or implicitly by partitioning the data into
homogeneous populations with respect to these covariates.
The explicit consideration introduces some limitations. For
example, if one includes pipe diameter in thezi vector of co-
variates the mean breakage intensities for all pipes with the
same diameter are assumed to be impacted by the same mag-
nitude. Moreover, this inclusion implies that pipes of differ-
ent diameters are impacted proportionally to the exponent of
the difference between their respective diameters. For exam-
ple, if pipe diameter is a covariate with a negative coefficient
−α then the impact on breakage intensity of a 200 mm pipe-
diameter is smaller than that of a 100 mm diameter pipe by
exp[−α(200−100)], and so forth. Alternatively, one can par-
tition the population of pipes into groups, each comprising
only pipes with the same diameter. Each group is then anal-
ysed separately, producing group specific coefficients. The
latter approach encompasses two advantages: (a) removal
of the forced proportionality described above, and (b) relax-
ation of the implied assumption that each covariate affects the
mean intensity independently. These two advantages come at
the cost of reduced statistical significance due to analysis of
smaller pipe populations (groups).

The model represented in equation (1) is general enough
to accommodate both approaches, namely explicit consid-
eration of pipe-dependent covariates and consideration by

grouping. I-WARP in its current form is implemented with
the second approach; hence it is demonstrated here with
homogeneous groups. It should be noted, however that it
would take little effort to implement I-WARP with the first
approach.

I-WARP uses pipe diameter as a grouping criterion, as well
as categorical properties such as pipe material, soil type, ser-
vice connections or any such property that may be supported
by available data. For example, if a utility has asbestos ce-
ment (AC) and cast iron (CI) pipes, with diameters of 6′′ and
8′′, ideally, 4 homogeneous groups could be formed (AC-
6′′, AC-8′′, CI-6′′, and CI-8′′) and I-WARP applied to each
group separately. In situations where too few data exist for
fine grouping, groups could be combined for analysis (some
engineering judgment would be useful for deciding on which
groups to combine). Readers should note that in situations
where too few data exist for one or more classes of inven-
tory the accuracy of the results will likely be compromised
regardless of the type of model or whether or not covariates
are considered explicitly or implicitly through grouping.

Pipe length and pipe cluster are always used as explicit co-
variates. Pipe cluster is a surrogate for spatial covariates for
which data may not always be available. Water utilities often
lack data that are (directly or indirectly) geographically re-
lated, such as soil data, overburden characteristics (land de-
velopment, traffic loading), historical installation practices,
groundwater fluctuations, transient pressures, poor bedding,
etc. These data, if available, may sometimes help to “ex-
plain” variations in breakage rates among individual water
mains. In the absence of such data, the proximity of a pipe
to a cluster of historical breaks may serve as a useful surro-
gate. The details on how to form pipe clusters and the cluster
covariates are not discussed in this paper.

3.2 Time-dependent

In the category of time-dependent covariates, three climate-
related covariates were considered, namely freezing index
(FI), cumulative rain deficit (RDc) and snapshot rain deficit
(RDs). Kleiner and Rajani (2004) provided a detailed in-
troduction and a rational for using these covariates. FI is
a surrogate for the severity of a winter, RDc is a surrogate
for average annual soil moisture and RDs is a surrogate for
locked-in winter soil moisture (appropriate for cold regions,
where soil can freeze in the winter).

I-WARP is not restricted in the way it can consider time-
dependent covariates. In fact any phenomenon, suspected
as a contributor to observed variations in breakage rate, can
be considered in the model, provided there exists a time se-
ries describing this phenomenon over the observed period
of time. Such phenomena can be represented quantitatively
or qualitatively. For example, in one of the case studies
documented in this research, uncharacteristically elevated
breakage rates were observed in a network during two non-
contiguous years. A quick inquiry revealed that the network
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experienced pump station failures in those years, which re-
sulted in high breakage rates probably due to transient pres-
sures. A qualitative time series describing this phenomenon
was incorporated in the model and the calibration results im-
proved significantly. Other phenomena represented by time-
series could include pressure regime changes overtime, leak
detection campaigns, changes over time of overburden (traf-
fic) intensity, etc.

