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Abstract

An analytical approach is developed to study the wave properties
of an elastic half-space subjected to harmonic vibrations applied on its
free surface by a periodic array of rigid punches. In the frequency range
ensuring the so-called one-mode (far-field) propagation, both the anti-
plane and in-plane problems are reduced to integral equations which are
solved analytically. The explicit formulas obtained for the wave field are
reflected through some figures in order to discuss the peculiar physical
properties of the structure.
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1 Introduction

It is well known that force transfer from one elastic body to another is realized
through some contact interactions. This type of problems is of a high impor-
tance in mechanical or civil engineering, as well as in various other fields of
the elasticity theory and practice [7]. Mathematically, such problems are re-
lated to the so-called class of problems with mixed boundary conditions : this
means that typically the unknown contact stresses arise on certain parts of
the boundary surface, while on other parts of the same surface these contact
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stresses are known, representing the natural boundary conditions [8,17]. As
a rule, the strict mathematical formulation of such contact problems reduces
them to some sort of integral equations.

In the case of the dynamic theory of elasticity, the most important appli-
cation is probably connected with seismic and seismological problems, more
precisely in the theory of seismic vibrations of the foundation and in the seis-
mological practice of exploration activity [2]. As an example of the latter topic,
the researchers use to apply a vibrator on the ground surface to generate a cer-
tain structure of waves inside the ground, in order to evaluate the mechanical
properties of soils and/or discover expected deposits of coal, oil or natural gas
[3]. Initially, one massive vibrator (so-called punch) was used for this purpose;
however, some recent results in published works seem to show that the effi-
ciency of energy transmission into the soil can be improved by using several
vibrating punches simultaneously. Actually, it is demonstrated that multiple
sources and receivers arrays provide an efficient high-resolution seismological
technique [11]. This can be explained by the fact that in this case one can
arrange an optimal control of the amplitude and phase distribution between
adjacent vibrators, in order to achieve some desirable wave structure [18-20].
Even a pseudo-random sequence in amplitude and phase modulation can be
applied to make higher the efficiency of such systems.

The problems in concern are also important in different contexts such as
microcontact problems arising in micro-technologies [5, 6], where multiple ar-
rays of punches are used for various technical aims.

It should be noted that, from the mathematical point of view, the case of
any periodic wave structure can be formulated within the framework estab-
lished by the Floquet theory, which was originally developed to study differen-
tial equations with periodic coefficients. An interesting approach to a periodic
contact problem based on the Floquet analysis is presented in [4]. Some similar
ideas are applicable even in the case of structures of non-constant periodicity
[16].

Based on the above consideration, the main goal of the present paper is
to investigate the wave propagation through an elastic half-space originated
by the vibration of a periodic array of (identical) punches applied on its free
surface. We will treat both the anti-plane and in-plane problems in a linear
context, and reduce them to integral equations holding over the basis of one
(typical) punch. Then, following the guidelines of some previous papers of ours
devoted to scattering problems in acoustic and/or elastic context [13 − 15] ,
we will apply an analytical solution of such equations valid in the so-called
one-mode regime of far-field propagation (which is related to not very high
frequencies). The explicit representation of the wave field obtained in this way
will be finally reflected in several figures, from which the physical properties of
the structure can be deduced and commented. A direct numerical treatment
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has been also applied to the main equations to control the precision of the
analytical solution.

2 Formulation of the problem and reduction

to integral equations

Let us consider a periodic distribution of absolutely rigid coplanar punches
vibrating harmonically with given frequency and (same) phase above the free
surface of an elastic half-space y ≥ 0. The punches are infinitely long (in
the z−direction), while the common width of their bases is 2b; the period
of the array is 2a (a > b). The total contact area will be denoted by S ×
{−∞ < z < +∞} ; it holds here

S =

+∞⋃
n=−∞

(−b+ 2an, b+ 2an). (2.1)

Figure 1 shows the section of the structure with (any) normal plane xy.
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Figure 1: A periodic array of rigid punches (of width 2b) vibrating above the
free surface of an elastic half-space. The period is 2a.

