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Drag on a Fluid Sphere Embedded
in a Porous Medium
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Abstract. The problem of the Stokes flow past a fluid sphere embedded in a
porous medium is studied. The Brinkman equation for the flow outside the fluid
sphere and the Stokes equation for inside the fluid sphere, in their stream function
formulations are used. The drag force experienced by a fluid sphere embedded in
a porous medium is evaluated. The dependence of the drag coefficient on
permeability and viscosity ratio is presented graphically and discussed. Some
previous known results are then also deduced from the present analysis.
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1. Introduction:

The Stokes flow past a class of axi-symmetric bodies with uniform
stream at infinity parallel to the axis of symmetry was studied by Payne and Pell
[5] and obtained a general formula for the drag force experienced by
axisymmetric bodies in forms of the stream function. The Stokes flow due to the
translation of a spherical fluid particle in an unbounded fluid medium has been
discussed in the classical book of Happel and Brenner [4]. Ramkissoon [7] studied
the problem of Stokes flow past a slightly deformed fluid sphere and evaluated the
drag force on a fluid oblate spheroid. Berman [2] discussed the flow of a viscous
fluid past an impervious sphere embedded in a porous medium. He found that the
viscous sublayer increases with the increase of the permeability of the porous
medium.

The problem of symmetrical flow of a classical fluid past a Reiner-Rivlin
liquid sphere was studied by Ramkissoon [8]. He found that the drag experienced
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by a Reiner-Rivlin liquid sphere is greater than that on a purely Newtonian fluid
sphere. However for the first order expansion of Newtonian parameters, both are
identical. Flow past a sphere in a porous medium based on the Brinkman model
studied by Pop and Ingham [6] and they presented a closed form, exact solution
for the forced flow past a sphere which is embedded in a porous medium using the
Brinkman model. Flow past an axisymmetric body embedded in a saturated
porous medium using Brinkman’s extension investigated by Srinivasacharya and
Murthy [9]. Stokes flow past a fluid prolate spheroid was studied by Deo and
Datta [3] and evaluated the drag force experienced by it.

This paper concerns the solution of the problem of Stokes flow past a fluid
sphere embedded in a porous medium. The Brinkman equation for the flow
outside the fluid sphere and the Stokes equation inside the fluid sphere, in their
stream function formulations are used. The drag force experienced by a fluid
sphere embedded in a porous medium is evaluated. The dependence of drag
coefficient on permeability is presented graphically and discussed. Some previous
known results are then also deduced.

2. Mathematical formulation of the problem

Let us consider the flow of an incompressible viscous fluid with a uniform
velocity U directed in the positive z-direction in a porous medium of permeability
k in which a fluid sphere of radius a is situated. The inside and outside regions of
the fluid sphere are fully saturated with the viscous fluid. We shall denote i =1 in
an entity for inside and i = 2 for outside regions of the fluid sphere, respectively.
For the inside region (1) within the fluid sphere we assume the Stokes equation
(Happel and Brenner [4]) as

1 VAW =vp®, 1)

The governing Brinkman equation for the outside porous region (2) can be
expressed as

viy@ _(2)2y@ :ivp(a_ @)
He
2
Here, o2 =a7 , ptpand u, are the viscosities of fluids for inside and outside of

the fluid sphere, respectively and k being the permeability of the porous medium.
Since, o are dimensionless quantity related inversely with the permeability,

therefore, we named o as the dimensionless permeability parameter. In addition,
the equations of continuity for incompressible fluids must be satisfied in both
regions:
divv® =0, i=12. (3)
These equations of continuity for axisymmetric, incompressible viscous fluid

in spherical polar coordinates (r*,é?, @) for both regions can also be written as
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where,v® andvg), are components of velocity in the direction of r* and 6,
r

respectively. The Stokes stream functions ) (r*,6) in both regions satisfying

equations of continuity (4) can be defined as
v 1 oy oo 1 oy
" 26y 00 ° r'sing or’
In order to make non-dimensional the physical quantities, we shall use the
following non-dimensional variables
w® —ua2;® pO 2 A 50 (O _yg® g io12. (6)
a

()

Eliminating the pressures from equations (1) and (2) and dropping the tildes, we
obtain the following non-dimensional equations, respectively as

