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Abstract 
 

Here the asymptotic nature, as the independent similarity variable tends to infinity, 
of the solutions of the equations governing the swirling flow in a laminar 
compressible boundary layer over an axi-symmetric surface with variable 
cross-section has been studied; the results being based on the asymptotic 
integrations of second order linear differential equations. 
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1  Introduction 
 

Mass addition is an interesting phenomenon of boundary layer blow off 
where large amounts of fluid are added into the boundary layer filling the 
region near the wall and causing significant alterations in the profiles of 
variables. On account of this fact, for large rates of injection the boundary  
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layers are characterized by (i) an inner layer close to the surface where 
viscous forces are negligible and (ii) a relatively thin outer viscous layer in 
which transition from the inner to the inviscid external flow takes place. 
 Due to smaller pressure gradients and greater fields of integration, the 
usual shooting methods of handling these problems fail for large blowing 
parameters. This is due to the poor convergence and grater instability of the 
methods used. 
 Since the prediction of massive blowing on slender aerodynamic bodies 
is of technological significance, hence problems of such type have been 
studied by a number of investigators [4-12] and [15-17]. These workers 
have used the methods of matched asymptotic expansions, inverse methods 
and numerical methods obtained by combining the finite difference 
technique with quasi-linearization. 
 The objective of the present paper lies in the study of the asymptotic 
behaviours, as the independent similarity variable tends to infinity, of the 
solutions of the Falkner – Skan equations which govern the above problem 
for large rates of injection. The results are based on a significant method, 
namely the asymptotic integrations of second order linear differential 
equations, of finding solutions of second order linear differential equations 
for very large (approaching infinity) values of the independent variables. In 
the present paper, we have considered the acceleration parameter lying in 

the range 11
_

≤≤ β  and the case 0
_
<β  has been disposed of. It is due to 

the fact that the latter case is not of practical significance as regards the 
present problem where very high velocities of flow are required to be 

attained with the help of large injection rates. Though the case 0
_
<β  is of 

mathematical significance, but the study of existence and uniqueness of the 
solutions of the Falkner-Skan equations governing the present problem for 
this case is full of complications and various assumptions are required to be 

imposed on 
_
α  and

_
β . There are even certain assumptions which are less 

likely to occur in actual practice. On account of this fact, it is by far the 
best to consider the case 0>β . 
  
 
2  Analysis 
 
 The similarity equations governing the low-speed swirling laminar 
compressible boundary layer flow of a perfect gas with density ρ, constant 
specific heat Cp, viscosity μ proportional to temperature T and Prandtl 
number unity caused by free vortex on the longitudinal flow over an 
axi-symmetric surface of radius r with large injection at the surface are [7] 

0])1([]')1(["'" 2
_

2
_

=−+−+−+−+ GggGfggGfff wwww αβ    (1) 
0'" =+ fGG                            (2) 



Asymptotic behaviour of solutions                                   153 
 
 
under the boundary conditions 
 ( ) ( ) ( ) ( ) 1',00',10 =∞=−≤= ffff w                (3) 
 ( ) ( ) 1,00 =∞= GG                           (4) 
Here f  is a dimensionless stream function defined in such a way that 

euuf ='  where u  and eu  are the longitudinal velocity components in 
ε-direction inside and outside the boundary layer respectively. G  stands 
for both the normalized swirl velocity component and enthalpy difference 
ratio and is given by 
 ( ) ( )wwe gggvvG −−== 1                         (5) 
where v  is the swirl velocity in the η - direction, 
 eHHg =  , 2)( 22 vuTcH p ++=                  (6) 
and suffixes w  and e  denote values at the wall and the edge of the 

boundary layer respectively. Also
_
α ,

_

β , wg and wf  are the swirl, 
longitudinal acceleration, wall temperature and mass transfer parameter 
respectively and are given by 
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Here w  is the velocity component normal to the surface in ξ -direction. 
Primes denote differentiation w.r.t. the independent similarity variable Z  
defined by 

 ( ) ( )∫⋅=
ξ

ξρρρ
0

2/1)2( dXurZ eee                   (8) 

The equations (1), (3) can as well be written as 

 ( ) ( ) ( ) 01'1"'" 22
_

=−+−+++ Gfffff w αβ                 (9) 
under the boundary conditions 
 ( ) ( ) ( ) 1',00'0 =∞== fff                       (10) 
In the above equation, we have taken 1=wg  to avoid complication in the 
discussion of the problem. Moreover, the above form of the equation (1) 
shall help us to study the effect of large injection rates on the flow field. 
 If ( )Zf  be the solution of the equation (9), let us put 
 '1 fh −=                            (11) 
in it to obtain 