In the anti-plane problem, we assume that each punch is perfectly joined

with the half-space, and the applied forces Pe−iωt also are directed along
z−axis. In the in-plane problem, we assume that the contact between punch
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and half-space is frictionless, and the applied forces Pe−iωt are directed along
y−axis, namely, normally onto the punches. P denotes the amplitude per unit
length in the z−direction. In both cases, this clearly implies a displacement
of given amplitude at y = 0 (in the contact zones), which will be involved as
boundary datum in our problems.

Of course, the linear model here adopted implies that time dependence is
harmonic with frequency ω in the whole structure; thus, the common factor

e−iωt should be present (but actually omitted) throughout.

2.1 The anti-plane problem

In the given geometry, the displacement field u in the elastic half-space has
non-trivial only its z−component uz = uz(x, y, t), clearly independent on z;
thus, the only unknown of the problem is the stationary wave field

w(x, y) = uz(x, y, t) e
iωt, (2.2)

and the governing equation is Helmholtz equation

∂2w

∂x2
+
∂2w

∂y2
+ k2w = 0, (2.3)

where k = ω
√
ρ/μ denotes the (transverse) wave number, while ρ and μ are

mass density and shear modulus of the elastic material, respectively.
The stress tensor has non-trivial only the tangential components given by

τxz = μ
∂w

∂x
, τyz = μ

∂w

∂y
; (2.4)

moreover, solution w to Eq.(2.3) should satisfy a radiation condition as y →
+∞.

If we assume that all punches produce the same amplitude of vibration
w0 along z−axis and the elastic surface y = 0 is free where not joined with
punches, the relevant boundary conditions for the problem at hand are

w(x, 0) = w0 , x ∈ S;
∂w

∂y
(x, 0) = 0 , x ∈ (−∞,+∞) − S. (2.5a, 2.5b)

We now submit the main equations to Fourier transformation f → f̂ along
x−axis [9] . As a consequence, Eq.(2.3) becomes an ordinary differential equa-
tion (with respect to y) for the transformed wave field

ŵ(α, y) =

∫ +∞

−∞
w(x, y) eiαx dx , (2.6)
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which can be easily solved to give

ŵ(α, y) = A(α) eγ(α)y +B(α) e−γ(α)y , y ≥ 0 , (2.7a)

γ(α) =
√
α2 − k2 , α ∈ (−∞,+∞) (2.7b)

(the branch in the square-root is chosen so that
√−1 = −i). The radiation

condition implies A(α) = 0, thus we can deduce

ŵ(α, y) = ŵ(α, 0) e−γ(α)y (2.8)

Let us now denote the tangential stress τyz over the surface y = 0 as τ(x),
x ∈ (−∞,+∞) (of course, τ ≡ 0 outside S); by Eq.(2.4), we get

τ̂(α) = μ
dŵ

dy
(α, 0). (2.9)

As follows from (2.8, 2.9),

τ̂(α) = −μ γ(α) ŵ(α, 0),

hence it finally holds

ŵ(α, y) = −e
−γ(α)y

μ γ(α)
τ̂(α) = −e

−γ(α)y

μ γ(α)

+∞∫
−∞

τ(ξ) eiαξ dξ , y ≥ 0. (2.10)

Therefore, by inverse transformation, the wave field is given by the represen-
tation formula

w(x, y) =
1

2π

∫ +∞

−∞
ŵ(α, y) e−iαx dα =

= − 1

2πμ

∫
S

τ(ξ)

[∫ +∞

−∞

e−γ(α)y

γ(α)
e−iα(x − ξ) dα

]
dξ , y ≥ 0,

(2.11)

taking also into account Eq.(2.5b).
An (integral) equation to be imposed on function τ(x), x ∈ S, can be

derived by using Eqs.(2.5a) in Eq.(2.11), as follows

∫
S

τ(ξ)

⎡
⎣ +∞∫
−∞

e−iα(x− ξ)

γ(α)
dα

⎤
⎦ dξ = −2πμw0 , x ∈ S. (2.12)

Once solved this integral equation, Eq.(2.11) gives the full structure of the
wave field throughout the elastic half-space. It is worth noting that the kernel
(in square brackets) above is nothing but the well known Green’s function
(properly scaled) for the 2-dim wave equation [1] .
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2.2 The in-plane problem

