A Note on Proper Affine Symmetry in Bianchi Types VI_{0} and VII_{0} Space-Times

Ghulam Shabbir
Faculty of Engineering Sciences GIK Institute of Engineering Sciences and Technology Topi, Swabi, NWFP, Pakistan shabbir@giki.edu.pk
M. Rafiq and Fazal-ur-Rehman
Department of Electronics Engineering, Mohammad Ali Jinnah University, Islamabad, Pakistan.

Abstract

A study proper affine symmetry in the most general form of the Bianchi types VI_{0} and VII_{0} space-times is given by using holonomy and decomposability, the rank of the 6×6 Riemann matrix and direct integration techniques. It is shown that the very special classes of the above space-times admit proper affine symmetry.

Keywords: Affine vector fields, holonomy and decomposability, direct integration technique.

1 INTRODUCTION

In this paper we will explore all the possiblities when the Bianchi types VI_{0} and VII_{0} space-times admit proper affine symmetry. We use holonomy and decomposability, the rank of the 6×6 Rieman matrix and direct integration techinques to study proper affine symmetry in the above space-times. Throughout
M represents a four dimensional, connected, Hausdorff space-time manifold with Lorentz metric g of signature (,,,-+++). The curvature tensor associated with $g_{a b}$, through the Levi-Civita connection, is denoted in component form by $R^{a}{ }_{b c d}$. The usual covariant, partial and Lie derivatives are denoted by a semicolon, a comma and the symbol L, respectively. Round and square brackets denote the usual symmetrization and skew-symmetrization, respectively. Here, M is assumed non-flat in the sense that the curvature tensor does not vanish over any non-empty open subset of M.

A vector field X on M is called an affine vector field if it satisfies

$$
\begin{equation*}
X_{a ; b c}=R_{a b c d} X^{d}, \tag{1}
\end{equation*}
$$

where $\quad R_{a b c d}=g_{a f} R^{f}{ }_{b c d}=g_{a f}\left(\Gamma_{b d, c}^{f}-\Gamma_{b c, d}^{f}+\Gamma_{c e}^{f} \Gamma_{b d}^{e}-\Gamma_{e d}^{f} \Gamma_{b c}^{e}\right)$. If one decomposes $X_{a ; b}$ on M into its symmetric and skew-symmetric parts

$$
\begin{equation*}
X_{a ; b}=\frac{1}{2} H_{a b}+G_{a b},\left(H_{a b}\left(\equiv X_{a ; b}+X_{b ; a}\right)=H_{b a}, \quad G_{a b}=-G_{b a}\right) \tag{2}
\end{equation*}
$$

then equation (1) is equivalent to

$$
\begin{array}{ll}
\text { (i) } H_{a b ; c}=0 & \text { (ii) } G_{a b ; c}=R_{a b c d} X^{d}
\end{array} \text { (iii) } G_{a b ; c} X^{c}=0
$$

The proof of the above equation (1) implies (3) or equations (3) implies (1) can be found in [2, 3]. If $H_{a b}=2 c g_{a b}, c \in R$, then the vector field X is called homothetic (and Killing if $c=0$). The vector field X is said to be proper affine if it is not homothetic vector field and also X is said to be proper homothetic vector field if it is not Killing vector field on M [2]. Define the subspace S_{p} of the tangent space $T_{p} M$ to M at p as those $k \in T_{p} M$ satisfying

