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Abstract 
 
Nonlocal elasticity is employed to evaluate the length-dependent in-plane stiffness of 
achiral and chiral single-walled carbon nanotubes. The length-dependent stiffness is 
revealed from the nonlocal elasticity and verified through molecular simulation 
results. The value of the scale coefficient in the nonlocal theory is recommended to 
be about 0.7 nm for the application of the nonlocal theory in analysis of carbon 
nanotubes.  
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1. Introduction 

 
Nonlocal elasticity was proposed by Eringen [1-2] to account for scale effect 

in elasticity by assuming the stress at a reference point to be a functional of the strain 
field at every point in the body. In this way, the internal size scale could be 
considered   in   the   constitutive   equations   simply  as  a  material  parameter.  The  
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application of nonlocal elasticity in micro- and nano-materials has received much 
attention among the nanotechnology community recently. It has been well 
acknowledged that carbon nanotubes (CNTs) exhibit exceptional mechanical 
properties. CNTs are macromolecules of carbon in a periodic hexagonal arrangement 
with a cylindrical shell shape [3]. They can be viewed as one (or more) graphite 
sheet(s) rolled into a seamless tube. The way a graphite sheet is wrapped is 
represented by a pair of indices (n, m) that are called the chirality. When m = 0, the 
nanotubes are called "zigzag," and when n=m, they are called "armchair."  Zigzag 
and armchair CNTs are referred to achiral CNTs, whereas other CNTs are called 
chiral CNTs. Intensive research on the application of nonlocal elasticity for CNTs has 
been conducted. The potential of applying the nonlocal elastic beam theory to micro 
and nano-materials was first attempted by Peddieson et al [4], in which a nonlocal 
version of Euler-Bernoulli beam theory was formulated and applied to study a 
cantilever beam. The application of nonlocal elasticity was recommend in revealing 
scale effects for nano-materials. Zhang, Liu, and Han [5] developed a nonlocal 
multiple-shell model for elastic buckling analysis of multi-walled CNTs (MWNTs) 
under uniform external radial pressure. The effect of small length scale was 
incorporated in the formulation and the influence of the small length scale on the 
buckling pressure was examined. The small-scale effect on CNT’s wave propagation 
dispersion relation was explicitly revealed [6-7] for different CNT’s wavenumbers 
and diameters via the nonlocal elastic beam and shell theories. In addition, Wang and 
Wang [8] proposed a constitutive relation and small scale parameter of nonlocal 
continuum mechanics for modeling CNTs. From the author’s acknowledgement, the 
application of nonlocal elasticity on the estimation of material properties of CNTs has 
not yet been explored so far.  

Material properties of CNTs, such as the in-plane stiffness, shear modulus, 
and bending rigidity, have been explored experimentally and numerically. Krishman 
et al. [9] estimated the Young’s modulus of single-walled CNTs (SWNTs) to be 0.9 ~ 
1.7 TPa by observing their freestanding room-temperature vibrations in a 
transmission electron microscope. Salvetat et al. [10] used an atomic force 
microscope and a special substrate to estimate the elastic and shear moduli of a 
SWNT to be of the order of 1 TPa and 1 GPa, respectively. Recently, length-
dependent in-plane stiffness and shear modulus of chiral and achiral SWNTs 
subjected to axial compression and torsion were discovered [11] via molecular 
simulations. It is expected that nonlocal elasticity can be applied to reveal the scale 
effect on the material properties of CNTs. 

In this paper, the length-dependent in-plane stiffness of SWNTs is investigated 
via nonlocal elasticity. An elastic rod subjected to axial compression is employed to 
derive the close-form solution of the material property. The derived in-plane stiffness 
from the nonlocal elastic rod theory is verified from the molecular simulation results. 
In addition, the scale coefficient used in the nonlocal elastic rod theory is discussed  
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and a suggestion for the value is proposed for the application of nonlocal elasticity in 
analysis of CNTs.  

 
 
2. Nonlocal elastic rod theory  
 
According to the theory of nonlocal elasticity [2], the stress at a reference point x  

is considered to be a functional of the strain field at every point in the body. The basic 
equations for linear, homogeneous, isotropic, nonlocal elastic solid with zero body 
force are given by: 

0j,ij =σ ,                                                      (1) 

∫ ′′′−= )x(dV)x(C),xx()x( klijklij ετασ ,  Vx∈∀               (2) 
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2
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+=ε ,                                      (3) 

where ijklC  is the elastic module tensor of classical isotropic elasticity; ijσ  and ijε  are 

stress and strain tensors respectively, and iu  is displacement vector. ),xx( τα ′−  is 
the nonlocal modulus or attenuation function incorporating into the constitutive 
equations the nonlocal effects at the reference point x  produced by local strain at the 
source x′ . xx ′−  is the Euclidean distance, and l/ae0=τ  is defined where l  is the 
external characteristic length (e.g. crack length, wavelength). Parameter a  describes 
internal characteristic length. The length of a C-C bond, which is nm142.0 , is chosen 
for the analysis of CNTs [4-5]. On the other hand, parameter 0e  was given as 39.0  
by Eringen [2]. Wang and Hu [12] used strain gradient method to propose an estimate 
of the value around 0.28. Wang [6] provided a rough estimate of the scale coefficient 
as nm1.2ae0 <  from the available highest frequency of a single-walled CNT in 
literatures based on CNT’s vibration analysis via the nonlocal Timoshenko beam 
theory.  
 Next, an explicit expression for an elastic rod subjected to an axial 
compression will be provided based on the general nonlocal elasticity theory. 
Hooke’s law for a uni-axial stress state by the nonlocal elasticity was proposed by 
reference [2] and given as: 