In the given geometry, the displacement (or wave) field u has non-trivial only
the components ux(x, y, t), uy(x, y, t). By using Green-Lamè representation,

ux =
∂ϕ

∂x
+
∂ψ

∂y
, uy =

∂ϕ

∂y
− ∂ψ

∂x
(2.13)

and omitting - henceforth - the harmonic time dependence, the governing
equations are the (uncoupled) Helmholtz equations for the potentials ϕ(x, y)
and ψ(x, y) :

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+ k2

1ϕ = 0,
∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2

2ψ = 0, (2.14)

where k1 = ω
√
ρ/(λ+ 2μ) and k2 = ω

√
ρ/μ (> k1) denote the longitudinal

and transverse wave numbers, respectively (ρ, μ as before; λ is the Lamè modu-
lus of the elastic material). The potentials should satisfy a radiation condition
as y → +∞.

The relevant components of the stress tensor are given by

τxy = μ

(
2
∂2ϕ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

)
, (2.15a)

σyy = λ

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+ 2μ

(
∂2ϕ

∂y2
− ∂2ψ

∂x∂y

)
. (2.15b)

If we assume that all punches produce the same amplitude of vibration u0

along y−axis, and the elastic surface y = 0 is free where not pushed by punches
(recalling that contact is frictionless), the boundary conditions for the problem
at hand are

uy(x, 0) = u0 , x ∈ S; τxy(x, 0) = 0 , x ∈ (−∞,+∞); (2.16a, b)

σyy(x, 0) = 0 , x ∈ (−∞,+∞) − S . (2.16c)

As before, by applicating Fourier transformation to Eqs.(2.14), we get as trans-
formed solutions

ϕ̂(α, y) = A(α) e−γ1(α)y , ψ̂(α, y) = B(α) e−γ2(α)y , y ≥ 0 (2.17a)

γ1(α) =
√
α2 − k2

1 , γ2(α) =
√
α2 − k2

2 , α ∈ (−∞,+∞) (2.17b)

where the radiation condition has been already used (and correct branch im-
plied in square roots - see after Eq.(2.7)).

On the other hand, Eqs.(2.15a) and (2.16b) imply

d2ψ̂

dy2
(α, 0) + α2ψ̂(α, 0) − 2iα

dϕ̂

dy
(α, 0) = 0,
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so that by Eqs.(2.17) we get(
2α2 − k2

2

)
B(α) + 2iαγ1(α)A(α) = 0. (2.18)

Let us now denote the normal stress σyy over the surface y = 0 as σ(x),
x ∈ (−∞,+∞) (of course, σ ≡ 0 outside S); by (2.15b), we get(

2α2 − k2
2

)
A(α) − 2iαγ2(α)B(α) = σ̂(α)/μ. (2.19)

The linear system (2.18, 2.19) gives

A(α) =
(2α2 − k2

2) σ̂(α)/μ

Δ(α)
, B(α) = −2iαγ1(α) σ̂(α)/μ

Δ(α)
, (2.20)

where the determinant Δ(α) = (2α2 − k2
2)

2 − 4α2γ1(α) γ2(α) has some simi-
larity with the well-known Rayleigh function [1] .

By substituting Eqs.(2.20) into Eqs.(2.17) and using (transformed) Eqs.(2.13),
we deduce

ûx(α, y) =
iα

μΔ(α)

[
(k2

2 − 2α2) e−γ1(α)y + 2γ1(α)γ2(α) e−γ2(α)y
] ∫

S

σ(ξ) eiαξ dξ ,

(2.21a)

ûy(α, y) =
γ1(α)

μΔ(α)

[
(k2

2 − 2α2) e−γ1(α)y + 2α2 e−γ2(α)y
] ∫

S

σ(ξ) eiαξ dξ ,

(2.21b)

so that, by inverse transformation, the (stationary) wave field u is given by
the representation formulas

ux(x, y) =
1
2π

+∞∫
−∞

ûx(α, y) e−iαx dα =
i

2πμ

∫
S

σ(ξ)×

×
⎧⎨
⎩

+∞∫
−∞

α

Δ(α)

[
(k2

2 − 2α2) e−γ1(α)y + 2γ1(α)γ2(α) e−γ2(α)y
]
e−iα(x − ξ) dα

⎫⎬
⎭ dξ , y ≥ 0,

(2.22a)

uy(x, y) =
1

2π

+∞∫
−∞

ûy(α, y) e
−iαx dα =

1

2πμ

∫
S

σ(ξ)×

×
⎧⎨
⎩

+∞∫
−∞

γ1(α)

Δ(α)

[
(k2

2 − 2α2) e−γ1(α)y + 2α2 e−γ2(α)y
]
e−iα(x− ξ) dα

⎫⎬
⎭ dξ , y ≥ 0.