$$
\begin{equation*}
R_{a b c d} k^{d}=0 . \tag{4}
\end{equation*}
$$

2 Affine Vector Fields

Suppose that M is a simple connected space-time. Then the holonomy group of M is a connected Lie subgroup of the idenity component of the Lorentz group and is thus characterized by its subalgebra in the Lorentz algebra. These have been labeled into fifteen types $R_{1}-R_{15}$ [1]. It follows from [2] that the only such space-times which could admit proper affine vector fields are those which admit nowhere zero covariantly constant second order symmetric tensor field $H_{a b}$. This forces the holonomy type to be either $R_{2}, R_{3}, R_{4}, R_{6}, R_{7}, R_{8}, R_{10}$, R_{11} or R_{13} [2]. A study of the affine vector fields for the above holonomy type can be found in [2]. It follows from [4] that the rank of the 6×6 Riemann matrix of the above space-times which have holonomy type $R_{2}, R_{3}, R_{4}, R_{6}, R_{7}$,
R_{8}, R_{10}, R_{11} or R_{13} is at most three. Hence for studying affine vector fields we are interested in those cases when the rank of the 6×6 Riemann matrix is less than or equal to three.

3 Main Results

Consider Bianchi types VI_{0} and VII_{0} space-times in usual coordinate system (t, x, y, z) (labeled by ($x^{0}, x^{1}, x^{2}, x^{3}$), respectively) with line element [5]
$d s^{2}=-d t^{2}+\left(A f^{2}(z)+B h^{2}(z)\right) d x^{2}+\left(A h^{2}(z)+B f^{2}(z)\right) d y^{2}+$ $2(A+B) f(z) h(z) d x d y+C(t) d z^{2}$,
where A, B and C are nowhere zero functions of t only. For $f(z)=\cosh z, h(z)=\sinh z$ or $f(z)=\cos z, h(z)=\sin z$ the above space-time (5) becomes Bianchi type VI_{0} or VII_{0}, respectively. The above space-time admits three linearly independent Killing vector fields which are
$\frac{\partial}{\partial x}, \frac{\partial}{\partial y},-y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}$.
The non-zero components of the Riemann tensor are

$$
\begin{aligned}
R_{0101} & =-\frac{1}{4}\left[\left(\frac{2 A \ddot{A}-\dot{A}^{2}}{A}\right) f^{2}(z)+\left(\frac{2 B \ddot{B}-\dot{B}^{2}}{B}\right) h^{2}(z)\right]=\alpha_{1}, \\
R_{0012} & =-\frac{1}{4}\left[\left(\frac{2 A \ddot{A}-\dot{A}^{2}}{A}\right)+\left(\frac{2 B \ddot{B}-\dot{B}^{2}}{B}\right)\right] f(z) h(z)=\alpha_{7}, \\
R_{0113} & =R_{0223}=-\frac{1}{4 A B C}\left[A^{2} \dot{B} C+\dot{A} B^{2} C+2 A B \dot{C}(A+B)-3 A B C(\dot{A}+\dot{B})\right] f(z) h(z)=\alpha_{8}, \\
R_{0123} & =-\frac{1}{4}\left[\left\{(A+B)\left(\frac{\dot{A}}{A}+\frac{\dot{C}}{C}\right)-2(\dot{A}+\dot{B})\right\} h^{2}(z)+\left\{(A+B)\left(\frac{\dot{B}}{B}+\frac{\dot{C}}{C}\right)-2(\dot{A}+\dot{B})\right\} f^{2}(z)\right] \\
& =\alpha_{9}, R_{0202}=-\frac{1}{4}\left[\left(\frac{2 A \ddot{A}-\dot{A}^{2}}{A}\right) h^{2}(z)+\left(\frac{2 B \ddot{B}-\dot{B}^{2}}{B}\right) f^{2}(z)\right]=\alpha_{2}, \\
R_{0213} & =-\frac{1}{4}\left[\left\{(A+B)\left(\frac{\dot{A}}{A}+\frac{\dot{C}}{C}\right)-2(\dot{A}+\dot{B})\right\} f^{2}(z)+\left\{(A+B)\left(\frac{\dot{B}}{B}+\frac{\dot{C}}{C}\right)-2(\dot{A}+\dot{B})\right\} h^{2}(z)\right] \\
& =\alpha_{10}, R_{0303}=-\frac{1}{4}\left(\frac{2 C \ddot{C}-\dot{C}^{2}}{C}\right)=\alpha_{3}, R_{0312}=-\frac{1}{4}(A+B)\left(\frac{\dot{A} B-A \dot{B}}{A B}\right)=\alpha_{11}, \\
R_{1212} & =\frac{1}{4 A B C}\left[(A+B)^{2}+\dot{A} \dot{B} C\right]\left[A f^{2}(z)+B h^{2}(z)\right]\left[A h^{2}(z)+B f^{2}(z)\right]=\alpha_{4}, \\
R_{1313} & =\frac{1}{4 A B}\left[\left\{A^{3}-A B(2 A+3 B-\dot{A} \dot{C})\right\} f^{2}(z)-\left\{A B(3 A+2 B-\dot{B} \dot{C})-B^{3}\right\} h^{2}(z)\right]=\alpha_{5}, \\
R_{1323} & =\frac{1}{4 A B}\left[A^{2}(A-5 B)+B^{2}(B-5 A)+A B \dot{C}(\dot{A}+\dot{B})\right] f(z) h(z)=\alpha_{12}, \\
R_{2323} & =\frac{1}{4 A B}\left[\left\{A^{3}-A B(2 A+3 B-\dot{A} \dot{C})\right\} h^{2}(z)-\left\{A B(3 A+2 B-\dot{B} \dot{C})-B^{3}\right\} f^{2}(z)\right]=\alpha_{6} .
\end{aligned}
$$

