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Abstract

Pontryagin minimum principle (PMP) is applied in this paper to
find the optimal control of the reverse logistics model of a production
inventory system with deteriorating items. The total cost of the system
consists of the sum of holding costs of inventory levels in two different
stores, the manufacturing and remanufacturing costs, and the disposal
cost. The general solution of the controlled system is obtained. Finally,
numerical example are presented to explain the analytical solution.

1 Introduction

Reverse logistic is a term for logistic environments with reuse of products and
materials. In these systems, products are manufactured and the returned units
from market are remanufactured and are considered to be new. The demand
is to be satisfied with new manufactured and remanufactured products. So,
there is no difference between manufactured and remanufactured items. The
operation of such a system is described by the return process of the used prod-
ucts and the disposal activity. In order not to pollute the environment with
waste, it is wised to recycle used items if it is economical. Reuse products and
materials is not new. Metal scrap brokers, waste paper recycling and deposit
systems for soft drink bottles are all examples that have been around for a
long time. In these instances, recovery of the used products is economically
more attractive than disposal.

Many authors have discussed the reverse logistics models such Al-Gohary and
others [1] dealt with HMMS-model with constant, linear and periodic demand
and return rates. Dobos [4] who has investigated optimal inventory policies in
a reverse logistic system with special structure. He assumed that demand is
known as a continuous function in a given planning horizon, and return rate
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of used items is a given function. His model is considered as a generalization
of the model of Holt et al. [7]. Dobos and Kistner [3] have presented optimal
production-inventory strategies for a reverse logistics system where the costs
consist of linear holding costs for the two stores and the convex non-decreasing
manufacturing and remanufacturing costs, and there is no delay between us-
ing process and return process. The result of their study is that the optimal
manufacturing-remanufacturing strategy is extreme, which means that the op-
timal trajectory contains always constraints either on the inventory levels or
on the control variables. A similar result was shown by Kleber et al. [8] for
a multiple reuse model with linear cost structure. They have examined a re-
verse logistic model without disposal and have generalized the convex model
with disposal activity. Their model can be interpreted as a multi-product gen-
eralization of the Arrow-Karlin model (1958) [2]. After having characterized
the optimal path, a forward algorithm was given by Kistner and Dobos [3] to
construct the optimal manufacturing-inventory control system. Fleischmann
et al. [6] has presented the recently emerged field of reverse logistics. Dobos
[5] has analyzed the effects of tradable permits (emission trading or environ-
mental license) on production and inventory.

In this paper, we will be concerned with optimal control of reverse logistics for
a production inventory system with deteriorating items. The results of this
study complement and extend recent work by Al-Gohary and others [1].

2 The problem

The production inventory system consists of two stores and demand is satisfied
from the first store, where the manufactured items are stored. The returned
products are collected in the second store and then remanufactured or disposed
off. The costs of this system consist of the holding costs for these two stores and
the manufacturing cost, the remanufacturing cost and the disposal cost. The
model is represented as an optimal control problem with two state variables
which are: the inventory levels in the first store and the second store and
with three control variables which are: the manufacturing, remanufacturing
and disposal rates. The objective is to minimize the sum of the quadratic
deviation from described inventory levels in two stores and from described
manufacturing, remanufacturing and disposal rates. The numerical example
include the logistic demand and return rates as a functions of time.

In this model, We assume that the deterioration rates in two stores are constant
ratios of the on-hand inventory levels. Also, the inventory goal levels in two
stores, the goal manufacturing rate, the goal remanufacturing rate and the
goal disposal rate are constants. There is a constant delay between the using
and return process.

The following parameters are used in the mathematical formulation of the
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model:
T . Length of the planning period,
S(t) : Rate of demand at time ¢,
T . Delay of return, non-negative ,
r : Proportion of return in store(2), 0 < r <1,
R(t) : Rate of return at time ¢,
T . Inventory goal level in store(1),
Tg Inventory goal level in store(2),
P, : Manufacturing goal rate,
P, :  Remanufacturing goal rate,
P, . Disposal goal rate,
hy : Inventory holding cost coefficient in the first store,
hs . Inventory holding cost coefficient in the second store,
Cm : Manufacturing cost,
Cr : Remanufacturing cost,
Cd . Disposal cost,
6, :  Deterioration rate in first store
0, :  Deterioration rate in second store
x1(t) : Inventory level in the first store at time ¢,
x9(t) : Inventory level in the second store at time t,
P, (t) : Rate of manufacturing at time ¢,
P.(t) : Rate of remanufacturing at time ¢,
P,(t) : Rate of disposal at time t.

The inventory goal levels are safety stock levels that the company wants to keep
on hand. Also, the manufacturing, remanufacturing and disposal goal rates
are the most efficient rates at which they are described to run the factory.

2.1 Mathematical form of the problem

The main objective of this section is to Describe the mathematical model of
the problem and Derive the optimal inventory levels, the optimal manufactur-
ing and remanufacturing rates, and the optimal disposal rate in the case of
finite time.

The optimal control problem is to determine the manufacturing, remanufac-
turing and disposal rates which minimize the following total cost:

. 1 /T B B _ _ _
J = varprilygdzo 5/, {hl(:Jcl—x1)2+h2(x2—x2)2+cm(Pm—Pm)2+cr(PT—PT)Q—i-cd(Pd—Pd)Q}dt,
(1)
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subject to
i1 = Pu(t) + Po(t) — S(t) — 01241 (1),
(2)
.%.'2 == —Pr(t) - Pd(t) + R(t) - 92x2(t),
and
x1(t) >0, 22(t) >0, P,o(t) >0, P.(t) >0, Py(t) >0, (3)

where hy >0, hy >0, ¢, >0, ¢, >0and ¢y >0

The economic interpretation of the objective function (1) is that we want
to keep the inventory levels (z1(t),z2(t)) of the two stores as close as possi-
ble to their goal levels (Z1,Z2) and the manufacturing, the remanufacturing,
and disposal rates (P, (t), P-(t), P4(t)) as close as possible to their goal rates
(P, P., P;), respectively.
The integral in (1) represents the total cost of the model, and the quadratic
terms inside this integral represent the imposed penalties for having either
(x1(t), x2(t)) or (P (t), Pr(t), P4(t)) not being close to their corresponding goal
levels (71, Z;) and goal rates (P,,, P., P;) respectively.