(2.22b)
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Like in the anti-plane problem, an (integral) equation to be imposed on func-
tion σ(x), x ∈ S, can be derived by using Eqs.(2.16a) in Eq.(2.22b), as follows

∫
S

σ(ξ)

[∫ +∞

−∞

γ1(α)

Δ(α)
e−iα(x − ξ) dα

]
dξ =

2πμ

k2
2

u0 , x ∈ S. (2.23)

Once solved this integral equation, Eqs.(2.22) give the full structure of the
wave field throughout the elastic half-space.

2.3 Fully periodic (anti-plane and in-plane) problems

As it can be easily recognized, the basic equations (2.11, 12) for anti-plane
problem and (2.22, 23) for in-plane problem, have been obtained for an arbi-
trary contact area S. In the full-periodic case we are treating, where S is given
by (2.1) and the punches vibrate with the same phase, we can assume that the
distribution of tangential or normal stress τ(x) or σ(x) is the same over each
interval (−b + 2an, b+ 2an), being here an even function. As a consequence,

∫
S

(
τ(ξ)

σ(ξ)

)
eiαξ dξ =

+∞∑
n=−∞

b∫
−b

(
τ(ξ)

σ(ξ)

)
eiα(ξ + 2an) dξ = (2.24)

=
π

a

+∞∑
m=−∞

b∫
−b

(
τ(ξ)

σ(ξ)

)
eiαξ δ(α− πm

a
) dξ ,

where well-known properties of Dirac function δ have been used [9] :

+∞∑
n=−∞

eint =
+∞∑

m=−∞
δ

(
t

2π
−m

)
, δ(βt) =

1

β
δ(t). (2.25)

Thus, the representation formulas (2.11) and (2.22), along with integral equa-
tions (2.12) and (2.23), respectively, can be accordingly rewritten in the fol-
lowing forms:

w(x, y) = − 1
2aμ

+∞∑
m=−∞

e−qmy

qm

⎛
⎝ b∫
−b

τ(ξ) e−iπm(x − ξ)/adξ

⎞
⎠ =

=
1

2aikμ
eiky

⎛
⎝ b∫
−b

τ(ξ)dξ

⎞
⎠ − 1

aμ

+∞∑
m=1

e−qmy

qm

⎛
⎝ b∫
−b

τ(ξ) cos
πmξ

a
dξ

⎞
⎠ cos

πmx

a
, y ≥ 0;

(2.26)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b∫
−b

τ(ξ)Kτ(x− ξ) dξ = −μw0π/2 ≡ Cτ , x ∈ (−b, b),

Kτ (x) =
π

4a

+∞∑
m=−∞

e−iπmx/a
qm

= − π

4aik
+

π

2a

+∞∑
m=1

cos(πmx/a)

qm
,

(2.27)

where qm = q−m =
√

(πm/a)2 − k2 (q0 = −ik), for the anti-plane problem, -

and

ux(x, y) =
i

2aμ

+∞∑
m=−∞

πm/a

Δm

{[
k2
2 − 2

(πm

a

)2
]

e−qmy + 2qmrm e−rmy
}
×

×
⎛
⎝ b∫
−b

σ(ξ) e−iπm(x − ξ)/a dξ

⎞
⎠ =

1
aμ

+∞∑
m=1

πm/a

Δm
×

×
{[

k2
2 − 2

(πm

a

)2
]

e−qmy + 2qmrm e−rmy
}⎛⎝ b∫

−b

σ(ξ) cos
πmξ

a
dξ

⎞
⎠ sin

πmx

a
, y ≥ 0;