Writing the curvature tensor with components $R_{a b c d}$ at p as a 6×6 symmetric matrix [6]

$$
R_{a b c d}=\left(\begin{array}{llllll}
\alpha_{1} & \alpha_{7} & 0 & 0 & \alpha_{8} & \alpha_{9} \tag{7}\\
\alpha_{7} & \alpha_{2} & 0 & 0 & \alpha_{10} & \alpha_{8} \\
0 & 0 & \alpha_{3} & \alpha_{11} & 0 & 0 \\
0 & 0 & \alpha_{11} & \alpha_{4} & 0 & 0 \\
\alpha_{8} & \alpha_{10} & 0 & 0 & \alpha_{5} & \alpha_{12} \\
\alpha_{9} & \alpha_{8} & 0 & 0 & \alpha_{12} & \alpha_{6}
\end{array}\right)
$$

As mentioned in section 2 , the space-times which can admit proper affine vector fields have holonomy type $R_{2}, R_{3}, R_{4}, R_{6}, R_{7}, R_{8}, R_{10}, R_{11}$ or R_{13} and the rank of the 6×6 Riemann matrix is at most three. Therefore we are only interested in those cases when the rank of the 6×6 Riemann matrix is less than or equal to three. Hence there exist following two possibilities when the rank of the 6×6 symmetric matrix is less or equal to three which are:
(A) Rank=3, $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{7}=\alpha_{8}=\alpha_{9}=\alpha_{10}=\alpha_{11}=0, \quad \alpha_{4} \neq 0, \alpha_{5} \neq 0, \alpha_{6} \neq 0$ and $\alpha_{12} \neq 0$.
(B) Rank=1, $\alpha_{4} \neq 0$, and
$\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{5}=\alpha_{6}=\alpha_{7}=\alpha_{8}=\alpha_{9}=\alpha_{10}=\alpha_{11}=\alpha_{12}=0$.
We will consider each case in turn.

Case (A):

In this case we have $\alpha_{4} \neq 0, \alpha_{5} \neq 0, \alpha_{6} \neq 0, \alpha_{12} \neq 0$, $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{7}=\alpha_{8}=\alpha_{9}=\alpha_{10}=\alpha_{11}=0$, the rank of the 6×6 Riemann matrix is three and there exists a unique (up to a multiple) no where zero time like vector field $t_{a}=t_{, a}$ solution of equation (4) and $t_{a ; b} \neq 0$. From the above constraints we have $B(t)=d A(t), \quad C(t)=e A(t)$ and $A(t)=(a t+b)^{2}$, where $a, b, d, e \in R(d, e>0)$. The line element in this case takes the form

$$
d s^{2}=-d t^{2}+(a t+b)^{2}\left[\begin{array}{c}
\left(f^{2}(z)+e h^{2}(z)\right) d x^{2}+\left(d h^{2}(z)+f^{2}(z)\right) d y^{2}+ \tag{8}\\
2(1+d) f(z) h(z) d x d y+e d z^{2}
\end{array}\right] .
$$

