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Abstract. The problem of the Stokes flow past a fluid sphere embedded in a 
porous medium is studied. The Brinkman equation for the flow outside the fluid 
sphere and the Stokes equation for inside the fluid sphere, in their stream function 
formulations are used. The drag force experienced by a fluid sphere embedded in 
a porous medium is evaluated. The dependence of the drag coefficient on 
permeability and viscosity ratio is presented graphically and discussed. Some 
previous known results are then also deduced from the present analysis. 
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1. Introduction: 
 
                The Stokes flow past a class of axi-symmetric bodies with uniform 
stream at infinity parallel to the axis of symmetry was studied by Payne and Pell 
[5] and obtained a general formula for the drag force experienced by 
axisymmetric bodies in forms of the stream function. The Stokes flow due to the 
translation of a spherical fluid particle in an unbounded fluid medium has been 
discussed in the classical book of Happel and Brenner [4]. Ramkissoon [7] studied 
the problem of Stokes flow past a slightly deformed fluid sphere and evaluated the 
drag force on a fluid oblate spheroid. Berman [2] discussed the flow of a viscous 
fluid past an impervious sphere embedded in a porous medium. He found that the 
viscous sublayer increases with the increase of the permeability of the porous 
medium.  
           The problem of symmetrical flow of a classical fluid past a Reiner-Rivlin 
liquid sphere was studied by Ramkissoon [8]. He found that the drag experienced  
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by a Reiner-Rivlin liquid sphere is greater than that on a purely Newtonian fluid 
sphere. However for the first order expansion of Newtonian parameters, both are 
identical. Flow past a sphere in a porous medium based on the Brinkman model 
studied by Pop and Ingham [6] and they presented a closed form, exact solution 
for the forced flow past a sphere which is embedded in a porous medium using the 
Brinkman model. Flow past an axisymmetric body embedded in a saturated 
porous medium using Brinkman’s extension investigated by Srinivasacharya and 
Murthy [9]. Stokes flow past a fluid prolate spheroid was studied by Deo and 
Datta [3] and evaluated the drag force experienced by it.  
     This paper concerns the solution of the problem of Stokes flow past a fluid 
sphere embedded in a porous medium. The Brinkman equation for the flow 
outside the fluid sphere and the Stokes equation inside the fluid sphere, in their 
stream function formulations are used. The drag force experienced by a fluid 
sphere embedded in a porous medium is evaluated. The dependence of drag 
coefficient on permeability is presented graphically and discussed. Some previous 
known results are then also deduced. 
 
 
2. Mathematical formulation of the problem 
    
     Let us consider the flow of an incompressible viscous fluid with a uniform 
velocity U directed in the positive z-direction in a porous medium of permeability 
k in which a fluid sphere of radius a  is situated. The inside and outside regions of 
the fluid sphere are fully saturated with the viscous fluid. We shall denote 1=i  in 
an entity for inside and 2=i  for outside regions of the fluid sphere, respectively.  
For the inside region (1) within the fluid sphere we assume the Stokes equation 
(Happel and Brenner [4]) as 
                      )1()1(2

1 pv ∇=∇μ .                                                                       (1) 
The governing Brinkman equation for the outside porous region (2) can be 
expressed as  

                  .1)( )2()2(2)2(2 p
e

a ∇=−∇
μ

σ vv                                     (2)               

Here,
k

a2
2 =σ , 1μ and 2μ  are the viscosities of  fluids for inside and outside of 

the fluid sphere, respectively and k being the permeability of the porous medium. 
Since, σ  are dimensionless quantity related inversely with the permeability, 
therefore, we named σ  as the dimensionless permeability parameter. In addition, 
the equations of continuity for incompressible fluids must be satisfied in both 
regions: 
                     0)( =idiv v ,                        2,1=i .                                             (3)   
        These equations of continuity for axisymmetric, incompressible viscous fluid 
in spherical polar coordinates ),,( * ϕθr  for both regions can also be written as  
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where, )(i
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v ∗  and )(ivθ , are components of velocity in the direction of ∗r  and θ , 

respectively. The Stokes stream functions  ),()( θψ ∗ri  in both regions satisfying 
equations of continuity (4) can be defined as 
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In order to make non-dimensional the physical quantities, we shall use the 
following non-dimensional variables  

   )(2)( ~ ii Ua ψψ = ,    )()( ~ ii p
a
Up μ

= , )()( ~ ii U vv = ,   arr =∗ , 2,1=i .            (6) 

 Eliminating the pressures from equations (1) and (2) and dropping the tildes, we 
obtain the following non-dimensional equations, respectively as  

    0, = )(1) 2(E 2E ψ                                             (7)  

  0(2) )2 2(E 2E = − ψσ ,                                (8) 
where the dimensionless operator  
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Further, the expressions for tangential stress )(i
rT θ , 2,1=i  for both regions can be 

expressed as 
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   In the case of axisymmetric incompressible creeping flow, the general solution 
of the Stokes equation (7) in spherical polar coordinates comes out as (Happel and 
Brenner [4])  
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                 (11)   

where  )(ζnG  and )(ζnH  are Gegenbauer functions of first and second kinds, 
respectively[1]. If we retain the terms which are multiplied by )(0 ζG and )(1 ζG , 
then velocity will become irregular on the symmetry axis z. Also,  )(ζnH  are 
irregular on the z-axis for all values of integers n . Therefore, for the regular 
solution, we have ignored the terms which are multiplied by )(0 ζG , )(1 ζG  
and )(ζnH  for all values of n . Thus, the complete regular solution of Stokes 
equation takes the form     
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Therefore, a particular solution which satisfies the regularity condition at origin 
and for spherical case we can take the above expansion (12) for 2=n only, i.e. 
                 )(][),( 2