2 €2y W)=, 7)
2 €2 -o2)y® -0, (8)
where the dimensionless operator
EZZﬁJl—ifz)i, and¢ =cos@ . 9)
A TV

Further, the expressions for tangential stressTr(é,) ,i =1,2 for both regions can be
expressed as

<) w2 W 200 a-¢?)0?%0 (10)
rg ()= 2| A2 r oor 2 2 |
r1-¢2| ar2 v or 2 o
In the case of axisymmetric incompressible creeping flow, the general solution
of the Stokes equation (7) in spherical polar coordinates comes out as (Happel and
Brenner [4])

@ _ 3 Ar-"*l.B Nic ~N+3.p (N+21c
w7 (r,g) nEO[ nf +B rm+Cr +D,r 16,() (11)
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where G, (<) and H, () are Gegenbauer functions of first and second kinds,
respectively[1]. If we retain the terms which are multiplied by Gg({)andG(¢),
then velocity will become irregular on the symmetry axis z. Also, H (<) are
irregular on the z-axis for all values of integersn. Therefore, for the regular
solution, we have ignored the terms which are multiplied byGg(S), G1(¢)
andH (<) for all values of n. Thus, the complete regular solution of Stokes
equation takes the form

n '.-n+3 on+2
r +Cnr +Dnr ]Hn(§)
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w(l)(r,§)= E[Anr_n+1+8 rn +Cnr_nJr3 +Dnrn+2]Gn(§). (12)
n=2
Therefore, a particular solution which satisfies the regularity condition at origin

and for spherical case we can take the above expansion (12) for n =2 only, i.e.
w9 (r,&) =[B,r? + D,r'1G,(¢). (13)

n

The general regular solution on the symmetry axis z of the Brinkman’s equation
(8) comes out as (Zlatanovski [10])

v @ ()= EO[A:F”*HB:r” +CIVTK (o) + DN (@06, (). (14)
n=

Here, 1,(or) and K (or) are the modified Bessel functions of first and second
kinds and of non- integer index v =n-21, respectively as defined in Abramowitz
and Stegun [1].

Therefore, the above solution which satisfies the uniform condition at infinity and
requirement for spherical case reduces to

@ (r,¢) =[Agr ™ +Bor? + CorKy, (o 1)IG,(£). (15)

3. Boundary conditions:

The boundary conditions those are physically realistic and mathematically
consistent for this proposed problem can be taken as given below:

The kinematic condition of mutual impenetrability at the surface requires that we
take

y® =0 on r=1, (16)
w® =0 on r=1. (17)

We assume that the tangential velocity is continuous across the surface, hence we
have

al//(l) al/l(z)
o or
Now from the theory of interfacial tension, the presence of interfacial tension only
produces a discontinuity in the normal stress T, and does not in anyway affect
the tangential stressT,,. Therefore, the latter is continuous across the surface and
so that we may take
2
TH =72 on r=1. (19)
Far away from the fluid sphere, the flow is uniform so that the condition at
infinity implies that

gyff)(r,g“):%rzsinzez (2G,(¢)  asT . (20)

on r=1. (18)

Applying these above boundary conditions (16)-(20), we get the following
equations, respectively as
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B, +D, =0 (21)
As +B; +CiKy (o) =0 (22)
—A; +2B; =C; (0 Ky, (0) + Ky, (0))-2B, —4D, =0 (23)
67° A3 +7°C3{(c” +6)Kg/2(0) + 20 Ky/2(0)}~6D; =0 (24)
B, =1, (25)

where 2 = 1, 11 being the viscosity ratio.

Solving these above equations (21) - (25), we get following values of unknown
constants as

2
B, = [3y (2:I-+O-)] ’ (26)
6+2y°(3+0)
_ 3y2(1+0) (27)
> 6+2y2(3+0)
2 2 2 3
A;:_[3(3+30+02)+7 26+60+30 +07)] | (28)
c{3+y7°(3+0)}
B, =1, (29)

o 2
el 2 (3e (§>+27/ )). 0
7o\ {3+y°(3+0)}

Thus the entire coefficients have been determined and hence, we get explicit
expressions for the stream functions in both regions given by equations (13) and
(15), respectively.

