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Abstract 

 
     In this paper the formalism of Hamiltonian system ( , , )X Hω  on the 
symplectic manifold due to Reeb [2] given in Abraham and Marsden [4] and 
Arnold[5] is used to derive the equations of motion (1) for a particle in a line with 
a bona fide solution  (2) for a free particle in three-space with Hamiltonian and 
non-Hamiltonian flow, it is also shown that the non-Hamiltonian flow can  be 
converted into a Hamiltonian flow by changing symplectic form and the phase 
space. 
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(1.1) Introduction 
 
   The use of differential form in mechanics and its eventual formulation in terms of 
symplectic manifolds has been slowly evolving since Cartan [1]. 
    In a closed system the energy is constant as the physical system moves in time. For 
any given physical system, each known conserved quantity provides an equation that 
can be very useful in the analysis of the system. But energy is more than a conserved 
quantity, it determine the equation of motion. All conceivable information about the 
system is hidden in the energy formula. Unpacking this information is a mathematical 
problem. In this paper we will use the Hamiltonian system to derive the equations of 
motion in classical mechanics from the energy function and the kinetics of phase space. 
In other words, we will show how a real-valued function on a symplectic manifold 
determines a vector field. The energy function is known as Hamiltonian function and is 
denoted by H. The corresponding vector field on phase space is called a Hamiltonian 
vector field and is denoted by HX .This vector field corresponds naturally to a system 
of first-order differential equations on phase space, which in physical system is 
equivalent to Newton’s second law (Force = mass ×  acceleration). The solution of the  
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differential equations is the Hamiltonian flow. Physically the Hamiltonian flow gives 
us possible physical motions. 
 
 
(1.2) Hamiltonian System 
 
        A general Hamiltonian system consists of a manifold X , possibly infinite 
dimensional together with a (weakly) non-degenerate closed two-form ω  on X (i.e. 
ω  is an alternating bilinear form on each tangent space xT X  of X , 0dω = , and for 

, ( , ) 0xx X u vω∈ =  for all xu T X∈  implies 0v = ) and a Hamiltonian function 
:H X R→ .Then X , H, ω determine in nice cases, a vector field HX  called the 

Hamiltonian vector field. 
 
    Let X  be a Banach manifold and let X o  be a manifold domain of X . Let H be a 
C∞ function on X o  into R  called the Hamiltonian or energy function, then for each 
x X∈ o , :x xd H T X R→o  is a continuous linear function. Letω be aC∞ covariant 
tensor field of order two on aC∞ manifold domain X o  such that for each x X∈ o , 

:x x xT X T X Rω × →o o  is non-degenerate, for each x X∈ o , let *:x x xT X T Xλ →o o  be the 
isomorphism induced by xω  and is defined by  

( ).( ) ( , ) ; ,x xu v u v x X u v T Xλ ω= ∀ ∈ ∈o o  
Denote *:TX T Xλ →o o where xλ λ=

xT Xo
for each x X∈ o , this λ  is a vector bundle 

isomorphism of TX o onto *T X o . Then ω  and H induces a C∞  vector field 
1

HX dHλ−= o on X o , determined by the condition 
                                     

HXC dHω =                (1.2.1) 
 
(1.3) Flow 
 
     Let X  be a smooth manifold. A smooth function :F R X X× →  is called a flow 
for the vector field v  if :xF R X⋅ →  is an integral solution for v  i.e. 

                                 ( ) ( )x x
d F t v F t
dt ⋅ ⋅= o   

                  or            ( , ) ( , )d F t x v F t x
dt

= o  

                   and    (0) (0, ) ,xF F x x t R x X⋅ = = ∀ ∈ ∈  
 
 
(1.4) Hamiltonian Flow 
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Let ( , , )X H ω  be a Hamiltonian system. A flow F  is called a Hamiltonian flow if it 
preserves the symplectic form and Hamiltonian function (i.e. tF ω ω∗ =  and 

tF H H∗ =   for t R∈ ) see Abraham & Marsden[4].  
   Here, it should be noted that the symplectic form plays a crucial role i.e. without 
changing the Hamiltonian function but changing the symplectic form we can get 
different flows i.e. vector fields. 
 
