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Abstract 
 

The authors calculate the profile of a rectangular pipe by imposing the density 
)( xJ  of the limit flow of diffusion on a reactive surface placed  at the centre of the 

pipe to fulfill the law p
x xJJ 0)( =  (where 0J is an independent factor of the co-

ordinates and p a numerical constant ). x is the co-ordinate in the flow direction. 
They consider the flow in the pipe of an Ostwald fluid and link the allowed values 
for p to the behavior index n of the fluid. The particular case of a surface 
uniformly accessible (p = 0) of a Newtonian fluid (n = 1) is studied by integrating 
the equation for mass transfer by approaching the transversal component of the 
speed V * by polynomials in the interval [ ]wy,0 . As the Sherwood number should 
be independent of the x co-ordinate (accessibility hypothesis), they come to show, 
using the error function properties, that the average Sherwood number on the 
central material plan is  written as Sher = a . Pem 1/3 where a is a constant which is 
independent of the Reynolds number. The calculations treat the mass transfer case 
and they are transposable to the heat transfer by substituting the Sherwood 
number by that of Nusselt, and the mass fraction of the conveyed substance by 
temperature. 
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Introduction: 
 
The term uniformly accessible surface from the point of view of diffusion seems 
to have been proposed by D.A. Frank-Kamenetskii [1] in the late thirties to 
declare that the diffusion flow density presents the same value at every point of a 
reactive surface. By using the "quasi-stationary" approximation he shows, for 
example, that a reactive surface of a body having any geometrical shape, placed in 
a large enclosure can be uniformly accessed provided it is smooth, without pores 
and that the reagent is diluted in a large amount of inert gas. The surfaces having 
this remarkable property are rare. The rotating disk, famous in electrochemistry 
[2] and some axisymmetric paraboloids [4, 5, 6] do possess this property. From 
the point of view of heat transfer, these surfaces are those which offer the least 
resistance to conduction and thus allow energy savings. 
 
Starting from the approximations of the boundary layer, the authors study 
experimentally and numerically the influences of the natural convention or those 
of the rotary convection and /or those of the appearance factor on the accessibility 
of the surface immersed in a Newtonian or Ostwaldien fluid in external flows. It 
appears, for example, from the theoretical and the experimental studies of 
R.Bachrun et al that the presence of a natural convection superimposed to the flow 
generated by the rotation of a revolution surface tends to destroy the surface 
uniform accessibility contrarily to the superimposition of a forced flow parallel to 
the surface axis of rotation.  
 
In this study we consider a flattened pipe of an indefinite length in the x-axis 
direction, of a rectangular section and of which the dimension along the y-axis is 
small compared to that along the z-axis, but larger than the thickness of the 
hydrodynamic boundary layers (Figure 1). Let us assume that an insulated 
Ostwald fluid, with constant physical properties, flows in the pipe as a steady 
streamline flow. And let us put in the centre of the pipe a reactive surface S with a 
very small thickness in order not to disturb the flow. We ask the question whether 
it is possible to make the surface uniformly accessible by giving the two walls of 
the pipe a particular profile. More generally, it is to know if, by changing the 
profile of the pipe, given the fluid behavior law, it is possible to impose on the 
flux density limit dissemination a law of variation with the co-ordinate x, of the 
form p

x xJJ 0)( =  (Where 0J  is a factor independent from the co-ordinates and p 
a numerical constant ). 
 
We are studying the case of a uniformly accessible surface (p = 0) when it is the 
case of a Newtonian fluid (n = 1). We suggest a correlation in the form Sher = a. 
Pem 1/3 where Sher is the Sherwood average number on the central material plan 
and a a constant related to the geometry of the channel i.e. its length and its height 
of entrance. The calculations concern the case of material transfer but are also 
transposable to the transfer of heat by replacing the Sherwood number by that of 
Nusselt and the mass fraction of the transported substance by temperature. 
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NOMENCLATURE 

 

h    : half-height of the entrance 
section 
 
h*  : Dimensionless half-height of 

the entrance, =h / L 
L   : Channel length  
D   : Reagent diffusion coefficient  
P    : Fluid index behavior 
Sc  :  Schmidt number  , Sc= ν/D 
Scher : Sherwood average number on 
the central material plane 
Pem : Peclet mass number, = Sc.Re 
Re : Reynolds number ,= (Ue . h)/ ν 
x*  : Dimensionless co-ordinate 

following x , = x/L 
x   : Cartesian co-ordinate defined in 

Figure 1  
y   : Cartesian co-ordinate defined in 

Figure 1 
y* : Dimensionless  co-ordinate 
following y, = y/L 
V*: Dimensionless speed component 
following y, = V/Ue 
V: Speed Component following y 
U : Speed Component following x  
 