Then we can apply PMP to get the following system of linear differential
equations.

m T Aot D D
) :—elxl(t)JrC R A (t) — 2(1) + P, + P.— S(t)
CrnCr Cy
. ¢ +cqg M) = _
To = 921'2 (t) + vy )\Q(t) c, Pd PT + R(t) 7 (4)
/.\1 = 6’1/\1(t) + hl(l'l(t) - jl)
}\2 = 92)\2(t) + hg(l’g(t) — .1772)
We can put the system ( 4) in the form
Cm + Cr 1
i —0 0 e T 71 (t) P+ P.— S(t)
. 1 o — o —
.C'EQ _ 0 _92 T Cr + Cd .CEQ(t) 4 Pd pr_—i— R(t)
A1 Cr CrCd Ai(t) —h17y
Ao hy 0 o1 0 Ao () —haTs
O hg O 6)2

()

with initial and terminal conditions

1'1(0) T10
.CI?Q(O) T20
M (T 0
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Then, the equations (5) can be presented in the matrix form as:

X =AX+F, (6)

The optimal inventory levels:

izle%‘f(/ e (b [P + Py — S(s)] +

big[—pd — Pr + R(S)] — bighlfl — bi4h2f2)d8 + Ci), (7)
(1) 24: —h1(Cr + €4+ Cm) + CmCY] 4 CnCaV; — CmC07 — Cmcab}
x = -
2 = cmca(—ibh — 0102 + 77 + 7ib2)
t _ _
éﬂt(/ ei’yis(bil[Pm + pr - S(S)] +
0
big[—pd — pr + R(S)] — bighlfl — bi4h2.f2>d8 + Ci), (8)

4 t _
MO = ([ bulP+ P S0+
= i V1
bl —Pi — By + R(s)] = bishi Ty — buhaTo)ds +ci),  (9)

—h1 (e + Cm) + CmCy? — cnc, 03

i=1 m( Vi _91)

t _
G’Yit(/ €_Wis(bi1[Pm + Pr - S(S)] +
0
biQ[_pd — Pr + R(S)] — bi3h1f1 — bi4h2f2)d8 + CZ‘), (10)

)\2 (t) -

where the arbitrary constants ¢;(i = 1,2, 3,4) are determined using initial con-
ditions x1(0) = x19, 22(0) = 29 and terminal conditions A\ (T) =0, X\o(7T) =
0. These constraints should enable us to find the optimal solution to our prob-
lem.

The optimal manufacturing, remanufacturing, and disposal rates :

Py (t) = max |0, A;(nt) P (11)
P} (t) = max |0, M + P, (12)

and * i)
Pj(t) = max [0 — + Pd}, (13)
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3 Numerical examples

In this section, we present the numerical example for logistic demand and
return rates

o S(t)=wy +tky —1t), R(t)=a+1t(ks —1).
Where wy, ws, k1, ks and « are positive constants.

And compare these rates with another three rates:

1. Demand and return rates are constants:

S(t) = wy, R(t)=a,

2. Demand and return rates are linear functions of time:
S(t) = wy + wat, R(t) =rws(t —7) + «a,

3. Demand and return rates are periodic functions of time:
S(t) =1+sin(t), R(t) =r[l+sin(t —7)] + a.

Table(1) presents the values of system parameters and the initial states which
are used in the numerical example:

parameter | ¢, | ¢ | ¢cq | P | B | Py | hi | ha | a | 7T
value 9 [1015] 15 | 13 | 11 10 ({12 ]15]0.8

parameter | 1" | Z1 | Zo | T10 | 2o | 1 Oy |wy|wy| T
value 51401251015 10.0210.03| 5 | 1| 1

We summarize the values of the optimal inventory levels, the optimal manufac-
turing rate, the optimal remanufacturing rate and the optimal disposal rate at
the end of the planning horizon period, and the objective function in table(2):

| The demand and return rates | 25(T) | 23(T) | P5(T) | PX(T) | P;(T) | J* |

Constant 55 22 15 13 11 6467
Linear 52 23 15 13 11 5718
Periodic 59 23 15 13 11 7463

The results of logistic rates shown in table (3):

| The demand and return rates | 25(T) | «3(T) | Po(T) | PX(T) | P;(T) | J* |

Logistic k1 = ko =1 63 12 15 13 11 9270
Logistic ky = ky =5 54 23 15 13 11 4843
Logistic k1 = ko = 10 42 36 15 13 11 | 3951

Comparing the results obtained from table (2) and table (3) we found that:
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e We get the minimum value of the total cost when use logistic rates at
same period.

e The total costs are decreasing as the planning period increasing, also the
optimal inventory level of store (1) decreasing while the optimal inventory
level of the store (2) increasing.

Conclusions

e In this paper, The problem of the optimal control of reverse logistics
model of a production inventory system with deteriorating items is stud-

ied.

e Optimal inventory levels, optimal manufacturing and remanufacturing
rates, and optimal disposal rates are obtained by minimizing the total
costs.

e Logistic rates of the demand and return rates it is preferred when we use
long planning period.
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