(2.28a)

uy(x, y) =
1

2aμ

+∞∑
m=−∞

qm

Δm

{[
k2
2 − 2

(πm

a

)2
]

e−qmy + 2
(πm

a

)2

e−rmy
}
×

×
⎛
⎝ b∫
−b

σ(ξ) e−iπm(x − ξ)/a dξ

⎞
⎠ = − ik1

2ak2
2μ

eik1y

⎛
⎝ b∫
−b

σ(ξ)dξ

⎞
⎠+

1
aμ

+∞∑
m=1

qm

Δm
×

×
{[

k2
2 − 2

(πm

a

)2
]

e−qmy + 2
(πm

a

)2

e−rmy
}⎛⎝ b∫

−b

σ(ξ) cos
πmξ

a
dξ

⎞
⎠ cos

πmx

a
, y ≥ 0;

(2.28b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b∫
−b

σ(ξ)Kσ(x− ξ) dξ = μ u0 π(k2
1 − k2

2)/k
2
2 ≡ Cσ , x ∈ (−b, b),

Kσ(x) =
π(k2

1 − k2
2)

2a

+∞∑
m=−∞

qm
Δm

e−iπmx/a =

= −iπk1(k
2
1 − k2

2)

2ak4
2

+
π(k2

1 − k2
2)

a

+∞∑
m=1

qm
Δm

cos(πmx/a),

(2.29)
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where qm = q−m =
√

(πm/a)2 − k2
1 , rm = r−m =

√
(πm/a)2 − k2

2 , Δm =

Δ−m =
[
2 (πm/a)2 − k2

2

]2 − 4 (πm/a)2 qmrm (q0 = −ik1, r0 = −ik2, Δ0 =
k4

2), for the in-plane problem.
Eveness of τ, σ has been used.

3 Solution in the one-mode approximation

Of course, both integral equations (2.27), (2.29) could be directly submitted to
standard numerical algorithms for arbitrary values of all parameters involved.
However, in this paper we prefer to remain in an analytical context, and to
this end we accept to put an upper (cut-off ) bound to possible frequencies.
Thus, for both anti-plane and in-plane problems here treated, we now assume
that frequency belong to the range such that

k, (k1 <) k2 < π/a (3.1)

This trivially implies qm , rm > 0 ∀m ≥ 1, and therefore guarantees the
so-called one-mode far-field propagation, in the sense that at large distance
from the surface y = 0, only the terms extracted from summations (of order
zero) remain as propagating waves (with the given wave number k or k1)

1 in
Eqs.(2.26), (2.28b).

Positions (3.1) entitles us to put

qm ≈ rm ≈ πm

a
, Δm ≈ 2

(πm
a

)2

(k2
1 − k2

2) ∀m ≥ 2, (3.2)

keeping exact the values for m = 1 (cf. [13, 14]). Looking at integral equations
(2.27) and (2.29), by this approximation the kernels become

Kτ,σ(x) = −Aτ,σ − Bτ,σ cos
πx

a
− 1

2
ln |2 sin

πx

2a
| , (3.3a)

where we put

Aτ =
π

4aik
, Aσ =

iπk1(k
2
1 − k2

2)

2ak4
2

, Bτ =
aq1 − π

2aq1
, Bσ =

1

2
− π(k2

1 − k2
2)q1

aΔ1
,

(3.3b)

and used summation
∑+∞

m=1(1/m) cos(πmx/a) = − ln |2 sin(πx/2a)|. As a con-
sequence, those equations attain the forms

−1

2

b∫
−b

ln |2 sin
π(x− ξ)

2a
|
(
τ(ξ)

σ(ξ)

)
dξ =

(
AτHτ

0 + Cτ

AσHσ
0 + Cσ

)
+

(
BτHτ

1

BσHσ
1

)
cos

πx

a
, |x| < b,

(3.4a)
1In the in-plane problem, the far-field wave is clearly (only) longitudinal, according to

the applied vibration of punches.
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where

(
Hτ

0

Hσ
0

)
=

b∫
−b

(
τ(ξ)

σ(ξ)

)
dξ,

(
Hτ

1

Hσ
1

)
=

b∫
−b

(
τ(ξ)

σ(ξ)

)
cos

πξ

a
dξ . (3.4b)