3.3 Pipe and time-dependent

In its current form I-WARP considers three pipe-dependent
and time-dependent covariates, namely, number of known
previous failures (NOKPF), a covariate related to hot spot
cathodic protection (HSCP) and a covariate related to retrofit
cathodic protection (RetroCP). To ensure stability in the
maximum likelihood calculations it may be beneficial to use
the loge of NOKPF as the covariate, especially when there
are substantial discrepancies between breakage rates of indi-
vidual pipes in the group.

The dependency of pipe failure rate on the number of pre-
vious failures has been observed by others (e.g., Andreou et
al., 1987; Rostum, 2000). Typically, covariates used were
break order, or number of breaks observed since installation.
As the vast majority of water utilities do not have a com-
plete breakage history of pipes since installation (left trun-
cated data), we selected a more realistically available (if less
rigorous) covariate of previously known number of failures.
The aforementioned cathodic protection covariates are not
described in this paper

3.4 Data requirements

It is clear that rich and accurate data increase the quality and
credibility of the results. The authors’ experience in the field
shows that no water utility has a perfect dataset and there are
huge differences in data quality between water utilities. Even
advanced water utilities with sophisticated GIS can have se-
vere deficiencies in the quality of data that pertain sometimes
to pipes laid more than 100 years ago. Data cleansing is al-
ways encouraged and the I-WARP program application has
some (limited) built-in tools to filter out inconsistencies.

The authors’ sense is that it is prudent to have at least 5
years worth of failure data in order to obtain meaningful re-
sults, but of course a longer dataset is expected to increase
accuracy and significance of results. Pipe-dependent data
(material, diameter, vintage, service connections, etc.) are
used as grouping criteria and the more data are available the
more refined the grouping, likely yielding more refined and
accurate results.

4 The Zero-Inflated Poisson (ZIP) process

In reality, most water mains fail relatively rarely, which
means that in a typical data set many (if not most) of our data

points will have the observed valueki,t = 0 (i.e., zero breaks
observed for pipei at yeart – see Eq. 1). It has been observed
(e.g., Lambert, 1992) that a counting process with many ze-
ros (i.e., many more than what is expected from Equation 1)
cannot be adequately represented by a Poisson process. Lam-
bert (1992) proposed a technique she called “Zero-Inflated
Poisson” (ZIP) regression, for handling zero inflated count
data. In this approach, the counting process at hand is pro-
duced simultaneously by two mechanisms, namely a zero
generating process and a Poisson process. Economou et
al. (2008) used this approach in their model to predict pipe
breakage rates, and called the probability of obtaining a zero
data point “the natural tendency of the pipe to resist failure”.
I-WARP allows the option of incorporating the ZIP process
in the analysis, as it can (but is not guaranteed to) improve
prediction accuracy. When ZIP is considered the probabil-
ity of observingki,t breaks (at yeart for an individual pipei)
becomes

P(ki,t)=

 Gi,t+ (1−Gi,t)e−λi,t for ki,t=0

(1−Gi,t)λ
ki,t

i,t e−λi,t/ki,t! for ki,t >0

i =1, 2, ..., N ;t=1, 2, ..., T (2)

whereN is the number of pipes andT is the number of years
of available breakage data,Gi,t is the parameter of the second
mechanism (the first in the Poisson process) that produces
ki,t =0 with probabilityGi,t. It is convenient to formulateGi,t

in a logit form because its value must lie in the interval [0,
1], i.e.,

Logit (Gi,t)= f (some covariates)

or

Gi,t =
ef (·)

1+ef (·)
(3)

It is reasonable to assume thatGi,t is generally influenced
by the same covariates that influence the mean intensityλi,t.
Therefore we defineGi,t as a function ofλi,t

Gi,t =
eg0−λi,t

1+eg0−λi,t
(4)

wherego is the ZIP coefficient. Note that with this formula-
tion Gi,t tends to zero asλi,t increases andGi,t tends to unity
asλi,t decreases.

5 Testing and validating I-WARP

The testing protocol consists of three steps: (a) training the
model (discern coefficients) on data ofT years (training pe-
riod), (b) use the discerned coefficients to forecast breaks in
subsequentV years (validation period), and (c) compare the
forecasted and observed breaks in the validation period.