U* : Dimensionless speed 
component following x, = U/Ue  
Ue : Velocity of the fluid at the 
channel entrance  
C   : Reagent concentration  
C* : Dimensionless reagent 

concentration, C*= 
epa

e

CC
CC
−
−

 

Ce : Reagent concentration at the 
channel entrance  
Cpa : Reagent concentration on the 
flat wall (Ox, Oz)  
Greek Letters 
δ   :   Boundary layer thickness.     
ε    :   Coordinate when V* = V* 
max   
ν    : kinematic viscosity. 
Lower indexes 
e : Entrance 
pa : Central material plane 
w : When the co-ordinate is on the 
hyperbolic wall 
max : maximum value  
∞: Outside the boundary layer 
Exponents 
*  : Dimensionless Values 
m : Numerical exponent 

 
 
 

Mathematical problem formulation and solving 

 
The density of the limit flux of diffusion on the reactive surface is given by the 
expression: 
 

( )
0=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
y

x y
CDJ        (1) 
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Where D is the reagent diffusion coefficient and C is the concentration of the 
reagent, solution of the following differential system: 
 

2

2

y
CD

y
CV

x
CU

∂
∂

=
∂
∂

+
∂
∂       (2) 

 
CteCCy ==∞= ∞,        (3) 

0,0 == Cy         (4) 
 
U and V are the components following the x and y co-ordinates of the fluid 
relative velocity from the reactive surface. Let us clarify that the origin o of the 
repository (o, xyz) is placed in the middle of the edge of attack of the surface ; x is 
counted in the direction of the flow. 
 
For the Schmidt numbers Sc= ν/D, bigger than of the unit as it is usually the case 
in liquids, when U is close to the surface it can be written: 
 

yfSU x )(0≈         (5) 
 
Where S0 is a coefficient that is independent from the co-ordinates, )(xf a 
function of x and  ν  is a  kinematic viscosity of the fluid.  
 
A very general solution of the system (1) – (5) for the two-dimensional flow that 
concerns us was calculated by Suwono [5.6] is the expression of 
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φ
   (6) 

 
With 
 

02 S=φ         (7) 
 

∫=
x

xx dxf
0

2/1
)()(ξ        (8) 

We see that )(xJ depends of x solely through the function )(xf . By solving the 
equation, comes  
 

33/12/1
0

3/1
3
0

13

)( 3
4

2)3/4(
3

13
2

−

∞

−+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

Γ+
=

φ
S

DCJ
p
xf

p

x

   (9) 



Semi analytical study of a flat surface                                                                177 
 
 
This is the condition that the function must meet in order for the limit flux density 
on the surface S is to be in the form p

x xJJ 0)( =  
 

We know [7] that there are affine solutions for the equation of motion of a fluid 
Ostwald in the boundary layer when hydrodynamics out of this layer, speed is of 
the form 
  

mXUUe 1=          (10) 
 
Where U1 is a coefficient that is independent from the co-ordinates and m a 
numerical exponent. If we take the first term of development of y of the 
component U of the fluid velocity in the boundary layer proposed by (7) and if we 
identify this term with the expression (5), we find, considering (9) and by noticing 
that m is bound to the fluid index of behaviour, the expression: 

3
2)1( +

++=
nnpm

       (11) 

We shall obtain now the profile of the walls of the pipe by realizing the surfaces 
of current of a perfect fluid which would pass by in pipe so as to have in the 
centre the speed given by (11). We find in this way:    
    

( )[ ] CteAmr m ==++ 1sin1 θ       (12) 

.Where r and θ  are the polar co-ordinates of a current point m of the wall, 

Figure1. 