( ) )x(E
dx

)x(dae)x( 2

2
2

0 εσσ =− ,                                (4) 

                  
where E  is the Young’s modulus of the material, x  is the coordinate with the origin 
at the left end of one-dimensional structure. The equilibrium equations on the force in 
a one-dimensional rod structure can be easily provided below: 
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∂
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where )(xq is the distributed axial force applied on the rod. Thus, the nonlocal elastic 
rod theory can be derived by substituting Eq. (4) into Eq. (5) and considering the 

expression 
dx

xdux )()( =ε  : 
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where )(xu  is the compression displacement of the elastic rod under the compression. 
In the limit when the effects of strains at points other than x  are neglected, one 

obtains local or classical theory of elasticity from the nonlocal elasticity. It is easily 
seen from the above equation that the local elastic rod theory is recovered when the 
parameter 0e  is set identically to zero. In molecular simulations [11], the CNTs were 
subjected to a compression displacement, δ , on one clamped end. The general 
equation (6) can then be re-written as follows involving Dirac Delta function and 
Heaviside function to model the above molecular simulation process of a CNT with 
its left end clamped and its right end subjected to a displacement covering the domain 
from LxL ≤<− : 
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where −L  is assumed to be very close to L  to model a very small portion of enforced 
displacement domain on the right end of the CNT; LAEP /δ=  is the compressive 

load based on the local elastic rod theory; the 
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00δ  are the Heaviside function and Dirac Delta 

function respectively, and the prime indicates the derivation of the function with 
respect to x . Solving the above mechanics problem based on the boundary condition, 

0)0( =u   and δ=)(Lu , leads to the displacement at the edge of the enforced domain 

−= Lx  as: 
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which shows the equivalent size-dependent Young’s modulus in the form of  
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derived from the nonlocal elastic rod theory will be verified from the molecular 
simulation results, and an estimate of the scale coefficient is proposed for the 
application of nonlocal elasticity in analysis of CNTs based on the verification. 

 
 

3. Simulations and discussions 
 
Molecular mechanics simulations have been conducted via the commercial 

software Materials Studio to study the in-plane stiffness of (8,0), (8,8), and (8,4) 
SWNTs with various lengths, subjected to compression [11]. The interatomic 
interactions in Materials Studio are described by the COMPASS force field 
(condensed-phased optimized molecular potential for atomistic simulation studies) 
[13]. This is the first ab initio force field that was parameterized and validated using 
condensed-phase properties, and it has been proven to be applicable in describing the 
material behaviors, including fracture, of CNTs [11,14]. The simulations were carried 
out at a temperature of 1K to avoid the thermal effect. In view of the current debate 
on the thickness of CNTs, the derivation of the in-plane stiffness, Et , rather than the 
module E , would avoid arguments on the values of the effective thickness of CNTs.  
In the simulations, the two ends of three SWNTs with various lengths were clamped 
through prohibiting any motions on all atoms on the two edges [11]. In compression 

motion of CNTs, the incremental displacement step was chosen to be 
0

1.0 A . The 
following simulations investigate the ratio of the length-dependent stiffness via the 
nonlocal elastic rod theory to that from local elasticity, which is independent of CNT 
length.  
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Figure 1. In-plane stiffness ratio of zigzag (8,0) SWNT with various lengths. 
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     The in-plane stiffness ratio of the zigzag (8,0) CNTs with the lengths of 

nmL 218.2= , nmL 159.4= , nmL 099.6= , nmL 041.8= , nmL 121.10= , and 
nmL 993.11= , from molecular simulations is shown in figure 1 by the solid line.  It 

was determined that the stiffness increases from 2/001.354 mJEt =  to 
2/181.375 mJEt =  from the shorter size, nmL 218.2= , to the larger size, 