Now, it is clear that, if g0(ξ), g1(ξ) solve the auxiliary equations

−1

2

b∫
−b

ln |2 sin
π(x− ξ)

2a
| gν(ξ) dξ = cos

πνx

a
, |x| < b, ν = 0, 1, (3.5)

not containing wave numbers, then by linearity it holds(
τ(ξ)

σ(ξ)

)
=

(
AτHτ

0 + Cτ

AσHσ
0 + Cσ

)
g0(ξ) +

(
BτHτ

1

BσHσ
1

)
g1(ξ) , |ξ| < b. (3.6)

Unknown constants H0, H1 can be calculated by (twice) integrating Eq.(3.6)
as it is and after multiplying by cos πξ/a; one gets a linear system as follows⎧⎨

⎩
(1 − Aτ,σG0

0)H
τ,σ
0 − Bτ,σG0

1H
τ,σ
1 = Cτ,σG0

0

−Aτ,σG1
0H

τ,σ
0 + (1 − Bτ,σG1

1)H
τ,σ
1 = Cτ,σG1

0

, (3.7)

where new constants G are given by

Gm
ν =

b∫
−b

gν(ξ) cos
πmξ

a
dξ , ν = 0, 1; m = 0, 1, 2, ... (3.8)

(here for only m = 0, 1) and are clearly free of any frequency parameter.
By substituting Eqs.(3.6) into representation formulas (2.26), (2.28), we get

explicit expressions of such formulas holding in the whole structure, as follows

w(x, y) =
1

2aikμ
eiky Hτ

0−

− 1

aμ

+∞∑
m=1

e−qmy
qm

[(AτHτ
0 + Cτ )Gm

0 +BτHτ
1G

m
1 ] cos

πmx

a
, y ≥ 0;

(3.9)

ux(x, y) =
1

aμ

+∞∑
m=1

πm/a

Δm

{[
k2

2 − 2
(πm
a

)2
]
e−qmy + 2qmrm e

−rmy
}
×

× [(AσHσ
0 + Cσ)Gm

0 +BσHσ
1G

m
1 ] sin

πmx

a
, y ≥ 0;

(3.10a)
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uy(x, y) = − ik1

2ak2
2μ
eik1y Hσ

0 +

+
1

aμ

+∞∑
m=1

qm
Δm

{[
k2

2 − 2
(πm
a

)2
]
e−qmy + 2

(πm
a

)2

e−rmy
}
×

× [(AσHσ
0 + Cσ)Gm

0 +BσHσ
1G

m
1 ] cos

πmx

a
, y ≥ 0.

(3.10b)

4 Analytical representation

Equations (3.5) have been solved in [15] , where integrals (3.8) are also cal-
culated. This would clearly lead to full-explicit expressions for the contact
stresses τ(x) or σ(x) by means of Eqs.(3.6, 3.7). Looking at Eqs.(3.9, 3.10) for
the wave field (see also (3.7)), we only need to report the following values of
integrals Gm

0 , G
m
1 (m = 0, 1, 2, ...) :

Gm
0 = − 2

ln sin
πb

2a

cos
πmb

a
+
m

π

�
�� 2

π
+

1

ln sin
πb

2a

�
��
�
�
	

m−2

h=0

�′
Ih Jm−2−h − πJm + π cos

πb

a
Jm−1

�

+

+
m/π2

ln sin
πb

2a

�
�
	

m−2

h=0

�′
Ih (Pm−2−h + Ph−m+1) − π(Pm + P−m−1) + π cos

πb

a
(Pm−1 + P−m)

�

 ,

(4.1)

Gm
1 = −

2 cos2
πb

2a

ln sin
πb

2a

cos
πmb

a
+
m

π

cos2
πb

2a

ln sin
πb

2a

�
�	m−2


h=0

�′
Ih Jm−2−h − πJm + π cos

πb

a
Jm−1

�

+

+
m

π2

cos2
πb

2a

ln sin
πb

2a

�
�	m−2


h=0

�′
Ih (Pm−2−h + Ph−m+1) − π(Pm + P−m−1) + π cos

πb

a
(Pm−1 + P−m)

�

−

−m

π2

�
�	m−2


h=0

�′
Ih (Jm−1−h + Jh−m+2) − π(Jm+1 + J−m) + π cos

πb

a
(Jm + J1−m)