 ( ) ( ) 0'111)'1('" 22
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To remove the middle term in (12), let us substitute 

 ( )∫ +−=
Z

w dsffkh
0

)(21exp                   (13) 

in it to obtain 
 ( ) 0" =− kZQk                           (14) 

where ( ) ( ) ( ) ⎥
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Since ( )ZQ  is a continuous complex valued function for 0≥Z  satisfying  

∫
∞

− ∞<dZZQZ ll |)(|12  for some l  on the range 21 ≤≤ l , hence following 

([14], p. 384) the equation (14) shall have a solution satisfying  
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and a solution satisfying 

 ∫
Z

dsssQZk )(exp~  and Zkk 1~' ,  as ∞→Z        (17) 

 Using (15) in (16) and (17), we have in view of (13) that there exists a 
solution satisfying 
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and a solution satisfying 
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Since 1~'f as ∞→Z , hence tConsZf tan~ + ,or that Zf ~ as 
∞→Z .Substituting this into (18a) and (18b), we have 
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and into (19a) and (19b),we have 
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We now substitute 
 G−= 1τ                          (22) 
in (2) to obtain 
 0'" =+ ττ f                           (23) 
under the boundary conditions 
 ( ) ( ) 0,10 =∞= ττ                        (24) 
The asymptotic behaviours of (23) and (24) have earlier been discussed by 
the authors [15], hence they do not need any thorough investigation here. 
The results obtained in the above paper are only required here to study the 
asymptotic nature of the solutions in the present set-up. 
 The authors [2] investigated that (2), (4) have principal solutions 
satisfying, as ∞→Z , 
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and linearly independent solutions satisfying, as ∞→Z , 
 ,~1 0

0ZcG−    0'≈G  
where c0 > 0 and c1 are the constants. 
 
 
3  Results and Discussions 
 
 In calculus, the nature of the solutions of the differential or 
differential – difference equations is studied as the independent variable 
tends to infinity. This property is completely fulfilled by the study of the 
asymptotic nature of the solutions. A solution which tends to zero or to an 
infinitesimal limit as the independent variable tends to infinity is said to 
exhibit asymptotic nature, or is said to be asymptotically stable. It is also of 
much more practical significance in boundary value problems and hence has 
been studied by a number of workers [1-3] and [13-14]. On the contrary, 
those solutions which do not behave in the above fashion are said to be 
asymptotically unstable. 
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 The criteria over which our entire discussion is based are 

0)'1(lim =−
∞→

f
Z

,  0"lim =
∞→

f
Z

, 0)1(lim =−
∞→

G
Z

 and 0'lim =
∞→

G
Z

. These criteria 

require a little clarification. The second criterion can be derived from the 
following theorem: 

Theorem: Given that 0
_
>α , 10

_
≤< β  there exists a unique solution 

)(Zf  of (9), (10) such that 0">f on ),0( ∞  and 0)("lim =
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Zf
Z

. 

 The proof of the above theorem follows from [13] and from 
([14],p.521). Only stylistic changes are required to be carried out. 
 The third criterion is obvious, for 1lim =

∞→
G

Z
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Since Zf ~  as ∞→Z , hence 2/2~'
2

πZeG −  as ( ) 2/2
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for large Z . Therefore, ∞→→ ZasG 0' . 
 We impose these criteria on the LHS’ of the solutions and observe 
whether RHS’ of the solutions are also tending to the same limits or not. If 
the answer is affirmative, they will show asymptotic nature as ∞→Z , and 
on the contrary not. 
 Since large injection rates have overwriting influence in aeronautical 
engineering where very high velocities of the flight are attained in modern 
times, hence our major concern is to study the effect of ( )1−≤wf  on 
velocity profiles and enthalpy difference ratio. 
 Here we see that the LHS’ of the asymptotic relations (20a) and (20b) 
tend to zero as ∞→Z  and the RHS’ are also approaching the same limit 
(i.e. zero). Hence these relations shall hold true as ∞→Z . Contrary to it, 
the relations (21a) and (21b) do not exist as ∞→Z , for their RHS’ do not 
tend to the limit zero to which the LHS’ tend. 

 Here on noticeable fact is that the swirl parameter 
_
α  and longitudinal 

acceleration 
_
β  do not influence the asymptotic nature of the solutions, for 

they are absent in them. Second important thing is that even if we take 
0=wf  or 0>wf  (suction), the asymptotic nature of the solutions is the 

same as in the case 1−≤wf  (large injection). 
 Finally, we see that (25) shall exist as Z→∞, whereas (26) shall not. 
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