The evaluation of how well the trained model fits ob-
served data (step (a)) is challenging for this type of model
because observed data are integers (counts of breaks) while
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the model predicts expected number of breaks (referred to
earlier as “mean intensity” or “mean rate of occurrence” of
failure), which are real numbers. Therefore, measures like
root mean square deviations or generalizedR2 (Nagelkerke,
1991) are not well suited for this type of model. Conse-
quently, two goodness of fit measures were used, namely
a pipe-dimension coefficient of determination,pR2, and a
time-dimension coefficient of determination,tR2.

pR2=1−

N∑
i=1

(
T∑

t=1
ki,t−

T∑
t=1
λ̂i,t)2

N∑
i=1

(
T∑

t=1
ki,t−

1
N

T∑
t=1

N∑
i=1

ki,t)2

tR2=1−

T∑
t=1

(
N∑

i=1
ki,t−

N∑
i=1
λ̂i,t)2

T∑
t=1

(
N∑

i=1
ki,t−

1
T

T∑
t=1

N∑
i=1

ki,t)2

(5)

whereki,t is the observed – and̂λi,t is the estimated – number
of breaks in pipei at yeart. EssentiallypR2 computes the
coefficient of determination between the observed and pre-
dicted data, where the data are aggregated by pipe (i.e., for
each pipe it compares the total number of observed breaks
with predicted values over training periodT). Similarly, tR2

computes the coefficient of determination between the ob-
served and predicted data, where the data are aggregated by
year (i.e., for each year inT it compares the total number of
observed breaks to predicted values in allN pipes).

Equation (5) can also be used to evaluate results of step (c),
i.e., the forecasting accuracy. In addition, we used a measure
to assess the “ranking ability” (in terms of forecasted num-
ber of breaks) of the forecast. This measure is explained as
follows: if in a groupP, comprisingp pipes there is a sub-
setN comprisingn pipes that have at leastm breaks, if one
draws at randomn pipes out ofP, then P-value is defined as
the probability that at leastk pipes (from those drawn at ran-
dom) are members ofN. It can be shown thatk is a random
variable with a hyper-geometric probability distribution, and
P-value can thus be computed. For example, suppose that
in a group of 100 pipes 5 pipes are observed to have expe-
rienced at 4 breaks (each) during the validation period. If 5
pipes are selected at random from the 100 pipes, the proba-
bility that at least two of those selected will have 5 breaks in
the validation period is P-value≈0.019. It follows that if the
model succeeds in identifying 2 out of the 5 highest breaking
pipes (in a group of 100 pipes) it is doing significantly better
than a random draw (which has only about 2% chance to do
as well).

The statistical significance of the contribution of each co-
variate to the model accuracy can be determined by e.g., the
likelihood ratio test (e.g., Ansel and Phillips, 1994). This
topic, however, is not discussed in this paper.

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Figure 1. Breaks Aggregated by year 
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Figure 1. Breaks aggregated by year.

6 Case study

We use a data set obtained from a water utility in western
Canada to illustrate the performance of I-WARP. The data
set comprises 1091 individual pipes (each with a minimum
length of 20 m) with a total length of 146.6 km, all 150 mm
diameter unlined cast iron pipes, installed between 1956 and
1960. Available pipe data included pipe material, diameter,
installation year, length, and x-y coordinates of pipe nodes.
Any intervention that involved pipe exposure and repair was
considered a “break” event, for which date, type and related
pipe ID was provided. Full year breakage data were avail-
able for the years 1961–2006. Some information on cathodic
protection was also provided but is not used in this example.
Climate data for the analysis years were obtained from En-
vironment Canada. I-WARP was trained on 40 years failure
data from 1962 to 2001 and the coefficients obtained from
training were used to forecast breaks for validation for the
subsequent 5 years, i.e., 2002–2006.

The temporal distribution of the breaks is illustrated in
Fig. 1. Note the two outliers in 1982 and 1986. The util-
ity engineering staff noted that pumping station failures oc-
curred in these years with the consequence of a significant
spike in the number of pipe failures. As discussed earlier, I-
WARP allows the inclusion of such information by means of
a user-defined time-dependent covariate. Figure 2 illustrates
the training and validation results with temporal aggregation
(top) and pipe-aggregation (bottom). Table 1 provides the
ranking ability of the model. Note that the ranking ability is
for the validation (not training) period.