 
Conclusion:  
 
The equation (12) defines curves of hyperbolic shape that have the asymptotes:   

01 =θ           (13) 
 
And 

12 +
=

m
πθ

         (14)  
Only values  

πθπ
≤≤ 22         (15)  

present physical interest [7], where you can deduct inequality  
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01 ≥≥ m          (16)  
 
In addition, the approximations of the boundary layer in a laminar Ostwaldien 
flow are valid for: 
 
0 <n <2 [8]         (17)  
 
From (12) and taking into account (16) and (17), one finds, for example, that 
values allowed for p range from: 

3
1

+   et 
3
2

−  pour n = 0; et 
9
1

−  et 
9
5

−  pour n = 0.5 

 

0  et 
2
1

−  pour n = 1; 
15
1

−  et 
15
7

−  pour n = 1.5 

 

9
1

−   et 
9
4

−  pour n = 2 

 
The value p = 0 corresponds to a surface S uniformly accessible and can be 
obtained both with a Newton fluid (n = 1) as with a pseudo-plastic fluid (n <1). 
The profile of the pipe corresponding to different values of n is then given by the 
equation:  
 

( ) CteAnp n ==⎟
⎠
⎞

⎜
⎝
⎛ ++

3
5sin3/5 θ      (18)  

 
For the Newtonian fluid the pipe profile is a hyperbole equilateral of the following 
equation: 
 

CteAr ==θ2sin2
        (19)  

 
For a rectilinear pipe ( )0et  2 == mπθ  and a Newtonian fluid (n=1), we find 

2
1

−=p . This result is in accordance with the data of the literature [2, 9] because 

the flow over the reactive surface is then a “Blasius flow”. 
 
 
Study of a flat surface uniformly accessible (p = 0) in the case of a 
Newtonian fluid (n = 1): 
 
The case of a flat surface immersed in a laminar and permanent flow of a 
Newtonian fluid is particularly interesting because of the applications it is likely  
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to know, especially in the practice of deposits. For example, the manufacturer of 
photocells must obtain uniform layers for a better return; to overcome the 
phenomena of aberration, the manufacturer of mirrors (especially high resolution 
used in astronomy) is required to obtain uniform deposits. 
 
 
Stating the problem: 
 
Let us consider as schematized on figure 2, a convergent possessing two walls the 
profiles of which are given by the equation CteAr ==θ2sin²  and a Cartesian 
mark (o, x, y, z). The plan (o, x, z), supposed material, is a symmetry plan in 
consideration of both hyperbolic walls and we suppose that the width following 
the direction oz is very big in front of the length l and the height 2h of the 
entrance section of the convergent. Ce the concentration of both hyperbolic sides 
and Cpa the concentration of the reagent on the plan (ox, oz), also assumed 
constant. Let us force a Newtonian fluid to flow under laminar and permanent 
regime in the pipe following ox. We agree that the physical properties of the fluid 
are constant and that the viscous dissipation, the work of pressure forces and the 
radiation are negligible.When the surface is uniformly accessible from the point of 
view of mass transfer and considering the simplifying assumptions, the mass 
transfer equation is written under the following dimensionless form: 
 
Equation of mass transfer in the dimensionless form: 

2

2

*
*1

*
**

y
C

Pemy
CV

∂
∂

=
∂
∂       (20) 

 
with the boundary conditions: 

y *= 0,   C* = 1       (21) 

y* = yw* , C*= 0       (22) 

A double integration of the equation of mass transfer gives us: 

            

     (23) 

 
with 

⎥
⎦

⎤
⎢
⎣

⎡
= ∫

t

dzzVPemtF
0

)(exp)(   

Where C1 and C2 are constants.  
 
Taking into account the requirement to limit C*= 0, it comes: 

 

∫+=
y

dttFCCyC
0

)(21*)(*
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∫+=
*

0

)()(21*)(
y

tdtFCyC                  (24) 

The second condition to limit C* = 1, leads to: 

 

1)()(2
0

−=∫
yw

tdtFC        (25) 

To determine the constant C2, we will cut the interval [ ]wy;0  into three intervals: 

[ ] [ ] [ ] [ ]ww yy ;;;0;0 εεδδ ∪∪=  
 
δ  : Boundary layer thickness. 
ε  : Co-ordinate when V* = V* max . 
y *w :  When the co-ordinate is on the hyperbolic wall. 
 
