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Abstract

Flow of a viscous, incompressible, electrically conducting fluid with
varying viscosity through a channel in the presence of a transverse mag-
netic field is studied in this paper. In the special case investigated here
we take viscosity as a function of distance from the mid section of the
channel. Exact solutions for velocity is obtained. Solutions in particular
cases when viscosity is constant but magnetic field is not zero and when
magnetic field is zero but viscosity is not constant are also obtained.
Velocity is exhibited graphically for various different cases.
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1 Introduction

Viscosity of a fluid is generally taken to be a constant but it may depend on
temperature and concentration; it may also change due to suspending solid
particles in the form of ash or soot or as a result of corrosion. Considerable
amount of work has been done on fluid flow problems with temperature depen-
dent viscosity; to cite a few cases, we may mention the papers by Dai, Dong
and Szeri [2], Saikrishnan, Roy [12], Hazema [5] and Eswara and Bommiah[1].
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But very little literature is avilable on the concentration dependent viscosity.
Fluid flow problems of stratified fluid viscosities have been taken up amongst
others by Malik and Hooper [10], Gelu Pasa and Olivier Titaud [3], Meiburg
et. al. [9] and Payr, Vanparthy and Meiburg [11]. Considered the flow problem
with viscosity as exponential function of concentration and solved the prob-
lem for superimposed upper and lower layers of fluids of different viscosities.
Since it may be seen that the concentration is spatially varying quantity it
is reasonable to assume that viscosity may be taken as a function of space
coordinates. Haber and Brenner [4] and J. B. Shukla [7] studied a fluid flow
problem involving spatially varying viscosity.

In the present study we consider the flow of a viscous, incompressible and
electrically conducting fluid in a channel when viscosity is a function of dis-
tance from its mid section. The general case is too complicated to handle
analytically; it is being investigated and will be presented in a forthcoming
paper. Therefore, here we are contented with two particular interesting cases
of parabolic variation of viscosity; case I, when the viscosity is maximum at
the mid section, and case II, when the viscosity is minimum at the midsection.
Analytical solutions in both cases have been obtained. Computational results
are presented through the direct numerical integration of the concerned dif-
ferential equation in the first case. In the second case computational results
follow from the obtained analytical solution.

2 Formulation and solution of problem

In this paper we consider the two-dimensional steady laminar flow of a vis-
cous incompressible, electrically conducting fluid between two parallel straight
plates. Let x be the direction of the flow, y the direction normal to the flow
and the width of the plates parallel to the z direction be large compared with
the distance ‘2h’ between the plates. A transverse magnetic field H0 is im-
pressed across the flow. We consider variable viscosity (μ), a function of y.
Flow is governed by magnetohydrodynamic equations with Lorentz force as the
external force, subject to relevant boundary conditions which will be specified
in the sequel for the concerned problem. Magnetohydrodynamic equations for
the present problem is given below

∇× H = 4πj (1)

∇×E = −μm

∂H

∂t
= 0 (2)

∇·H = 0 (3)
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j = σ
(
E + μmV × H

)
(4)

∇ · V = 0 (5)

ρ (V · ∇)V = −∇p + μ∇2V + 2(∇μ · ∇)V

+(∇μ) × (∇×V) + μmj× H (6)

Where μ is the viscosity of fluid, μm the magnetic permeability, V the fluid
velocity, H the magnetic field, E the electric field, j the current density vector,
ρ the density, p the pressure. It may be noted that quantities having bar on the
top are dimensional quantities and equation (6) is written for varying viscosity.
To get the coupled equation for V and H we eliminate j and E amongst
equations (1), (2) and (4) and j between equations (1) and (6). Making use of
equations (3) and (5), we obtained the resulting equations in the form.

λ∇2H = −(H · ∇)V + (V · ∇) H (7)

ρ(V · ∇)V = −∇
(

p +
μm

8π

∣∣H∣∣2) + μ∇2V + 2 (∇μ · ∇)V

+ (∇μ) × (∇× V) +
μm

4π
(H · ∇)H (8)

Where, λ = 1
4πμmσ

, is the magnetic viscosity.

We now express equation(7) and (8) in cartisian coordinate system and use
the following conditions for our purpose.

(1) Let u, v, w be components of velocity in x, y and z directions. Since the
flow is laminar and steady we have v = 0, w = 0 and ∂

∂x
= 0.

(2) Hz = 0, Hy = H0,
∂Hx

∂x
= 0 (By the same argument as shown by S.

