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Abstract 
 

In this communication, we present a numerical study for the steady two- 
dimensional radiative MHD boundary−layer flow of an incompressible, viscous, 
electrically conducting fluid caused by a non-isothermal linearly stretching sheet 
placed at the bottom of fluid saturated porous medium. The governing system of 
partial differential equations are converted to ordinary differential equations by 
using the similarity transformations, which are then solved numerically. The 
dimensionless temperature distribution and temperature gradient are computed for 
different thermophysical parameters viz the radiation parameter, the permeability 
parameter, magnetic parameter, wall temperature parameter and the Prandtl 
number. 

Keywords: Stretching sheet, porous medium, thermal radiation, MHD, 
convective heat transfer,numerical study. 
 
 
1. Introduction 
 
The radiative heat transfer in porous medium has not been much investigated 
though it is interesting to note that the porous medium absorbs or emits radiation 
that is transferred to or from a fluid. The fluid can be regarded to be transparent to 
radiation, because the dimensions for the radiative transfer among the solid  
elements of porous structure are usually much less than the radiative mean free  
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path for scattering or absorbtion in the fluid (Howell(2000)). Simultaneous 
convection and radiation heat transfer finds numerous applications in many 
technological and industrial processes involving high temperatures, such as, space 
technology, furnace designs, nuclear reactors, heating and cooling chambers, 
fossil fuel combustion, energy processes, evaporation from large open water 
reservoirs etc. It is pertinent to record that contrary to conduction and convection 
heat transfer, thermal radiation is a complex phenomena to account for because of 
its spectral and directional dependence in addition to the difficulty of determining 
accurate physical property values of the medium. Furthermore, the inclusion of 
radiation term in the energy equation makes the equation highly non-linear. 
However, some reasonable simplifications are used to make system solvable. To 
be specific, one of these simplifications is the assumption of optically dense 
medium in which radiation travels only a short distance before being absorbed or 
scattered. This assumption physically means that the local radiation intensity at a 
point is assumed to emerge only within the neighbourhood of that point. A 
comprehensive literature of the radiation heat transfer has been given in the well 
presented texts by Sparrow and Cess (1970), Özisik (1973), and Siegel and 
Howell (1992). Though, the radiation heat transfer is significant in many flow 
regimes but unfortunately very little is known about the effects of radiation on the 
boundary layer. The effects of radiation on heat transfer in porous medium have 
been studied by Whitaker (1980),Plumb et al. (1981), Tong and Tien (1983), 
Bakier et al. (1996), Mansour (1997), Raptis (1998), Bakier (2001), Chamkha et 
al. (2001), Raptis et al. (2004). 
 
 In the present work we aim at analyzing the combined convection radiation heat 
transfer numerically in the boundary layer arising from a horizontal linearly 
stretching sheet placed at the bottom of porous medium. The radiation heat flux is 
approximated with the Rosseland approximation. Due to simple geometry and 
closed form exponential solution of this well known stretching surface problem 
(Crane(1970)) many investigators have attempted the problem with different 
assumptions [Gupta and Gupta (1977), Arunachalam and Rajappa (1978), Chiam 
(1982), Grubka and Bobba (1985), Vajravelu and Hadjinicolaan (1993), Chiam 
(1995), Chauhan and Vyas (1995),, Anderson and Valnes (1998)].To the best of 
the knowledge of the authors the numerical study presented here has not been 
reported so far. 
 
 
 
2. Formulation of the problem 
 
Consider the steady two-dimensional forced convection boundary-layer flow of 
viscous, incompressible, electrically conducting fluid in a fluid saturated 
horizontal porous medium caused by linearly stretching sheet placed at the bottom  
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of the porous medium. A Cartesian co-ordinate system is used. The x-axis is along 
the sheet and y-axis is normal to the x-axis (see figure 1).
Two equal and opposite forces are 
applied along the sheet so that the 
wall is stretched, keeping the postion 
of the origin unaltered. The 
stretching velocity varies linearly 
with the distance from the origin. A  
uniform magnetic field of strength 
Bo is applied normal to sheet. We 
assume that the wall temperature 
Tω>T∞ ,where T∞ is the uniform 
temperature of the ambient fluid.              
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Figure 1: Physical model

We also assume that the fluid is optically dense, Newtonian and without phase 
change. Further it is assumed that both the fluid and the  porous medium are in 
local thermal equilibrium.  We also consider that both the surroundings and the 
fluid are maintained at a constant temperature T∞ far away from the sheet. The 
Rosseland approximation is followed to describe the heat flux in the energy 
equation. On neglecting the induced magnetic field, the external electric field, the 
electric field due to polarization of charges, ohmic and viscous dissipations, the 
governing boundary layer equations can be written as 
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and the boundary conditions are: 

y  = 0 : u = cx,  v = 0,  T = Tω(x) = T∞ + Dxα                                                       (4) 

y → ∞ : u = 0, T = T∞                                                                      (5) 

where c > 0 and D are constants, ν is the kinematic viscosity of the fluid, σ is the 
electrical conductivity, ρ is the density, T is the temperature, κ is the thermal 
conductivity, cp is the specific heat at constant pressure and qr is the radiation heat 
flux. Using Rosseland approximation for radiation [Brewster (1972)] we can write   

( )( )yTk34rq 4** ∂∂σ−=  where σ*, k* are  Stephan-Boltzmann constant and 
mean absorption coefficients respectively. Temperature difference within the flow 
is assumed to be sufficiently small so that 434 T3TT4T ∞∞ −≅ , i.e. T4 may be  
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expressed as a linear function of temperature T, using a truncated Taylor series 
about the free stream temperature T∞.  
 