4
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The general regular solution on the symmetry axis z of the Brinkman’s equation 
(8) comes out as (Zlatanovski [10])                           
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Here, )( rI σν  and )( rK σν  are the modified Bessel functions of first and second 
kinds and of non- integer index 2

1−= nν , respectively as defined in Abramowitz 
and Stegun [1]. 
Therefore, the above solution which satisfies the uniform condition at infinity and 
requirement for spherical case reduces to 

                )()](222[),( 22/3
21)2( ζσζψ GrKrCrBrAr ∗+∗+∗= − .                     (15) 

 
3. Boundary conditions:  
 
The boundary conditions those are physically realistic and mathematically 
consistent for this proposed problem can be taken as given below: 
The kinematic condition of mutual impenetrability at the surface requires that we 
take 
                   0)1( =ψ              on    1=r  ,                                                            (16) 
                   0)2( =ψ             on    1=r .                                                             (17) 
We assume that the tangential velocity is continuous across the surface, hence we 
have 

                
rr ∂

∂
=

∂
∂ )2()1( ψψ     on   1=r .                                                               (18) 

Now from the theory of interfacial tension, the presence of interfacial tension only 
produces a discontinuity in the normal stress rrT  and does not in anyway affect 
the tangential stress θrT . Therefore, the latter is continuous across the surface and 
so that we may take 
                 )2()1(

θθ rr TT =     on  1=r .                                                                     (19)                    
Far away from the fluid sphere, the flow is uniform so that the condition at 
infinity implies that 

)(sin
2
1),( 2

222)2( ζθζψ Grrr ==∞ as ∞→r .                                       (20) 

Applying these above boundary conditions (16)-(20), we get the following 
equations, respectively as 
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 12 =∗B ,                                                                                                              (25) 
where 12

2 / μμγ =  being the viscosity ratio.  
Solving these above equations (21) - (25), we get following values of unknown 
constants as 
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Thus the entire coefficients have been determined and hence, we get explicit 
expressions for the stream functions in both regions given by equations (13) and 
(15), respectively.  
 
4. Evaluation of the drag force: 
 
The drag force experienced by an axisymmetric body in a porous medium can be 
calculated by using the simple formula given by Srinivasacharya and Murthy [9] 

                       ][lim4 2
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= ,                                              (31) 

which is analogous to the result of Payne and Pell [5].  
If the fluid is not rest at infinity the above formula is not applicable, so if 
ψ ∞ denotes the stream function corresponding to the fluid motion at infinity, then 
the stream function ψ ψ ∞− gives a state of rest at infinity. Therefore, the above 
formula (31) in our case becomes 
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where sinrϖ θ= . 
Thus for the present case, the above formula provides 
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Also, the drag coefficient can be defined as 

       CD = 22)2/1( aU
F

πρ
−  

                                
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++++++
=

)}3(3{
)366()33(3

2

3222

Re
8

σγ
σσσγσσ ,             (34) 

where Re = 
ν
aU2  is  the Reynolds number and ρμν /2=  being the kinematic 

viscosity of fluid, respectively. 
The following special cases can be deduced immediately as follows: 
 
Case I: If k → ∞ , then / 0a kσ = → i.e., the porous region will be a clear fluid. 
Therefore, the drag force experienced by a fluid sphere comes out as 
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which agree with the result reported earlier in the book by Happel and Brenner[4] 
for the drag force experienced by a fluid sphere in a fluid medium. 
 
Case II: If 2 0γ = , then fluid sphere behaves like a solid sphere, thus the drag 
force from the equation (35) comes out as 
                  aUF 26 μπ−=  ,                                                                        (36) 
which is the well-known Stokes result for flow past a rigid sphere in an 
unbounded medium. 
 
Case III: If ∞→>> 2

12 . γμμ ei , then fluid sphere behaves like a gaseous 
spherical bubble, so in this case drag force from the equation (35) provides 
            aUF 24 μπ−= .                                                                                    (37) 
This result is identical to that previously given for a sphere at whose surface 
perfect slip occurs (Happel and Brenner [4]). 
 
Conclusions: 
 
The variation of the drag coefficient  DC  with permeability parameterσ  for 
various values of viscosity ratio 2γ  is shown in figure-1. It is evident from the 
figure that the variation of DC  increases with increasing permeability 

parameterσ , i.e. decreases with permeability, for various values of 9,3,12 =γ  
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and decreases very slowly with increasing viscosity ratio 2γ . The variation of DC  
with 2γ  is depicted in figure-2 for various values of σ  which shows that after a 
slight decrease in DC  , it becomes almost constant with 2γ  and increases with 
increasing σ . 
 

                
                                                                                        σ  
Figure-1: Variation of drag coefficient CD  for a fluid sphere  versus permeability     
                parameterσ  for various values of viscosity ratio 2γ . 
 

 
 
                                                          2γ  
 
Figure-2: Variation of drag coefficient CD  for a fluid sphere  versus viscosity  
                ratio 2γ  for various values of permeability parameterσ . 
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