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Abstract 
 

Perturbation methods depend on a small parameter which is difficult to be found 
for real-life nonlinear problems. To overcome this shortcoming, a powerful analytical 
method is introduced to solve the thin film flow problem with a third grade fluid on 
an inclined plane. Here, Adomian Decomposition method is applied to solve 
nonlinear equation of the velocity field. The results obtained by this method are then 
compared with the traditional perturbation method to illustrate the effectiveness of 
this method. Finally volume flux and average film velocity is given graphically. 
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1. Introduction 
 

Most scientific problems and phenomena in different fields of science and 
engineering occur nonlinearly. Except in a limited number of these problems, we 
encounter difficulties in finding their exact analytical solutions.  

Perturbation method provides the most versatile tools available in nonlinear 
analysis of engineering problems, but its limitations hamper its application: 
1. Perturbation method is based on assuming a small parameter. An overwhelming 

majority of nonlinear problems, especially those having strong nonlinearity, have 
no small parameters at all. 

2. The approximate solutions obtained by the perturbation methods, in most cases, 
are valid only for the small values of the small parameter. The perturbation 
solutions are generally uniformly valid as long as a specific system parameter is 
small. However, we cannot rely fully on the approximations, because there is no 
criterion on which the small parameter should exist. Thus, it is essential to check 
the validity of the approximations numerically and/or experimentally. 
To overcome these difficulties, approximate analytical solutions, such as the tanh 

method [1,3], the sine-cosine method [2,3], the homogeneous balance method [4,5], 
the variational iteration method [6-8], the homotopy-perturbation method [9-12] and 
the Adomian decomposition method [13-15] are introduced, among which Adomian 
decomposition method [13-15] is the most effective and convenient one for both 
weakly and strongly nonlinear problems. This method has been shown to effectively 
and accurately solve a large class of nonlinear problems with approximations 
converging rapidly to accurate solutions. 

There are few exact solutions of the Navier-Stokes equations because of their 
highly nonlinearity and these become rare when non-Newtonian fluids equations are 
used. Perturbation techniques [16,17] are widely applied for obtaining approximate 
solutions to these equations involving a small parameter ε . But they have limitations 
that mentioned above. 
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In this paper, we apply Adomian Decomposition method to study the thin film 

flow problem with a third grade fluid on an inclined plane. The capability and 
effectiveness of this method are revealed by obtaining the analytical solutions of the 
model and comparing with perturbation method. 
 
 

2. Fundamentals of Adomian decomposition method 
 
Let us discuss a brief outline of the Adomian Decomposition method. For this, we 

consider a general nonlinear equation in the form [18] 
gNuRuLu =++                                                                                                           (1) 

where L  is the highest order derivative which is assumed to be easily invertible, R  
the linear differential operator of less order than L , Nu  presents the nonlinear terms 

and g  is the source term. Applying the inverse operator 1−L  to the both sides of Eq. 

(1), and using the given conditions we obtain: 
 

( ) ( ) ( )NuLRuLxfu 11 −− −−=                                                                                          (2) 

where the function ( )xf  represents the terms arising from integration the source term 

( )xg , using given conditions. For nonlinear differential equations, the nonlinear 

operator ( )uFNu =  is represented by an infinite series of the so-called Adomian 

polynomials 

( ) ∑
∞

=

=
0m

mAuF                                                                                                                (3) 

The polynomials mA  are generated for all kind of nonlinearity so that 0A  depends 

only on 0u  , 1A depends on 0u  and 1u , and so on. The Adomian polynomials 

introduced above show that the sum of subscripts of the components of u  for each 
term of mA  is equal to n  [19]. 