  
(2.1) The motion of a particle on a line in a plane 
   
  Here we consider the example of physical system whose phase space is the 
simplest non-trivial symplectic manifold, the two-dimensional plane 

2 {( , ) : , }X R r p r R p R= = ∈ ∈ with the area two-form dr dpω = ∧ .  Consider a 
particle of mass m moving on a line, subject to no forces, such a particle is called 
a free particle, any free particle travels with constant speed. Thus the Hamiltonian 

function for such a particle is 21
2

H p
m

= . The equation
HXC dHω =  gives the 

Hamiltonian vector field HX for any r R∈ , xv T R∈  and taking 

H r pX x x
r p
∂ ∂

= +
∂ ∂

 and r pv v v
r p
∂ ∂

= +
∂ ∂

 as arbitrary vector field, we find  

                     

                    ( )( , ) ( )( )r p r p r p
pdr dp x x v v dp v v

r p r p m r p
∂ ∂ ∂ ∂ ∂ ∂

∧ + + = +
∂ ∂ ∂ ∂ ∂ ∂

 

              or      r p p r p
px v x v v
m

− =  

             ⇒      r
px
m

=  and 0px = . 

 
Thus, we have  

                         H
pX
m r

∂
=

∂
 

since r  and p  are functions of time t(along a particular trajectory ), taking the 

vector field . .H
dr dpX
dt r dt p

∂ ∂
= +

∂ ∂
 as time derivative along trajectories on the 

plane, we have  

                                . .p dr dp
m r dt r dt p

∂ ∂ ∂
= +

∂ ∂ ∂
 

Since, 
r
∂
∂

and 
p
∂
∂

are linearly independent, we have  
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                 p dr
m dt
=   and   0dp

dt
= .                                                      (2.1.1) 

 
which shows that a free particle travels with constant momentum along the line. 

This is equivalent to
2

2 0d r
dt

= , the equation of motion for the free particle. 

   Since the Hamiltonian flow preserves the Hamiltonian and the symplectic form we 
can use this conservation of the Hamiltonian by the Hamiltonian flow to draw useful 
pictures, because it implies that the orbits of the system must lie inside level sets of 
H . (an orbit a set of all points in phase space that the system passes through , during 
on particular motion. In other words it is the set of all points on one particular 
trajectory). The beautiful features of Hamiltonian systems is that we can get 
information about orbits of the differential equations of motion by solving the 
algebraic equation H =  constant, which is easy to solve. For example, if we consider 
the motion of a free particle on the line then the conservation of the Hamiltonian by 
the Hamiltonian flow tells us that orbits must lie inside sets of the form 

2

2
pH
m

= = constant. Since the motion is continuous, it follows that each orbit is 

contained in a line p = constant (see figure 1). Here it should be noted that not every 
orbit is an entire line. The r-axis ( 0)p = is made up of single-point orbit representing 
motionless particles. All other orbits are entire lines representing particles moving at 
constant velocities. 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 : phase space of the particle on the line with level sets of the force free 
Hamiltonian. 
  

p 
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If we desire to find bonafide solutions to our differential equation, i.e., we desire to 
know not only the orbit of a trajectory but the trajectory itself (i.e., the position as a 
function of time). We have to solve one differential equation than solving the original 

system of differential equations ( dr p
dt m

=   and  0dp
dt

= ).  