 
 
The previous relationship can be written as: 

C2 (I1 +I2 +I3) = -1                                                                         (26) 
With 

 

∫∫∫ ===
wy

tdtFItdtFItdtFI
δ

ε

δ

δ

)()(;)()(;)()( 32
0

1  

 
The curves representing the normal component V* of the speed depending on y* 
obtained by [10], Figure 3, shows that in the interval [ ]wy;0 , the normal component 
V* can be approximated by:  
 
 
In the interval [ ]δ;0 , 

( ) 0*** 1
2

1 fαα avecyyV ≈  

In the interval [ ]εδ ; , 

( ) 0232 fααα avecyyV +−≈     
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In the interval [ ]wy;ε , 

( ) 0454 fααα avecyyV +−≈  

 

Calculating I1 

 

Suppose that in the boundary layer, 

 

( ) 0*** 1
2

1 fαα avecyyV ≈   
It comes: 

( )[ ]3
1

31 exp
3

exp)( tatPemtF −=⎥⎦
⎤

⎢⎣
⎡−=

α  

 

With: 
3/1

1
1 3

⎟
⎠
⎞

⎜
⎝
⎛=

αPem
a  

As a following: 

( )[ ]3
1

1
11 ;3/1

3
1 aaI δγ−=

      (27) 

With 

( )[ ] ∫ −=
R

dUUUa
0

3/23
1 )exp(;3/1 δγ  

( )31 taU =   . ( )[ ]3
1aR δ=  

 
Calculating I2 

Suppose that ( ) 0*** 454 fααα withyyV +−≈  
 
The integration of F (t) in the interval [ ]εδ ; , given the properties of integration of 
the error function exp (-x2), provides: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧
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⎞
⎜⎜
⎝
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⎠
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⎜⎜
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3
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where 

( ) ∫ −=
η

π
η

0

2 )exp(2 dtterf  

( )ηerf  : Is the error function  
And 

2/1
2

2 2
⎟
⎠
⎞

⎜
⎝
⎛=

αPema          

        

Calculating I3 
 
Let us put that: 

( ) 045
*

4 fααα avecyyV +−≈  

 
We get then: 
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α
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With 

 ⎟
⎠
⎞

⎜
⎝
⎛=

2
4

3
αPema  

Knowing I1, I2 and I3   and taking into account the relationship C2 (I1 + I2 +I3) = -1 

It comes: 

( )( ) ( ) ( )[ ]δπδγ −+

−
=

−− *
2

3*
2

1
2

3
1

1
1

2

exp
2

,3/13/1

1

ww yaerfyaaaa
C  

We deduct: 

0**
*

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
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It comes: 

( )[ ] ( ) ( )[ ][ ]δπδγ −+

−
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2
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2

1
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1

1
1 exp

2
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When the surface is uniformly accessible, the Sherwood number is independent 
from x*. As a result, Sher must be independent from *

wy , which is a function of 
abscissa x* 
 
To be so, the second term in the denominator should be negligible. So: 

( )[ ] 13
1,3/1

1 a
a

Sher
δγ

−
=     

Assuming that ( )31aδ is very big, we have: 

Sher ≈ Cte a 1
1   3/1

1PemCteα≈  

The curves representing the variation of the velocity component V* in function of 
y* (Figure 3), obtained by (10) shows that 1α  was totally independent from the 
Reynolds number and depends only on h*. 

 
So: 

3/1PemCteSher ≈  
According to the results of the numerical analysis of [10]. 
 
 
Conclusion: Now we can assert that a flat surface, situated in the centre of a pipe 
of which the walls are hyperbolic and crossed by a Newtonian fluid of constant 
physical properties in permanent laminar flow is uniformly accessible from the 
point of view of mass transfer and that the Sherwood average number on the 
central material plane is written Sher = a. Pem1/3  . The constant a is related to the 
geometry of the channel i.e. its length and its entrance height. The calculations 
concern the case of mass transfer but are also transposable to the transfer of heat 
by replacing the Sherwood number by that of Nusselt and the mass fraction of the 
transported substance by temperature. 
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Figure 1: representation of a point M and co-ordinated r and θ   

 
 
 
 
 
 

 
(a) (b) 

 
Figure 2: Schematic representations: (a) of the pipe and of the co-ordinates; 

 (b) of the longitudinal section of the pipe. 
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(a) 

 
(b) 

  
(c) 

 
(d) 

Figure3 : Variations of the dimensionless transversal velocity  V* versus, the 
dimensionless normal co-ordinate   y* for h*=1/20, different values of  x* and 
Reynolds Re : (a) Re=100 ; (b) Re=300 ; (c) Re=500 ; (d) Re=800 

 
 
 
 


