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Abstract

The adiabatic parameter dynamics of solitons, due to the generalized

Kawahara equation are obtained in this paper. The soliton perturbation

theory is exploited to obtain the results. Also, the change in the velocity

is obtained in presence of these perturbation terms.

1 INTRODUCTION

The dimensionless form of the generalized Kawahara equation (gKE) is given

by

qt + aqpqx + bqxxx − cqxxxxx = 0 (1)
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where a, b and c are constant parameters and p > 0. This equation is studied

in the context of shallow water waves in fluid dynamics, particularly for p = 1

and p = 2.

It needs to be noted that (1) will fail the Painleve test of integrability for

arbitrary p. Thus the classical methods of studying this gKE namely Inverse

Scattering Transform, Backlund Transform or Hirota’s bilinear method will

not work. However, (1) supports 1-soliton solution that is given by [1]

q(x, t) =
A

cosh
4
p B (x− x̄(t))

(2)

where

A =

[
b2

ac

(p + 1) (p+ 2)2 (p+ 4)

(p2 + 4p+ 8)2

] 1
p

(3)

B =
p

2

√
b

c (p2 + 4p+ 8)
(4)

where A is the amplitude of the soliton while B is the inverse width of the

soliton and x̄ is the center position of the soliton. Thus, from (3) and (4), the

amplitude and the inverse width are related as

Ap =
16cB4

ap4
(p+ 1)(p+ 2)2(p+ 4) (5)

The velocity of the soliton is given by

v =
dx̄

dt
(6)

2 MATHEMATICAL PROPERTIES

Equation (1) has at least two integrals of motion that are known as linear

momentum (M) and energy (E) [1, 4, 10]. These are respectively given by

M =
∫ ∞

−∞
qdx =

A

B

Γ
(

1
2

)
Γ

(
2
p

)
Γ

(
1
2

+ 2
p

) (7)
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and

E =
∫ ∞

−∞
q2dx =

A2

B

Γ
(

1
2

)
Γ

(
4
p

)
Γ

(
1
2

+ 4
p

) (8)

These conserved quantities are calculated by using the 1-soliton solution given

by (2). Also, in (6) and (7), Γ(x) is the usual gamma function that is defined

as

Γ(x) =
∫ ∞

0
e−ttx−1dt (9)

The center of the soliton x̄ is given by the definition

x̄ =

∫ ∞
−∞ xqdx∫ ∞
−∞ qdx

=

∫ ∞
−∞ xqdx

M
(10)

where M is defined in (7). Thus, the velocity of the soliton is given by

v =
dx̄

dt
=

∫ ∞
−∞ xqtdx∫ ∞
−∞ qdx

=

∫ ∞
−∞ xqtdx

M
(11)

On using (1), (2) and (6), the velocity of the soliton reduces to

v = −4b2

c

p2 + 4p+ 4

(p2 + 4p+ 8)2 (12)

3 PERTURBATION TERMS

The perturbed fKdV equation that is going to be studied in this paper is given

by

qt + aqpqx + bqxxx − cqxxxxx = εR (13)

where, in (12), ε is the perturbation parameter and 0 < ε � 1, while R gives

the perturbation terms. In presence of perturbation terms, the momentum and

the energy of the soliton do not stay conserved. Instead, they undergo adia-

batic changes that lead to the adiabatic deformation of the soliton amplitude,

width and a slow change in the velocity [3]. Using (8), the law of adiabatic

deformation of the soliton energy is given by

dE

dt
= 2ε

∫ ∞

−∞
qRdx (14)
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while the adiabatic law of change of the velocity of the soliton, from (10), is

given by

v = −4b2

c

p2 + 4p+ 4

(p2 + 4p+ 8)2 +
ε

M

∫ ∞

−∞
xRdx (15)

In this paper, the perturbation terms that are going to be considered are

R = αq + βqxx + γqxqxx + δqmqx + λqxxx + νqqxqxx

+σq3
x + ξqxqxxxx + ηqxxqxxx + ρqxxxx + ψqxxxxx + κqqxxxx (16)

In R, dissipation gives rise to the first two terms and so α and β are small

dissipative coefficients [4]. Also, δ or ψ represent the coefficient of higher order

nonlinear dispersive term [4] and m is a positive integer with 1 ≤ m ≤ 4 [7].

The coefficient of ρ provide a higher order stabilizing term and must therefore

be taken into account [4]. The perturbation term given by coefficient of η was

recently considered [6] while the remaining perturbation terms arise in the

context of extended version of integrable equations [7].

3.1 APPLICATIONS

In presence of these perturbation terms, the adiabatic variation of the energy

of the soliton is given by

dE

dt
=

2εA2

Bp2
Γ

(
1
2

) ⎡
⎣256κ(p2 + 4p − 72)AB4

p(p + 4)(p + 12)

Γ
(

6
p

)
Γ

(
1
2 + 6

p

)
1

p(p + 8)(3p + 8)
{
αp2(p + 8)(3p + 8) − 16βB2p(3p + 8) + 256ρ(p + 3)B4

} Γ
(

4
p

)
Γ

(
1
2 + 4

p

)
⎤
⎦

(17)

The law of the change of velocity for the given perturbation terms in (16) is

given by

v = − 2aA2(p+ 2)2

b (p2 + 4p+ 8)2 + ε
Γ

(
2
p

+ 1
2

)
Γ

(
2
p

)
⎡
⎣ δAm

m+ 1

Γ
(

2m+2
p

)
Γ

(
1
2

+ 2m+2
p

)

+
8AB2

p2(p+ 8)(3p+ 8)

{
p(3p+ 8)(γ − 2λ) − 16B2(p+ 3)(3ξ − η)

} Γ
(

4
p

)
Γ

(
1
2

+ 4
p

)
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+
8A2B2

3p(p+ 6)(p+ 12)
{νp− 2σ(p+ 18)} Γ

(
6
p

)
Γ

(
1
2

+ 6
p

)
⎤
⎦ (18)

4 CONCLUSIONS

In this paper, soliton perturbation theory is used to study the gKE. In future,

it is possible to extend these perturbation terms to include other perturbation

terms that include the non-local ones too. The quasi-stationary aspects of the

perturbed soliton in presence of such perturbation terms will be studied and

reported in future publications.
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