Globe[13]).
When these conditions are introduced the equations corrosponding to (7)

and (8) reduces to the following three equations

∂μ

∂y

∂u

∂y
+ μ

∂2u

∂y2 +
μm

4π
H0

∂Hx

∂y
=

∂p

∂x
, (9)

μm

4π
Hx

∂Hx

∂y
= −∂p

∂y
, (10)
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λ
∂2Hx

∂y2 + H0
∂u

∂y
= 0. (11)

Here, uis a function of y. Since flow is fully developed ∂Hx

∂z
= 0 and ∂Hx

∂x
= 0,

we conclude that Hx is a function of y only, and then it follows from equation
(9) that ∂p

∂x
must be independent of x. By differentiating equation (10) with

respect to x, it can be seen that ∂p
∂x

is also independent of y. Therefore ∂p
∂x

is constant, say −P . Once Hx is determined, the variation of p across the
channel may be found by using equation (10). Rewriting equations (9) and
(11) with ordinary derivatives, we obtained

dμ

dy

du

dy
+ μ

d2u

dy2 +
μm

4π
H0

dHx

dy
= −P , (12)

λ
d2Hx

dy2 + H0
du

dy
= 0 (13)

Integrating equation(13) and using the condition
(

dHx

dy

)
y=h

= 0,we get

λ
dHx

dy
= −H0 u (14)

Justification of condition
(

dHx

dy

)
y=h

= 0 is given below.

From (1) we have 4πjz = −dHx

dy

But jz = σ μm

(
V ×H

)
z

(with Ez = 0 as in Globe[13] )

Since by no slip condition V = 0 when y = ±h. Hence jz vanishes there

and hence dHx

dy
also vanishes there.

Substituting dHx

dy
from equation(14) in equation(12)we have

μ
d2u

dy2 +
dμ

dy

du

dy
− μmH

2

0

4πλ
u = −P (15)

Now it will be convenient to express the equation(15) in non-dimensional
form by introducing the following transformations of variables

y = h y, u = u0 u, μ = μ0 μ(r), P = μ0u0

h
2 P.

Where, u0 and μ0 are characteristic velocity and characteristic viscosity
corresponding to the classical case of constant viscosity and non-zero magnetic
field.

Equation ( 15) in non-dimensional variables y, u, μ and P can be written
as

μ
d2u

dy2
+

dμ

dy

du

dy
− m2u = −P (16)
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Where, m2 = μ2
mH

2
0 h

2
σ

μ0
is a dimensionless parameter.

Equation(16) is a differential equation of order two.Two boundary condi-
tions are required for the solution. These are

u (1) = 0 and u (−1) = 0 (17)

The analytic solution of the equation (16) for the general variation of vis-
cosity is difficult to deal, hence here we consider two special cases.

2.1 Case-I

When μ = (1 − ε y2), where 0 < ε < 1 is a nondimensional viscosity variation
parameter. In this case governing equation of motion (16) becomes

(
1 − εy2

) d2u

dy2
− 2εy

du

dy
− m2u = −P (18)

It should be noted that ε = 0 corresponds to the constant viscosity case.
Solution of above equation(18) subject to the boundary conditions (17) is

u (y) =
P

m2
+ C1LP

[
−1

2
+ i

√
4m2 − ε

2
√

ε
, y
√

ε

]

+C2 LQ

[
−1

2
+ i

√
4m2 − ε

2
√

ε
, y
√

ε

]
(19)

Here, LP [− 1
2
+ i

√
4m2−ε
2
√

ε
, y
√

ε ] and LQ[− 1
2
+ i

√
4m2−ε
2
√

ε
, y
√

ε ] are Legendre’s

function of the first and second kind of the degree ( − 1
2

+ i
√

4m2−ε
2
√

ε
) and

constants C1 and C2 are,

C1 =
P (LQ[ − 1

2
+ i

√
4m2−ε
2
√

ε
,−√

ε ] − LQ[ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ])

m2(LP [ − 1
2

+ i
√

4m2−ε
2
√

ε
,−√

ε ] LQ[ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ]

−LP [ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ] LQ[ − 1
2

+ i
√

4m2−ε
2
√

ε
,−√

ε ])

, (20)

C2 =
P (LP [ − 1

2
+ i

√
4m2−ε
2
√

ε
,−√

ε ] − LP [ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ])

m2(LP [ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ] LQ[ − 1
2

+ i
√

4m2−ε
2
√

ε
,−√

ε ]

−LP [ − 1
2

+ i
√

4m2−ε
2
√

ε
,−√

ε ] LQ[ − 1
2

+ i
√

4m2−ε
2
√

ε
,
√

ε ])

(21)

Solution, when ε = 0 but m �= 0 and when m = 0 but ε �= 0 can be
obtain by solving the reduced equation of motion (18) for ε = 0 and m = 0
separately. That are
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u =
P

m2

[
1 − cosh (my)

cosh(m)

]
, (22)

u = P

[
Log (1 − ε y2) − Log (1 − ε)

2ε

]
(23)