The Adomian method defines the solution ( )xu  by the series 

∑
∞

=

=
0m

muu                                                                                                                     (4) 
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In the case of ( )uF , the infinite series is a Taylor expansion about 0u , as follows: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
⋅⋅⋅+

−′′′+
−′′+−′+=

!3!2

2
0

0
0

0000
uuuFuuuFuuuFuFuF                        (5) 

By rewriting Eq. (4) as ...3210 +++=− uuuuu , substituting it into Eq. (5) and 

then equating two expressions for ( )uF  found in Eq. (5) and Eq. (3), defines 

formulas for the Adomian polynomials in the form of [18] 

( ) ( ) ( )( ) ( ) ( ) ....
!2

.........
2

21
0210021 +

++′′+++′+=++=
uuuFuuuFuFAAuF              (6) 

By equating terms in Eq. (6), the first few Adomian’s polynomials ,0A ,1A ,2A 3A  

and 4A  are given: 

( )00 uFA =                                                                                                                    (7) 

( )011 uFuA ′=                                                                                                                 (8) 

( ) ( )0
2
1022 !2

1 uFuuFuA ′′+′=                                                                                            (9) 

( ) ( ) ( )0
3
1021033 !3

1 uFuuFuuuFuA ′′′+′′+′=                                                                   (10) 

( ) ( ) ( ) ( )0
)(4

102
2
1031

2
2044 !4

1
!2

1
!2

1 uFuuFuuuFuuuuFuA iv+′′′+′′⎟
⎠
⎞

⎜
⎝
⎛ ++′=                      (11) 

M  
Now that the mA  are known , Eq. (3) can be  substituted in Eq.(2) to specify the 

terms in the expansion for the solution of Eq. (4). 
 
 

3. Mathematical modeling of the problem 
 
The basic equations governing the motion of an incompressible fluid, neglecting 

the thermal effects, are [20]: 
0=⋅∇ V                                                                                                                     (12) 

τρρ divfp ++−∇=
Dt
DV                                                                                             (13) 
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where ρ  the constant density, V  the velocity vector, p the pressure, τ the stress 

tensor and D / Dt  denoting the material derivative. 
 
The stress tensor defining a third grade fluid is given by [20] 

∑
=

=
3

1i
iSτ                                                                                                                    (14) 

where 
 

11 AS μ=                                                                                                                      (15) 
2
12212 AAS αα +=                                                                                                        (16) 

( ) ( ) 12312212313 AtrAAAAAAS βββ +++=                                                                     (17) 

 
Here μ  is the coefficient of viscosity and 2121 ,,, ββαα  and 3β , are material 

constants [20]. The Rivilin-Ericksen tensors, nA  are defined by IA =0 , the identity 

tensor, and 

( ) ( ) ,11
1

−−
− ∇+∇+= n

T
n

n
n AVVA

Dt
DAA 1≥n                                                                    (18) 

We consider a thin film of an incompressible fluid of third grade flow down an 
inclined plane. The ambient air is assumed stationary so that the flow is due to gravity 
alone. We assume that the surface tension of the fluid is negligible and the film is of 
uniform thicknessδ . We seek a velocity field of the form 

( )( )0,0,yuv =                                                                                                               (19) 

 
Substituting for v and τ in Eqs. (12) and (13) and assuming the absence of 

pressure gradient we obtain 

( ) 0sin6 2

22

322

2

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ αρββμ g

dy
ud

dy
du

dy
ud                                                                (20) 

Subject to the boundary conditions of 
( ) ,0=yu at 0=y                                                                                                         (21) 

,0=
dy
du at δ=y                                                                                                           (22) 
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4. Solution of the problem 
 
In this section, we study the velocity field and find expressions for ( )yu  by 

traditional perturbation method and Adomian decomposition method. 
 
4.1. Solution by perturbation method 

In Eq. (20), we take
μ
βε = , where 32 βββ += . So Eq. (20) transforms to [20]: 

0sin6 2

22

2

2

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

μ
αρε g

dy
ud

dy
du

dy
ud                                                                              (23) 

Let us assume ε  as a small parameter. In order to solve Eq. (23) by traditional 
perturbation method, we expand ( )yu  in the form of 

( ) ( ) ( ) ( ) ⋅⋅⋅+++= yuyuyuyu 2
2

10, εεε                                                                           (24) 

Substituting Eq. (24) into Eq. (23) and rearranging based on powers of ε -terms, 
we can obtain: 

0sin: 2
0

2
0 =+

μ
αρε g

dy
ud                                                                                             (25) 