�

 ,

(4.2)

where the prime near summations over h means that the term under summa-
tion is absent when m < 2. The symbols Ik, J±k, P±k (k = 0, 1, 2, ...) stand
for the following integrals

Ik =

β∫
α

zk
√

(z − α)(β − z) dz, J±k =

β∫
α

z±k
dz√

(z − α)(β − z)
, (4.3)

P±k =

β∫
α

z±k
ln(β − z)√

(z − α)(β − z)
dz (α = e−iπb/a, β = eiπb/a = α−1),
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which are explicitly calculated in [15,Appendix], as follows (k = 0, 1, 2, ...) :

Ik =
π2(−1)k (β − α)2

(k + 1)(k + 2)

k∑
�=0

α�βk−�

�!(k − �)! Γ
(−1

2
− �
)
Γ
(−1

2
+ �− k

) ; (4.4)

Jk = π2(−1)k
k∑
�=0

α�βk−�

�!(k − �)! Γ
(

1
2
− �
)
Γ
(

1
2

+ �− k
) , J−k = Jk−1; (4.5)

Pk =
k


j=0

�
k

j

�
αj(β − α)k−j ×

�
Γ(1/2 + k − j)Γ(1/2)

Γ(1 + k − j)
[ln(β − α) + ψ(1/2) − ψ(1 + k − j)]

�
; (4.6)

P−k =

k−1∑
j=0

(
k − 1

j

)
(α + β)k−1−j(−1)j Pj − (lnα)Jk−1 −Qk−1 , k = 1, 2, ...;

(4.7a)

2kQk = (2k − 1)(α+ β)Qk−1 − (2k − 2)Qk−2 + 2 Ik−2, , k = 2, 3, ...;
(4.7b)

Q0 = 2π ln

√
α +

√
β

2
, Q1 = π(α + β)

(
ln

√
α +

√
β

2
+

1

2

)
− π. (4.7c)

In the above formulas, besides to α, β which are given in Eq.(4.3), we have

denoted by Γ(z) ≡
∫ ∞

0

e−t tz−1dt the (Euler’s) Gamma function and by ψ(z) ≡
Γ′(z)/Γ(z) the so-called psi-function; useful properties of these functions are

Γ(1) = 1, Γ(z + 1) = z Γ(z), Γ(z)Γ(1 − z) = π/ sin(πz), ψ(z) = ψ(z + 1) − 1/z;

−ψ(1) = 0.577216 is Euler’s constant. Such special functions can be evaluated
by means of their well-known analytical approximations [12]

5 Physical remarks

The developed analytical method permits rapid implementation to derive im-
portant physical conclusions, since dependence of the principal physical quan-
tities is expressed in corresponding formulas explicitly. We have performed
such an implementation for numerous combinations of the input data, which
contain the information about basic geometrical and physical parameters of
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the structure. From the results presented in the included figures, as well as
from many other tables obtained, the following remarks of physical nature can
be extracted (see Figs.2 − 6).

1) If the amplitude of the punch vibrations is kept as a constant versus the
basic frequency parameter (i.e., versus ak in the anti-plane case and ak1 or ak2

in the in-plane case), then it is very interesting to trace the dependence of the
integral of the contact stress, taken over the single punch base, as a function
of the frequency parameter. Note that if we assume the mass of the punch to
be negligibly small, the quoted integral equals the applied force.

Thus, we can observe that in both anti-plane and in-plane cases, the graph
for the applied force versus frequency in the one-mode range (3.1), always has
a local maximum inside this frequency interval. See lines no.1 in Figs.2, 3. The
smaller is the punch (i.e., parameter b/a), the more left is the position of such
a maximum in the interval. For very wide punch, when its size approaches its
possible maximum value (equal to the period of the structure), the position of
the local maximum moves so right that it falls out of the (one-mode) interval.
Moreover, the value of the maximum grows with increasing of the punch size,
that is quite natural from the physical point of view.

2) If we compare the value of the applied force required to support a certain
constant amplitude of vibration, then it is easily seen from our graphs that in
the in-plane case its value is always higher than in the anti-plane case, under
the same values of all other parameters.