Velocity profiles of the flow in a channel under transverse magnetic field
with the viscosity variation μ = (1−εy2) for different cases are shown in figures
[1], [2], [3] and [4].
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Figure 1: Velocity profile of flow in the channel with viscosity variation is
μ = (1 − εy2) when m = 0 for ε = 0, 0.25, 0.5, 0.75
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Figure 2: Velocity profile of flow in the channel with viscosity variation is
μ = (1 − εy2) when m = 2 for ε = 0, 0.25, 0.5, 0.75
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Figure 3: Velocity profile of flow in the channel with viscosity variation is
μ = (1 − εy2) when m = 4 for ε = 0, 0.25, 0.5, 0.75
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Figure 4: Velocity profile of flow in the channel with viscosity variation μ =
(1 − 0.5y2) for m = 0, 2, 4
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3 Shearing stress at the wall

Dimensionless shear stress at the wall for the flow when viscosity variation is
μ = (1 − ε y2) can be determined as follows:

(τyx)y=1 = −μ(du
dy

)y=1

Substituting u from equation (19) in the above equation and substituting

derivatives of LP

[−1
2

+ ib, y
√

ε
]

and LQ

[−1
2

+ ib, y
√

ε
]

[Ref.6]. we get

(τyx)y=1 =
√

ε (
1

2
+ ib)[C1{ − y

√
εLP [−1

2
+ ib, y

√
ε ]

+LP [
1

2
+ ib, y

√
ε ]} + C2{ − y

√
εLQ[−1

2
+ ib, y

√
ε ]

+LQ[
1

2
+ ib, y

√
ε ]}]y=1

(τyx)y=1 =
√

ε (
1

2
+ ib)[C1{ −

√
εLP [−1

2
+ ib,

√
ε ]

+LP [
1

2
+ ib,

√
ε ]} + C2{−

√
εLQ[−1

2
+ ib,

√
ε ]

+LQ[
1

2
+ ib,

√
ε ]}] (24)

Where, b =
√

4m2−ε
2
√

ε
and C1, C2 are given by equation (20) and (21).

Dimensionless shearing stress at any point for m = 0 and ε �= 0 is

τyx = − (
1 − εy2

) d

dy

[
PLog(1 − ε y2) − PLog(1 − ε)

2ε

]
(25)

τyx = Py (26)

Thus shearing stress is independent of ε when m = 0.
Dimensionless shearing stress at the wall for m = 0, m = 2, m = 4, m = 6

when ε = 0.5 is,
(τyx)y=1 = P, when m = 0.
(τyx)y=1 = 0.39234 P, when m = 2.
(τyx)y=1 = 0.19045 P, when m = 4.
(τyx)y=1 = 0.1240 P, when m = 6.

Variation of shearing stress with respect to y for m = 2, 4 and 6 when
viscosity variation is μ = (1 − 0.5 y2) is shown in figure(5).
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Figure 5: Shearing stress at any point for m = 2, 4 and 6 when μ = (1 − 0.5y2).

3.1 Case-II

When μ = (1 + ε y2) ,where 0 < ε < 1 is a nondimensional viscosity variation
parameter.In this case governing equation of motion (16) becomes

(
1 + εy2

) d2u

dy2
+ 2εy

du

dy
− m2u = −P (27)

Solution of above equation(18) subject to the boundary conditions (17) is

u(y) =
P

m2
+ C1 LP

[
−√

ε +
√

4m2 + ε

2
√

ε
, iy

√
ε

]

+C2LQ

[
−√

ε +
√

4m2 + ε

2
√

ε
, iy

√
ε

]
(28)

Here C1 and C2 are

C1 =
P (LQ[−

√
ε+

√
4m2+ε

2
√

ε
,−i

√
ε ] − LQ[−

√
ε+

√
4m2+ε

2
√

ε
, i
√

ε ])

m2(LP [−
√

ε+
√

4m2+ε
2
√

ε
,−i

√
ε ] LQ[−

√
ε+

√
4m2+ε

2
√

ε
, i
√

ε ]

−LP [−
√

ε+
√

4m2+ε
2
√

ε
, i
√

ε ] LQ[−
√

ε+
√

4m2+ε
2
√

ε
,−i

√
ε ])

, (29)

C2 =
P (LP [−

√
ε+

√
4m2+ε

2
√

ε
,−i

√
ε ] − LP [−

√
ε+

√
4m2+ε

2
√

ε
, i
√

ε ])

m2(LP [−
√

ε+
√

4m2+ε
2
√

ε
, i
√

ε ] LQ[−
√

ε+
√

4m2+ε
2
√

ε
,−i

√
ε ]

−LP [−
√

ε+
√

4m2+ε
2
√

ε
,−i

√
ε ]LQ[−

√
ε+

√
4m2+ε

2
√

ε
, i
√

ε ])

(30)