       ( ) 000 =u , ( )
00 =

dy
du δ                                                                                            (26) 

06: 2
0

22
0

2
1

2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

dy
ud

dy
du

dy
ud

ε                                                                                     (27) 

       ( ) 001 =u , ( )
01 =

dy
du δ                                                                                             (28) 

01206: 2
0

2
10

2
1

22
0

2
2

2
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

dy
ud

dy
du

dy
du

dy
ud

dy
du

dy
udε                                            (29) 

 ( ) 002 =u , ( )
02 =

dy
du δ                                                                                            (30) 

Solving Eq. (25)-(30), we obtain: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
sin 2

0
yygyu δ

μ
αρ                                                                                           (31) 
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( ) ⎟⎟
⎠

⎞
−+⎜⎜

⎝

⎛
−=

32312
sin6

32234

3

333

1
yyyygyu δδδ

μ
αρ                                                        (32) 

( ) ⎟⎟
⎠

⎞
−+−+⎜⎜

⎝

⎛
−=

1836
5

9
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6
5

3
sin36
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423324

5

5

555

2
yyyyyygyu δδδδδ

μ
αρ                      (33) 

And approximate solution obtained by perturbation method will be as follows: 

( ) ⎟⎟
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sin 32234

3

3332 yyyygyygyu δδδ
μ

αρεδ
μ

αρ  

⎟⎟
⎠
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−+

1836
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9
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6
5

3
sin36
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423324

5

5
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2 yyyyyyg δδδδδ

μ
αρε                    (34) 

 
 
4.2. Solution by Adomian Decomposition method 

Following the Adomian decomposition analysis, the linear operator is defined as: 

2

2

dy
dL =                                                                                                                      (35) 

Consequently, Eq. (20) can be written as follows: 

μ
αρ

μ
β

μ
αρ

μ
β sin6sin6 2

22
gNug

dy
ud

dy
duLu −−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                                                        (36) 

where 32 βββ += . The nonlinear term is 

∑
∞

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
2

22

m
mA

dy
ud

dy
duNu                                                                                            (37) 

Hence, using Eqs. (7) - (11) gives: 
2 2

0 0
0 2

du d uA
dy dy

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                                                                     (38) 

2 22
0 0 01 1

1 2 22du du d ud u duA
dy dy dy dy dy

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

                                                                          (39) 

2
0

22
1

2
1

2
10

2
2

22
0

2 2
dy

ud
dy
du

dy
ud

dy
du

dy
du

dy
ud

dy
duA ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                                                  (40) 
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2
0

2
21

2
1

22
1

2
1

2
20

2
2

2
10

3 222
dy

ud
dy
du

dy
du

dy
ud

dy
du

dy
ud

dy
du

dy
du

dy
ud

dy
du

dy
duA +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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2
0

22
2

2
1

2
21

2
2

22
1

2
2

2
20

4 22
dy

ud
dy
du

dy
ud

dy
du

dy
du

dy
ud

dy
du

dy
ud

dy
du

dy
du

A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=                          (42) 

M  

Applying the inverse operator 1−L  to both sides of Eq. (36), we obtain: 

μ
αρ

μ
β sin6 111 gLNuLLuL −−− −−=                                                                                (43) 

If L is a second-order operator, 1−L  is a twofold indefinite integral. Performing 
the indicated operations we obtain: 

( ) ( ) 21 sin
2
1600 ygNuL

dy
duyuu

μ
αρ

μ
β

−−=−− −                                              (44) 

thus, 

( ) ( ) ( ) 2
0

sin
2
100 yg

dy
duyuyu

μ
αρ

−+=                                                                            (45) 

Applying boundary conditions given in Eqs. (21) and (22), we obtain: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
sin 2

0
yygyu δ

μ
αρ                                                                                           (46) 

The next iterates are determined recursively by 

mm ALu 1
1 6 −
+ −=

μ
β                                                                                                        (47) 

Using above iteration formula, we obtain: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

32312
sin6

32234

3

333

1
yyyygyu δδδ

μ
β

μ
αρ                                               (48) 