4. Evaluation of the drag force:

The drag force experienced by an axisymmetric body in a porous medium can be

calculated by using the simple formula given by Srinivasacharya and Murthy [9]
3,,(2)
F =4z uUac? lim[—], 31)
r—oo o
which is analogous to the result of Payne and Pell [5].
If the fluid is not rest at infinity the above formula is not applicable, so if

w, denotes the stream function corresponding to the fluid motion at infinity, then

the stream function w —y_gives a state of rest at infinity. Therefore, the above

formula (31) in our case becomes
)

@
Ve 1,

3
F =4z u,U ac? Iim[r W 5

r—o0 o

(32)

where@ =rsiné.
Thus for the present case, the above formula provides

F =2zu,U acA,
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2 2 2, 3
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Also, the drag coefficient can be defined as
-F

D:
1/2)pU %z a?

_ 8 3(3+30+02)+y%(6+60+302 +0°)
Re {B3+7%(B+0)} ’

is the Reynolds number and v = u, / p being the kinematic

(34)

where Re = 2au
1%

viscosity of fluid, respectively.
The following special cases can be deduced immediately as follows:

Case I: If k >, then o =a/vk —>0i.e., the porous region will be a clear fluid.
Therefore, the drag force experienced by a fluid sphere comes out as

L+25°)

F=-6ruUa ,
ST

(35)

which agree with the result reported earlier in the book by Happel and Brenner[4]
for the drag force experienced by a fluid sphere in a fluid medium.

Case Il: Ify* =0, then fluid sphere behaves like a solid sphere, thus the drag
force from the equation (35) comes out as

F=-6ru,Ua, (36)
which is the well-known Stokes result for flow past a rigid sphere in an
unbounded medium.

Case HI: Ifpy >> 1y ie 7/2 — oo, then fluid sphere behaves like a gaseous
spherical bubble, so in this case drag force from the equation (35) provides
F=—4ru,Ua. (37)

This result is identical to that previously given for a sphere at whose surface
perfect slip occurs (Happel and Brenner [4]).

Conclusions:

The variation of the drag coefficient C_ with permeability parametero for

various values of viscosity ratio »* is shown in figure-1. It is evident from the
figure that the wvariation of Cp increases with increasing permeability

parameter o, i.e. decreases with permeability, for various values of 7/2 =139
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and decreases very slowly with increasing viscosity ratio »2. The variation of C,
with »? is depicted in figure-2 for various values of o which shows that after a

slight decrease in C,, , it becomes almost constant with »? and increases with
increasing o .
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Figure-1: Variation of drag coefficient Cp for a fluid sphere versus permeability
parameter o for various values of viscosity ratio y*.
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Figure-2: Variation of drag coefficient Cp for a fluid sphere versus viscosity
ratio * for various values of permeability parameter o



52

S. Deo, P. Shukla and B. R. Gupta

References

1.

2.

10.

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, 1970.

B. Berman; Flow of a Newtonian fluid past an impervious sphere
embedded in a porous medium, Indian J. Pure Appl. Math., 27(12), 1996,
1249-1256.

S. Deo and S. Datta ; Stokes flow past a fluid prolate spheroid, Indian J.
Pure Appl. Math., 34(5), 2003, 755-764.

J. Happel and H. Brenner; Low Reynolds Number Hydrodynamics,
Martinus Nijoff Publishers, The Hague, 1983.

L. E. Payne and W.H. Pell; The Stokes flow problems for a class of axially
symmetric bodies, J. Fluid Mech.7, 1960, 529-549.

I. Pop and D.B. Ingham; Flow past a sphere embedded in a porous
medium based on the Brinkman model, Int. Comm. Heat Mass Trans.,
23 (6), 1996, 865-874.

H. Ramkissoon; Stokes flow past a slightly deformed fluid sphere, ZAMP,
37(6), 1986, 859-866.

H. Ramkissoon; Stokes flow past a Reiner-Rivlin liquid sphere, Z. Angew
Math. Mech .69, 1989, 259-261.

D. Srinnivasacharya and J. V. R. Murthy; Flow past an axisymmetric body
embedded in a saturated porous medium, C. R. Mecanique, 330, 2002,
417-423.

T. Zlatanovski; Axisymmetric creeping flow past a porous prolate
spheroidal particle using the Brinkman model, Q. J. Mech. Appl. Math.
52(1), 1999, 111-126.

Received: February, 2009