Solution of equation (27) when ε = 0 but m �= 0 is same as in case(I) and
is given by equation(22). When m = 0 but ε �= 0 solution can be obtain by
solving the reduced equation of motion (18) for m = 0 separately .That is
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u(y) = P

[
Log(1 + ε) − Log(1 + εy2)

2ε

]
(31)

Velocity profiles of the flow with the viscosity variation μ = (1 + ε y2) for
different cases are shown below in figures [6],[7],[8]and[9].
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Figure 6: Velocity profile of flow in the channel with viscosity variation μ =
(1 + εy2) when m = 0 for ε = 0, 0.25, 0.5, 0.75.

y

u � P

m � 2

ΕΕ

Ε � 0

Ε � 0.25
Ε � 0.5

Ε � 0.75

�1.0 �0.5 0.5 1.0

0.05

0.10

0.15

Figure 7: Velocity profile of flow in the channel with viscosity variation μ =
(1 + εy2) when m = 2 for ε = 0, 0.25, 0.5, 0.75.
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Figure 8: Velocity profile of flow in the channel with viscosity variation μ =
(1 + εy2) when m = 4 for ε = 0, 0.25, 0.5, 0.75.
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Figure 9: Velocity profile of flow in the channel when viscosity variation is
μ = (1 + 0.5y2) for m = 0, 2, 4
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4 Shearing stress at the wall

Shear stress at the wall for the flow when viscosity variation is μ = (1 + ε y2)
can be determined as follows:

(τyx)y=1 = −μ(
du

dy
)y=1 (32)

Substituting u from equation (28) in the above equation and substituting

derivatives of LP

[
−1

2
+

√
4m2+ε
2
√

ε
, iy

√
ε
]

and LQ

[
−1

2
+

√
4m2+ε
2
√

ε
, iy

√
ε
]
. we get

(τyx)y=1 = i
√

ε (
1

2
+ a)[C1 { − iy

√
εLP [−1

2
+ a, iy

√
ε ] +

LP [
1

2
+ a, iy

√
ε ]} + C2 { − iy

√
εLQ[−1

2
+ a, iy

√
ε ]

+LQ[
1

2
+ a, iy

√
ε ]}]y=1

(τyx)y=1 = i
√

ε(
1

2
+ a)[C1{ − i

√
εLP [−1

2
+ a, i

√
ε ]

+LP [
1

2
+ a, i

√
ε ] } + C2{ − i

√
εLQ[−1

2
+ a, i

√
ε ]

+LQ[
1

2
+ a, i

√
ε ] }] (33)

Where, a =
√

4m2+ε
2
√

ε
and C1, C2 are given by Equation (29) and (30).

When m = 0, ε �= 0 dimensionless shearing stress at any point is

τyx = − (
1 + εy2

) d

dy

[
PLog(1 + ε) − PLog(1 + ε y2)

2ε

]
, (34)

τyx = Py (35)

Thus as in case-small I shearing stress text is independent of ε when m = 0.
Dimensionless shearing stress at the wall for m = 0, m = 2, m = 4, m = 6

when ε = 0.5 is,
(τyx)y=1 = P, when m = 0.
(τyx)y=1 = 0.54002P, when m = 2.
(τyx)y=1 = 0.29227P, when m = 4.
(τyx)y=1 = 0.19776P, when m = 6.
Variation of shearing stress with respect to y for m = 2, 4 and 6 when

viscosity variation is μ = (1 + 0.5y2) is shown in figure(10).
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Figure 10: Shearing stress at any point for m = 2, 4 and 6 when μ =
(1 + 0.5y2).

5 Conclusion

Exact solutions have been obtained for the flow of viscous, incompressible,
electrically conducting fluid through a cannel in the presence of transverse
uniform magnetic field subject to the no slip condition on the non-conducting
walls for two cases of viscosity variations. Solutions are exact thus valid for
all values of the hydromagnetic parameter m. In the first case of viscosity
variation μ = (1 − ε y2), we find from figures(1), (2) and (3) that for fixed
magnetic field (i.e. for fixed m) as viscosity variation parameter ε increases,
velocity increases because of the decrease in the average viscosity μ. In the
second case of viscosity variation μ = (1 + εy2), the finding is just opposite for
the corresponding reason as depicted in figures (6), (7) and (8). On the other
hand in both the cases for fixed ε the effect of the magnetic field is to decrease
the velocity as shown in the figures (4) and (9). In general it is concluded that
the effect of magnetic field is to flatten the velocity profile so that the core gets
formed. This is because increase in the magnetic field leads to an increase in
the Lorentz force opposing the flow. From figures (5) and (10) it is seen that
shearing stress at the wall decreases as magnetic field increases for fixed ε in
both the cases of viscosity variation. For m = 0, shearing stress at any point
is independent of ε and depend only on the position of point.
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