Substituting the above information into the affine equations one find that

$$
\begin{equation*}
X^{0}=c_{4} t+c_{5}, X^{1}=-c_{1} y+c_{2}, X^{2}=-c_{1} X+c_{3}, X^{3}=c_{1}, \tag{9}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5} \in R$. One can write the above equation (9) subtracting Killing vector fields as

$$
\begin{equation*}
X=\left(c_{4} t+c_{5}, 0,0,0\right) . \tag{10}
\end{equation*}
$$

Clearly in this case one can easily see that the above space-times (8) admit proper affine symmetry. It is important to note that the constants a and b can not be zero simultaneously.

Case (B):

In this case we have
$\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{5}=\alpha_{6}=\alpha_{7}=\alpha_{8}=\alpha_{9}=\alpha_{10}=\alpha_{11}=\alpha_{12}=0, \quad \alpha_{4} \neq 0$ and the rank of the 6×6 Riemann matrix is one. Here, there exist two linear independent solutions $t_{a}=t_{, a}$ and $z_{a}=z_{, a}$ of equation (4). The vector field t_{a} is covariantly constant whereas z_{a} is not covariantly constant. From the above constraints we have $A(t)=B(t)=C(t)=(t+q)^{2}$, where $q \in R$. The line element takes the form

$$
d s^{2}=-d t^{2}+(t+q)^{2}\left[\begin{array}{c}
\left(f^{2}(z)+h^{2}(z)\right) d x^{2}+\left(h^{2}(z)+f^{2}(z)\right) d y^{2}+ \tag{11}\\
4 f(z) h(z) d x d y+d z^{2}
\end{array}\right] .
$$

Affine vector fields in this case

$$
\begin{equation*}
X^{0}=c_{4} t+c_{5} z+c_{6}, X^{1}=-c_{1} y+c_{2}, X^{2}=-c_{1} x+c_{3}, X^{3}=c_{1} \tag{12}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6} \in R$. One can write the above equation (12) subtracting Killing vector fields as

$$
\begin{equation*}
X=\left(c_{4} t+c_{5} z+c_{6}, 0,0,0\right) \tag{13}
\end{equation*}
$$

In this case clearly the above space-times (11) admit proper affine symmetry.

SUMMARY

In this paper an attempt is made to explore all the possibilities when the Bianchi types VI_{0} and VII_{0} space-times admit proper affine vector fields. A different approach is adopted to study proper affine vector fields of the above space-times by using holonomy and decomposability, the rank of the 6×6 Riemann matrix and direct integration techniques. From the above study we obtain the following results:
(i) We obtain the space-time (8) that admits proper affine vector fields when the rank of the 6×6 Riemann matrix is three and there exists a unique nowhere zero independent timelike vector field, which is the solution of equation (4) and is not covariantly constant (for details see case A).
(ii) The space-time (11) is obtained, which admits proper affine vector fields (see case B) when the rank of the 6×6 Riemann matrix is one and there exist two independent solutions of equation (4) but only one independent covariantly constant vector field.

References

[1] J. F. Schell, J. Math. Physics, 2 (1961), 202-206.
[2] G. S. Hall, symmetries and curvature structure in general relativity, World Scientific, 2004.
[3] G. Shabbir, Acta Physics Polonica B, 40 (2009), 3-13.
[4] G. S. Hall and W. Kay, J. Math. Physics, 29 (1988), 420-427.
[5] H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselears and E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge University Press, 2003.
[6] G. Shabbir, Classical Quantum Gravity, 21 (2004), 339-347.

Received: March, 2010