The ageing covariateτ(t)= loge(gi,t) was used in this case
study. An examination of the coefficients (Fig. 2) reveals
that background ageing was therefore proportional to sixth
root (power of about 0.16) of pipe age. The impact of cli-
mate covariates on the model was inconsistent. Freezing in-
dex (FI) showed little impact, rain deficit (RDc) appeared
to have a more significant impact, but the impact of snap-
shot rain deficit (RDs) was in a counter intuitive direction
(negative coefficient). Water mains of this water utility are

Drink. Water Eng. Sci., 3, 71–77, 2010 www.drink-water-eng-sci.net/3/71/2010/
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Figure 2. Training and validation results  
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Figure 2. Training and validation results.

Table 1. Ranking ability of the model (validation period).

N break(s) in the validation period n=1 n=2 n=3 n=4 n=5

# pipes with at leastn (observed) break(s) out of 1091 pipes in group 170 30 6 2 0
# of pipes,k, identified correctly 53 9 1 1 N/A
P-value (probability of identifyingk pipes by pure chance) 0.0 0.0 0.033 0.004

typically buried at a depth of 2.4 m, which may explain the
insignificant impact of FI, but not the negative sign of RDs.
The positive sign of NOKPF may point to a “worse than
old” condition (in repairable systems four repair-related con-
ditions are observed, “good as new”, “good as old”, “better

than old” and “worse than old”). The length covariate in this
case study was taken as the loge of pipe length, which means
that the number of estimated break was proportional to the
length of the pipe raised to the power of 0.7, which is a rela-
tively strong dependency.
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The results seem to indicate that in this case study:

– I-WARP tended to be quite accurate in predicting total
numbers of breaks:

# Breaks

Training period Validation period

Observed 1184 208
Predicted 1173 189

– I-WARP was rather successful in estimating the total
number of breaks per year of the entire group (tR2 =

0.61)

– I-WARP was not as successful in estimating the num-
ber of breaks per pipe (pR2 = 0.43). It tended to over-
estimate the number of breaks for pipes that experi-
enced few breaks, while under-estimating the number
of breaks for those pipes that experienced a higher num-
ber of breaks. A similar tendency has been observed by
others, e.g., Rostum (2000). This may be due to the fact
that there are many pipes with zero or few breaks and
only a few pipes with many breaks.

– I-WARP displayed a statistically significant ranking
ability in its forecast, which would help to prioritise
pipes for renewal.

Additionally, when we varied the length of the validation pe-
riod we have observed that longer validation periods resulted
in improved ranking ability of the forecast. This may be
because I-WARP forecasts mean intensities, while observed
values are random events. The longer the forecast period the
more these observed values would tend towards their means.

7 Summary and conclusions

I-WARP is a non-homogeneous Poisson process-based
model, which considers three classes of covariates, pipe-
dependent, time-dependent and pipe and time dependent.
Some pipe-dependent covariates (e.g., pipe diameter, mate-
rial, soil type, vintage, etc.) are considered implicitly through
pipe grouping, while time-dependent (e.g., climate) and pipe
and time dependent (e.g., NOKPF, cathodic protection) co-
variates are considered explicitly in the statistical analysis.

I-WARP was demonstrated using a case study. The model
was trained on 40 years of historical breakage data and the
trained model used to forecast breaks in the subsequent 5
years. While prediction of aggregate number of breaks per
year was good, the aggregated total number of breaks per
pipe was over estimated for pipes with few historical breaks
and underestimated for pipes with many historical breaks.
Ranking ability was statistically quite significant.

I-WARP is general enough to be used in many circum-
stances. Pipe-dependent covariates can be accommodated
by simply creating a relevant homogeneous group. The un-
derlying model is also flexible enough to consider any time-
dependent covariates as well, provided data are available to

support such an analysis. In its current form I-WARP sup-
ports 3 climate related covariates (freezing index, rain deficit-
cumulative and rain-deficit-snapshot), two types of cathodic
protection covariates and two user-defined time series. Time
series representing time-dependent covariates can be accom-
modated if they are thought to have an impact on observed
historical breakage patterns.

A prototype computer application was created for the
application of I-WARP. It will soon be publicly available
through WRF.
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