 
 Let  

     
2

0 2
pH
m

=     

                            02p m H⇒ = ±   

                       or          02Hdr
dt m

= ±                        (2.1.2) 

We take plus sign if the orbit lies on a line above the r-axis, otherwise we take the 
minus sign. Now we can easily integrate the above equation (2.1.2) to get  

                         02( ) (0)Hr t t r
m

= ± +  

initially when 0t = , ( ) (0)p t p= , so 

                                           ( ) (0) (0)tr t p r
m

= +  

for any fixed t , the flow map 2 2:tf R R→  defined by 

                                          
pr r t
m

p p

⎛ ⎞+⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

a  

preserves symplectic form dr dpω = ∧ . For, 
                                        ( ) ( ) ( )t t tf dr dp f dr f dp∗ ∗ ∗∧ = ∧  

                                                          ( )tdr dp dp
m

= + ∧  

                                                          dr dp ω= ∧ = . 
 
 
(2.2) Motion of a free particle in Three-Space 
 
   Consider the motion of a free particle in three space. Let r 1 2 3( , , )r r r= be the 
position vector of the particle and p 1 2 3( , , )p p p= be the corresponding momentum of 
the particle. Then the phase space of the particle is the manifold 
X 1 2 3 1 2 3 1 2 3 1 2 3{( , , , , , ): , , , , , }r r r p p p r r r p p p R= ∈  with the symplectic form 

1 1 2 2 3 3dr dp dr dp dr dpω = ∧ + ∧ + ∧ . The Hamiltonian function of the system is   
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2 2 2
1 2 3

1 ( )
2

H p p p
m

= + + . Then ( , , )X Hω  determine vector field HX  by the 

condition (1.2.1). 

Let 1 2 3 1 2 3
1 2 3 1 2 3

HX a a a b b b
r r r p p p
∂ ∂ ∂ ∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 and v
3

1

i

i i
i i i

a b
r p

=

=

∂ ∂′ ′= +
∂ ∂∑  

be arbitrary vector fields, then using (1.2.1), we have  
                                             ( HXω , )v ( )dH v=   

            or     
3 3 3

1 1 1
( ) ( , )

i i i

i i i i i i
i i ii i i i

dr dp a b a b
r p r p

= = =

= = =

∂ ∂ ∂ ∂′ ′∧ + +
∂ ∂ ∂ ∂∑ ∑ ∑                                                

                                                 
3 3

1 1

1[ ( ) ]( )
i i

i i i i
i i i i

p dp a b
m r p

= =

= =

∂ ∂′ ′= +
∂ ∂∑ ∑                                                         

            or      
3 3

1 1

1( ) ( )
i i

i i i i i i
i i

a b a b p b
m

= =

= =

′ ′ ′− =∑ ∑   

This gives, 

                         i
i

pa
m

=   and     0ib = ,         i=1,2,3. 

Thus the vector field is given by      

                    31 2

1 2 3
H

pp pX
m r m r m r

∂ ∂ ∂
= + +

∂ ∂ ∂
                                                         (2.2.1) 

Taking the vector field, 

      3 31 2 1 2

1 2 3 1 2 3
H

dr dpdr dr dp dpX
dt r dt r dt r dt p dt p dt p

∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂
                     (2.2.2) 

as time derivative along trajectories, we have 

                 3 31 1 2 2, , p drp dr p dr
m dt m dt m dt

= = =     and    0idp
dt

=   ,            i = 1,2,3. 

This gives,  

                                     
2

2

dm
dt

(r) 0=                                                                    (2.2.3) 

This is the required equation of motion of the free particle in three- space. 
It is evident from above that for any fixed time t , the map 
                            3 3 3 3: ( ) ( )tf R R R R∗ ∗× → ×  

defined by                          
t

m
⎛ ⎞+⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

pr r
p p
a  

is a Hamiltonian flow as it preserves the symplectic form 
1 1 2 2 3 3dr dp dr dp dr dpω = ∧ + ∧ + ∧  and the Hamiltonian function  

2 2 2
1 2 3

1 ( )
2

H p p p
m

= + + , for  

 



 

Hamiltonian system and classical mechanics                                                         223 
 
 