 
 
3. Analysis 
 

We introduce the similarity variables   
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where Ψ is the stream function defined as 
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Using eqs.(6) and (7) the solution of eq.(1) can be witten as 

 )(fcvand)('fxcu η−=η= ν                                                                        (8) 

In view of eqs.(6) and (8); eq.(2) reduces to 

 0'f)M(2'f''ff'''f =+λ−−+                                                                                   (9) 

with boundary conditions  ( ) ( ) ( ) 0'f,10'f,00f =∞==                                       (10) 

Here ν=λ ck  is the permeability parameter and ρcBσM 2
0= is the magnetic 

field parameter. Here prime denotes differentiation with respect to η.  

The boundary conditions given by (10) suggest a solution of the form : 

 f(η) = A + Be–sη                                                                                                (11) 

where the constants A, B and s are given by 

 A = 1/s,     B = –1/s,     s = 1 ( )Mλ+ +                                                               (12)                                  

Thus the exact solution of eq.(9) reads   
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The skin friction τ* at the wall in the non-dimensional form is given as: 
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To solve the energy eq.(3) the temperature distribution is assumed in the form of a 
similar solution as  

)(DxTT ηθ+= α
∞                                                                                                  (15) 

Using eqs.(6), (8) and (15) in eq.(3) one obtains 
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subject to the boundary conditions   0)(,1)0( =∞θ=θ                                     (17) 

where κρ= ν pcPr is  Prandtl number and 32 T4kN ∞σκ= is radiation parameter.  

Equation (16) subject to boundary conditions (17) has been solved numerically 
using the finite difference scheme with λ, M, N, α, Pr as prescribed parameters. 
The non linear differential eq.(16) is transformed into difference equation at each 
grid point in the solution space resulting into tridiagonal system of equations 
which is then solved by Gauss-elimination method. The finite difference methods 
enjoy an upper hand over other numerical methods such as shooting methods, 
Runge Kutta methods in terms of accuracy and flexibility in setting the limiting 
conditions far from the surface. The values of η∞ for which θ(η) decays 
exponentially to zero for different set of values for the parameters λ, M, N, α, Pr 
was chosen after some preliminary investigations. A grid independent study was 
carried out to examine the effect of the step size ∆η and the edge of the boundary 
layer η∞ on the solution in the quest for their optimization. The ηmax i.e. η at ∞ 
was so chosen that the solution shows little further changes for η larger than ηmax. 
A step size of ∆η=0.0001 was found to be satisfactory for a convergence criteria 
of 10-6 in all cases and the value of η∞= 50 was found to be sufficiently large for 
the velocity to reach the relevant stream velocity. Further θ′(0) has also been 
computed numerically by employing Newton forward difference interpolation 
formula for differentiation. 
 
 
4. Results and Discussion 
 
In order to get an insight of the phenomena under study we illustrate the results 
obtained from numerical computations by plotting the numerical values in figure 
2–figure 9.  



 

2480                                                                                 P. Vyas and N. Srivastava 
 
 
It is clear from figure 2 that an increase in permeability parameter λ produces a 
decrease in temperature while with an increase in magnetic field parameter M the 
temperature increases. The temperature is found to decrease with an increase in 
wall temperature parameter α and  Prandtl number Pr (fig 3) and also an increase 
with radiation parameter N (fig 4). 
Figure 5 shows that though the temperature gradient increases with an increase in 
permeability parameter λ it decreases with an increase in  magnetic field 
parameter M. The temperature gradient increases with an increase in wall 
temperature  parameter α as well as with an increase in  the radiation parameter N 
(fig 6). Figure 7 shows that though the temperature gradient increases with an 
increase in permeability parameter λ it decreases with an increase in magnetic 
field parameter M. The temperature gradient increases with an increase in wall 
temperature parameter α as well as with an increase in the Prandtl no Pr (fig 8). 
Fig-9 depicts the values for skin friction and indicates that it decreases with an 
increase in magnetic field parameter M. 
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Figure 2: Temperature distribution when , 
M vary while  = 2, Pr = 1 and N = 1
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Figure 3: Temperature distribution when , 
Pr vary while  = 0.1, M = 1 and N = 1
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Figure 6: Temperature gradient when and 
N vary while  = 0.1 and M = 1
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Figure 8: Temperature gradient when  and 
Pr vary while  = 0.1 and M = 1
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Figure 9: Skin friction for the case of variable M

Figure 7: Temperature gradient when  and 
M vary while  = 2 and Pr = 1
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Figure 4: Temperature distribution when N 
vary while  = 0.1, M = 1,  = 2 and Pr = 1λ α

Figure 5: Temperature gradient when  and M 
vary while  = 2 and N = 1
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