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Abstract 

 
The numerical method for static analysis of the non-uniform cantilever column 
under distributed subtangential forces is suggested. The boundaries of divergence 
for tapered cantilever columns subjected to a uniformly distributed subtangential 
load are examined. It is found that in case of uniform cantilever for various 
distributions of the subtangential forces the transition value of the parameter of 
nonconservativeness is equal to 0.5 and buckling load in this point is exactly four 
times larger than buckling load of the corresponding conservative problem. 
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1. Introduction 
 
       Stability of structures subjected to compressive follower forces has been 
treated by many researchers [1-7]. It is known that the type of instability (flutter 
or divergence) of these nonconservative systems depends on the amount of 
boundary conditions, laws of distribution of loading and stiffness, and other 
parameters. For certain regions of the parameters, these structures are of the 
divergence type, whereas outside these regions they are of the flutter type.  
       The rectilinear uniform cantilever column subjected to subtangential end 
force P  is a classical problem in the field of nonconservative stability problems 
(Figure 1). Here α  is the tip angle of the column, γα  is the angle between the 
force and the vertical direction, the parameter ]1,0[∈γ  is known as parameter of 
nonconservativeness. The case 0=γ  corresponds to Euler’s column  
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(unidirectional vertical force) and  1=γ  represents Beck’s column (tangential 
follower force). If 0=γ  the system is conservative (self-adjoint) and hence the 
loss of stability occurs by divergence (static instability). Under increase of 
γ from zero the transition from divergence to flutter (dynamic instability) take 
place when γ  is larger than specific value 5.0=trγ  called transition value. The 
transition point is a double critical point at which the first and second buckling 
load coincides [1-7]. 
 

 
Figure 1. A cantilever column subjected to a tip concentrated subtangential 

follower load.  
 
    The similar behavior takes place for non-uniform cantilevers subjected to tip-
concentrated or distributed subtangential load, however value crγ  depends on 
laws of distribution of loading and stiffness of a column [5-7]. For ],0[ crγγ ∈ , 
divergence appears and critical load can be detected by purely static 
considerations. For the trγγ >  there are no critical loads in the Euler sense 
(divergence) and stability analysis calls for dynamic approach [1-7].   
      It was shown [8,9] that the non-uniform cantilever column under distributed 
or tip concentrated tangential load ( 1=γ ) can lose stability only by flutter, that is 

1<trγ . 
      In the present paper, numerical method for static analysis of stability non-
uniform cantilever columns subjected to distributed subtangential follower forces  
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is suggested. The shooting method is used to solve the linear boundary-value 
problem for the first two buckling loads and the algorithm to find transition value 
from divergence to flutter is suggested. The results for three different types of the 
tapered cantilever subjected to a uniformly distributed subtangential load are 
examined. It is found that in case of uniform cantilever for various distributions of 
subtangential forces the transition value parameter of nonconservativeness is 
equal to 0.5 and critical load in this point is exactly four times larger than 
buckling load of the corresponding conservative problem. 
 
 

2. Formulation of the problem 
 

Consider a rectilinear non-uniform cantilever column subjected to a 
distributed subtangential follower load )(sq , which forms the angle )(sγϕ  with 
the vertical direction at any point of the column axis (Figure 2). The arc length 
coordinate s  measured from the tip of the column, the angle between the vertical 
axis and the tangent to the deformed curve of the column is )(sϕ  and parameter 
of nonconservativeness is γ .  

 
We shall be further limited by case of divergence-type instability. Then based on 
the Euler-Bernoulli beam bending theory, the static linear governing equation can 
be written in the non-dimensional form: 
 
 

)1(0)())(())(( =+′+′′′ ϕγϕϕ sqpsQpsf
 
 
 and the associated boundary conditions are  
 
 

)2(]1;0[,0)1(,0))0()0((,0)0( ⊂==′′=′ sf ϕϕϕ
 
 
 where p - non-dimensional parameter of load and 
 

∫=
s
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Figure 2. A cantilever column subjected to a distributed subtangential follower 

load.  
 

 
The moment of inertia for the three tapered columns considered in this paper is 
represented by [7]: 

)4(,)1()()( n
RR sIsfIsI εε +−==  

where 1,/1,12/3 =−== nBBDBI RTRR ε  for a column of rectangular cross-
section with linear breadth ( B ) taper (depth being constant); 

,/1,12/3
RTRR DDDBI −== ε  3=n  for a column of rectangular cross-

section with linear depth ( D ) taper (breadth being constant); and 
4,/1,64/4 =−== nDDDI RTRR επ  for a column of circular cross-section 

with linear diameter ( D ) taper;  the subscripts R  and T  indicate the quantities 
at the root and at the tip of the column. The taper parameter value 0=ε  in the 
present analysis corresponds to the uniform column. 
         It is necessary to find values p  and function )(sϕ  for fixedγ . Once the 
slope )(sϕ  has been found, the Cartesian coordinates of the buckling mode shape 
of the column is readily determined from the relations 
 

∫=−=
1

)5()(,1)(
s

dssyssx ϕ
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3. Method of solution 
 

Let us introduce the following notation in order to solve the linear boundary 
value problem (1),(2): 
 

)6(.))((,)(, 321 ′′=′== ϕϕϕϕϕϕ sfsf
 
As a result, the equations (1),(2) is reduced to the normal system of linear 
differential equations 
 

)7()()(,),(/ 1133221 ϕγϕϕϕϕϕϕ sqpQpsf +′−=′=′=′
 
with initial conditions 

)8(0)0(,0)0(,1)0( 321 === ϕϕϕ
 
and supplementary condition 

)9(.0)1(1 =ϕ
 
        According to shooting method, the solution of the problem is reduced to a set 
of initial-value problems (7),(8) which can be integrated over a given interval 

]1;0[∈s  by a standard numerical method. The values )(γp  are iteratively found 
for fixed values γ  from condition (9). Alternatively, the values )(pγ  can be 
found for fixed values of parameter p .  