    
3

1
( )

i

t t i i
i

f f dr dpω
=

∗ ∗

=

= ∧∑  

           
3

1
( )

i

t i t i
i

f dr f dp
=

∗ ∗

=

= ∧∑  

           
3

1
( )

i

i i i
i

tdr dp dp
m

=

=

= + ∧∑  

           
3

1
( )

i

i i
i

dr dp ω
=

=

= ∧ =∑  

and tf H H∗ = , as tf  changes only the values of r, while H  depends only on p. So tf  
preserves the Hamiltonian. 
Now to show that every flow is not a Hamiltonian flow. Consider an example of the 
motion of a free particle in space having the flow, 
                                   3 3 3 3: ( ) ( )tg R R R R∗ ∗× → ×  

 defined by                          
e
e

t

t

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

r r
p p
a                                                         (2.2.4) 

for any t R∈ , then 2t
tg eω ω∗ =  shows that the flow tg  does not preserves the  

symplectic form. Hence it is not the Hamiltonian flow of a Hamiltonian system with 
the canonical symplectic form on 6R . 

Now if we define the symplectic form on 6 ~ {0}R  as 
3

1

1 ( )
i

i i
i i i

dr dp
r p

ω
=

=

= ∧∑ then the 

flow tg  defined by (2.2.4) preserves ω , for 

       
3

1

1( ( ) )
i

t t i i
i i i

g g dr dp
r p

ω
=

∗ ∗

=

= ∧∑  

             
3

1

1( )
i

t i i
i i i

g dr dp
r p

=
∗

=

= ∧∑  

             
3

1

1 ( ( ) ( ) )
( )

i
t t

i it t
i i i

d re d p e
re p e

=

=

= ∧∑  

             
3

2
2

1

1 ( )
( )

i
t

i it
i i i

e dr dp
r p e

=

=

= ∧∑  

             
3

1

1 ( )
( )

i

i i
i i i

dr dp
r p

=

=

= ∧∑  

             ω= . 
In order to find the Hamiltonian function for this system, let 

1 2 3 1 2 3
1 2 3 1 2 3

HX r r r p p p
r r r p p p
∂ ∂ ∂ ∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 and v
3

1

i

i i
i i i

a b
r p

=

=

∂ ∂′ ′= +
∂ ∂∑  be an 

arbitrary vector field then using (1.2.1), we have  
                                           ( HXω , )v ( )dH v=  
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     or      
3 3 3

1 1 1

1( ) ( , ) ( )
i i i

i i i i i i
i i ii i i i i i

dr dp r p a b dH v
r p r p r p

= = =

= = =

∂ ∂ ∂ ∂′ ′∧ + + =
∂ ∂ ∂ ∂∑ ∑ ∑  

     or      
3 3 3 3

1 1 1 1

1( ( ) ) ( ) ( )
i i i i

i i i i i i i i
i i i ii i i i i i

H Hrb a p dr dp a b
r p r p r p

= = = =

= = = =

∂ ∂ ∂ ∂′ ′ ′ ′− = + +
∂ ∂ ∂ ∂∑ ∑ ∑ ∑  

This gives,                              

                                         1 1,
i i i i

H H
r r p p

∂ ∂
= − =

∂ ∂
 

which on integration yields,  

                       1 2 3

1 2 3

log p p pH c
r r r

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                                                  (2.2.5) 

Now,  

                 1 2 3

1 2 3

( log )t t
p p pg H g c
r r r

∗ ∗ ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

                       1 2 3

1 2 3

( )( )( )log
( )( )( )

t t t

t t t

p e p e p e c
re r e r e

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

                         H=  
      Hence tg  also preserves H . Thus tg  defined by (2.2.4) is a Hamiltonian flow for 

the Hamiltonian system ( , , )M Hω , where 6 {0}M R= − , 
3

1

1 ( )
i

i i
i i i

dr dp
r p

ω
=

=

= ∧∑ and 

H  is given by (2.2.5). 
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