( ) ⎟⎟
⎠

⎞
−+−⎜⎜

⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1836
5

9
10

6
5

3
sin36

65
423324

52

5

555

2
yyyyyygyu δδδδδ

μ
β

μ
αρ               (49) 

and so on. In the same manner the rest of the components of the iteration formula can 
be obtained. Upon summing above iterations, the second order approximation is 
expressed as 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

32312
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2
sin 32234

3
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μ
β

μ
αρδ

μ
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       ⎟⎟
⎠

⎞
−+−+⎜⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
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5

9
10

6
5

3
sin36
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423324
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5

555
2 yyyyyyg δδδδδ

μ
β

μ
αρε          (50) 

which is the same as that obtained by perturbation method. 
Now let us do the following change of parameters: 

δ
νuu =* ,

δ
yY = , 4

*

ρδ
βνβ = , 2

3
* sin

ν
αδ gm =                                                                 (51) 

where ν is kinematic viscosity, *u  is dimensionless velocity and *β  is non-Newton 

parameter. After parameter change, Eq. (50) transforms into 

( )

⎟
⎟

⎠

⎞
−+−⎜⎜

⎝

⎛
+−

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

1836
5

9
10

6
5

3

36
32312

6
2

65
432

2523432

YYYYYY

mYYYYmYYmYu ****** ββ

                             (52) 

It is worth pointing out that if we set the non-Newton parameter equal to zero, 

i.e. 0* =β , non-Newtonian solution, i.e. Eq. (52), transforms into Newtonian solution. 

 
 

5. Flow rate and average velocity 
 
After finding expression for velocity profile, the flow rate per unit width is given 

by [20] 

( )dyyu
W
Q

∫=
δ

0
                                                                                                            (53) 

where W is width of the film. Using Eq. (50) we obtain the following expression for 
the flow rate: 

7
52

5
3

3 sin
7

12sin
5
2

3
sin δ

μ
αρ

μ
βδ

μ
αρ

μ
βδ

μ
αρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ggg
W
Q                          (54) 

Introducing 
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μ
αρϕ sing

= ,
μ
βψ =                                                                                                    (55) 

transforms Eq. (54) into 

752533

7
12

5
2

3
1 δϕψδψϕϕδ +−=

W
Q                                                                              (56) 

The average velocity over the cross section of the film is 

( ) 652432

7
12

5
2

3
1 δϕψδψϕϕδ

δ
+−==

W
Qyu                                                                  (57) 

 
 

6. Results and discussions 
 

Fig. 1 shows the dimensionless velocity profile with different values of *β , as 

non-Newton parameter, and given *m . It is apparent that the velocity profile 
converges to the Newtonian fluid velocity profile as the non-Newton parameter 
decreases. 

The velocity profile for different values of *m  and given *β  is depicted in Fig. 2 

where it is obvious that when we decrease *m , the velocity profile meets the 
Newtonian fluid velocity profile. 

Fig.3 represents the average velocity over the cross section of the film. As it is 
seen when we equal ψ  to zero, the fluid shows the Newtonian fluid behavior. 

 
 

7. Conclusion 
 
In this paper Adomian decomposition method has been successfully used to 

obtain the velocity profile of thin film flow of a third grade fluid down an inclined 
plane. The results obtained by decomposition method are in excellent agreement with 
perturbation method. But using the common perturbation method is based upon the 
existence of a small parameter, so developing the method for different applications is 
not easy and finding this small parameter is also difficult. But Adomian  
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decomposition method does not need any small parameter and can be applied to wide 
class of nonlinear problems, whether or not with small parameter. 

In conclusion, Adomian decomposition method provides highly accurate 
numerical solutions for nonlinear problems. It also has many merits in comparison 
with other methods, such as: 

1. Adomian decomposition method does not require small parameters which are 
needed by perturbation method. 

2. Adomian decomposition method avoids linearization and physically 
unrealistic assumptions. 
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Fig. 1. The dimensionless velocity profile with different values of *β  and given *m . 
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Fig. 2. The dimensionless velocity profile for different values of *m  and given *β  
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Fig.3. The average velocity over the cross section of the film for given amounts of ψ . 