Because of the fact that the transition point is a double critical point at 
which the first and second buckling load coincide [1-7], the value of  trγ  can be 
found numerically from condition 

)10(0)( =′ pγ
 

 
 

4. Analysis of the tapered cantilever column 
 
      Using the method of solution outlined above the first two buckling loads and 
transition value for the three different types of the tapered cantilever subjected to 
a uniformly distributed subtangential load 1)( =sq  is examined (Figures 3-5). 
Differential equations (7),(8) were integrated numerically by the fourth-order 
Runge-Kutta method with a fixed step size equal to 0.01.The numerical results 
are presented in Tables 1 were compared with the solutions obtained for step size 
equal to 0.02. The discrepancy between these solutions was found to be within 
0.01%.   
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Table 1.  The results for tapered cantilever under uniformly distributed 

subtangential load 
 
 
 

n ε )0(1p  )0(2p  trγ  )( trp γ  )0(/)( 1pp trγ  
1,3,4 0 7.8373 55.9770 0.5000 31.3494 4.000 

1 0.2 7.4976 51.8109 0.4900 29.2511 3.901 

1 0.4 7.1352 47.3872 0.4778 27.0218 3.787 

1 0.6 6.7421 42.5951 0.4624 24.6068 3.650 

3 0.2 6.8300 44.1721 0.4695 25.3486 3.711 

3 0.4 5.7789 33.1251 0.4316 19.6041 3.392 

3 0.6 4.6568 22.8190 0.3815 14.0825 3.024 

4 0.2 6.5027 40.6872 0.4592 23.5409 3.620 

4 0.4 5.1309 27.3469 0.4082 16.4867 3.213 

4 0.6 3.6956 16.0401 0.3416 10.2155 2.764 

 
        
 
 It is found that for all these cases the transition value trγ and the buckling load 

)( trp γ  decrease as the taper parameter ε increases. It is seen from Table 1 that 

in case of the tapered cantilever )0( >ε  the following inequalities are valid: 
4)0(/)(,5.0 1 << pp trtr γγ . The same results was found for tapered cantilever 

under various distributions of the subtangential load )(sq . For the trγγ >  there 
are no critical divergence loads and stability analysis calls for dynamic approach 
[1-7] 
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Figure 3. The first and second buckling loads for column of rectangular cross-

section with linear breadth taper (n = 1).  
 
 

 

 
Figure 4. The first and second buckling loads for column of rectangular cross-

section with linear depth taper (n = 3) 
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Figure 5. The first and second buckling loads for column of circular cross-section 

with linear diameter taper (n = 4) 
 

 
 
       5. Analysis of the uniform cantilever 
 

Table 2 demonstrates the results of the solutions for uniform cantilever 
under various distributions of the subtangential follower load )(sq .  Differential 
equations (7),(8) were integrated numerically by the fourth-order Runge-Kutta 
method with a fixed step size equal to 0.005. It is important to notice that in any 
case of distribution of the subtangential follower load )(sq  the transition value 

5.0=trγ  and critical load in this point is exactly four times larger than buckling 
load of the corresponding conservative problem (the last column of the Table 2).  
         It is found numerically that first buckling shape do not have any inflection 
points, while the second buckling shape has one inflection point. The transition 
shape form ( trγγ = ) has an inflection point at the root of column. In other words, 
for uniform cantilever the condition 0)1( =′ϕ  corresponds to transition point at 
which the first and second buckling loads coincide and can be used instead of 
(10).  
       It is easy to explain the similar results for uniform cantilever under a tip-
concentrated subtangential follower force [1,3,5,6]. In this particular case the 
solution at the transition point 5.0=trγ  has a simple geometric interpretation. It 
corresponds to buckling of the beam with two hinges [3]. As a result, the 
inflection point is located at the root of column and )0(4)( 1

2 pp tr ==πγ .  
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Table 2. The first two buckling loads for   and   for uniform cantilever under 
various distributions of the subtangential load 

 

)(sq  )0(1p  )0(2p  )5.0()5.0( 21 pp =  )0(/)5.0( 11 pp  

1 7.837347 55.978 31.349390 4.00000 

s  32.201907 209.967 128.807630 4.00000 

2s  81.770715 507.676 327.082877 4.00000 

3s  165.219232 994.814 660.876994 4.00000 

s−1  10.243339 79.322 40.973355 4.00000 

s21−  14.582210 141.545 58.328842 4.00000 

)1(4 ss −  13.064346 94.006 52.257386 4.00000 

 
 

5. Conclusions  
 
        The static stability of the rectilinear non-uniform cantilever column subjected 
to distributed subtangential forces is considered. The results for three different 
types of the tapered cantilever subjected to a uniformly distributed subtangential 
load are examined. It is shown numerically that in the case of uniform cantilever 
for various distributions of the subtangential follower forces the transition value 
of the parameter of nonconservativeness is equal to 0.5 and critical load in this 
point is exactly four times larger than buckling load of the corresponding 
conservative problem. 
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