nmL 993.11= . The asymptotic value is independent of size of CNTs, and hence can 
be viewed as the in-plane stiffness of the structure based on local elastic rod theory. 
Therefore, the stiffness ratio is calculated by the ratio of the in-plane stiffness of 
CNTs at every specific length to the asymptotic value. Obvious scale effect on the in-
plane stiffness is secured for tubes shorter than nm10 .  On the other hand, the 
stiffness ratio versus the length of CNTs is plotted with different markers shown in 
the figure at scale coefficient, nmae 4.00 = , nmae 7.00 = , and nmae 0.10 =  
respectively. The variation of the ratio is clearly observed from the dotted markers, 
and is qualitatively in agreement with the molecular simulation results. It is shown 
that the ratio is less than unit for shorter CNTs, but approaches to unit at larger sizes, 
showing a low stiffness of the material for shorter sizes. From comparison of the 
results with those from the molecular simulations, it shows that the ratio at a smaller 
scale coefficient always provides a higher value, whereas the ratio at a larger scale 
coefficient shows a lower value, at ever length of CNTs. Among the three scenarios, 
the variation of the ratio at nmae 7.00 =  fits the molecular simulation results with the 
least difference, except only at nmL 218.2= . Overall, the comparison of the ratio 
between the nonlocal theory and the molecular simulation results first verifies the 
applicability of the nonlocal elastic rod theory in the estimation of the length-
dependent stiffness. Furthermore, the comparison results provide a good estimate of 
the scale coefficient, ae0 , in particular for the evaluation of stiffness of CNTs. There 
haven been various estimates of the value for different physical applications of scale 
effects on material properties. Wang and Hu [12], who adopted the second-order 
strain gradient, proposed that 288.012/10 ==e  be used in the determination of the 
dispersion curves via elastic beam theories and molecular dynamics method. Such 
evaluation is in excellent agreement with the dispersion curves obtained via the Born-
Karman model of lattice dynamics at smaller values of wavenumbers [8]. However, 
Eringen [2] proposed 0e  as 39.0  so that the matching is perfect at the edge of the 
Brillouin zone, at a larger wavenumber. On the other hand, Eringen also proposed 

31.00 =e  based on the comparison of the Rayleigh surface wave via nonlocal 
continuum mechanics and lattice dynamics. Therefore, it can be concluded that the 
adopted value of the coefficient 0e  depends on the crystal structure in lattice 
dynamics and the nature of physics under investigation. Wang [2] developed nonlocal 
Timoshenko beam theory to obtain more accurate dispersion solutions for CNTs. A 
conservative estimate of the scale coefficient was proposed as nmae 0.20 <  for a  
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single wall CNT if the measured frequency value for the SWNT is assessed to be 
greater than 10 THz [2]. So far, there is no rigorous study made on estimating the 
scale coefficient. It is concluded that the scale coefficient should be different for 
different physical applications of scale effects on material properties. The estimate of 
the value nmae 7.00 =  in this manuscript is only recommended for the estimation of 
the stiffness of CNTs subjected to axial loading.  
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Figure 2. In-plane stiffness ratio of armchair (8,8) SWNT with various lengths. 
 
 
 

The in-plane stiffness ratio of (8,8) CNTs with lengths of nmL 656.2= , 
nmL 349.4= , nmL 283.6= , nmL 692.8= , nmL 574.11= , and nmL 371.14= , is 

shown in figure 2 by the solid line via the molecular simulations. An asymptotic 
value of the in-plane stiffness was found to be 2/579.377 mJEt = at nmL 371.14= . 
Similarly, the stiffness ratio is calculated by the ratio of the in-plane stiffness of 
CNTs at every specific length to the asymptotic value. The ratio via the nonlocal 
elastic rod theory is displayed by various markers at nmae 4.00 = , nmae 7.00 = , and 

nmae 0.10 =  respectively. The variation of the ratio is observed again from the figure, 
indicating the lower stiffness for shorter SWNTs and an asymptotic stiffness for 
longer CNTs. In addition, the result via the nonlocal elastic rod theory at nmae 7.00 =  
is found to be closer to that via molecular simulations, even at the lower length 

nmL 656.2= .  
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Figure 3. In-plane stiffness ratio of chiral (8,4) SWNT with various lengths. 
 
 
         Figure 3 shows the comparison of the stiffness ratio of chiral (8,4) CNTs 
between the nonlocal theory and the molecular simulation results for CNTs with 
lengths of nmL 204.2= , nmL 419.4= , nmL 628.6= , nmL 837.8= , nmL 109.10= , 
and nmL 151.12= .  From molecular simulations, the asymptotic value for the in-
plane stiffness of the chiral CNTs is 2/70.379 mJEt = . The length measurements of 
the chiral CNTs are more tedious than those of achiral CNTs since the repeated units 
display themselves in a helical direction, not a straightly longitudinal direction in 
achiral tubes. Therefore, the solid line representing the molecular result is not as 
smooth as those for achiral tubes because of the coarse length measurement for the 
chiral CNTs. From the comparison of the stiffness ratio via the nonlocal elasticity and 
the molecular simulations, the length-dependent stiffness for shorter CNTs is again 
examined. In addition, the scale coefficient nmae 7.00 =  is found to be a more 
adequate value as well for the application of nonlocal elasticity in estimation of 
stiffness of CNTs. 

 
 
4. Conclusions 
 
The manuscript investigates the application of nonlocal elastic rod theory in 

estimation of length-dependent stiffness of SWNTs. The results from the nonlocal 
elasticity demonstrate the length-dependent stiffness for shorter SWNTs. The 
prediction from the nonlocal elastic theory is verified through comparison studies  
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from the molecular simulation results. The value of nmae 7.00 =  is recommended for 
the application of the nonlocal theory in estimation of stiffness of CNTs based on the 
compression studies. Future research will be conducted on the applicability of 
nonlocal elasticity in stability and dynamics analysis of CNTs. 
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