3) Another interesting question is the behavior of the principal displace-
ment versus frequency and size of the punch. Reducing the analysis to the
one-mode range, we mean that: in the anti-plane problem, which studies the
case of horizontal (out-of-plane) vibrations of punches, the (out-of-plane only)
displacement w tends asymptotically to a constant value as y → ∞, as di-
rectly follows from Eq. (3.9); in the in-plane problem, which studies the case
of vertical vibrations, the horizontal displacement ux vanishes as y → ∞ but
the vertical one uy tends again asymptotically to a certain constant value,
thus representing itself the principal displacement at infinity - as follows from
Eqs. (3.10). Examples of these asymptotic behaviors are shown in Figs. 4 − 6
for various punch sizes; as physically expected, for a given amplitude of vibra-
tion in the contact zone, the smaller is the punch the smaller is the principal
displacement at infinity. For the dependence of the principal displacements
(at infinity) versus frequency, see lines no.2 in Figs. 2, 3.

4) It is very interesting to investigate the behavior of the energy flux (or
energy intensity) in its dependence upon the main geometrical and physical
parameters. This represents the energy produced by the elastic stresses on
their work with the particles displacements, calculated over the period of the
harmonic oscillations with respect to time. It is well known (see, for example,
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[10]) that such a quantity is given by the following expression

E =
T

2
Re (Σ∗ v) , T = 2π/ω , (5.1)

where v is a pertinent component of the velocity vector and Σ the correspond-
ing component of the stress, while T is the period of oscillations (∗ means
complex conjugate). In our problem, it is involved the principal displacement
vector as defined above: so, here we have v = u̇ = −iωu, where u = w or uy
according to anti-plane or in-plane case. As a consequence, Eq.(5.1) reduces
to

E = π Im (Σ∗ u) = −π Im (Σu∗) . (5.2)

This formula can be applied to control the law of energy conservation from
y = 0 to y → ∞. In the anti-plane problem, u = w(x, y) → w∞ and Σ =
τyz(x, y) → τ∞, as y → ∞; hence, by integration over a period (−a, a), this
law should imply the following equality:

w0 Im (Hτ
0 ) = 2a Im (τ∞ w∗

∞) (5.3)

In the in-plane problem, the tangential component of the displacement
vector and corresponding component of the stress vanish at infinity. Moreover,
as follows from the pertinent formulas, the periodic application of outer forces
does not produce a surface Rayleigh wave (as it could happen, for example, in
the case of a single point force applied to the boundary). Thus, in the in-plane
problem the law of energy conservation should imply the following equality:

u0 Im (Hσ
0 ) = 2a Im (σ∞ u∗∞) , (5.4)

where we put - from Eq.(5.2) - u = uy(x, y) → u∞ and Σ = σyy(x, y) → σ∞,
as y → ∞.

By deducing Hτ,σ
0 from system (3.7) and calculating the fields at infinity

from Eqs.(3.9, 3.10), it can be verified that Eqs.(5.3) and (5.4) hold (identi-
cally) whatever be the frequency in the range (3.1).

Some examples reflecting a non-monotonic behavior of the energy flux ver-
sus frequency are shown as lines no. 3 in figures 2 and 3 for anti-plane and
in-plane problems, respectively.

5) Finally, we have compared our analytical results with those from a di-
rect numerical treatment of the basic integral equations. One of the typical
outcomes of such a treatment is reflected in Fig.2 as (dashed) line no. 4. Fur-
ther verifications of this type confirm in all cases a very good precision of the
obtained analytical formulas almost throughout the one-mode range. In this
connection, we note that even in the last part of this range the error is at
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worse less than 4%, as one can see in lines 2 of Figs.5, 6 (for |uy(y)|/u0 at
ak2 = 2.5), which of course should start from the unit value.

0.5 1 1.5 2 2.5 3

1

2

3

4

2

1

3

4

ak

Figure 2: For anti-plane problem, with b/a = 0.5. Total force applied
|Hτ

0 |/(μw0) (line 1), principal (far-field) displacement |w∞|/w0 (line 2) and
(integrated) energy flux E/(πμw2

0) (line 3) vs. frequency parameter ak in the
one-mode range (0, π). In (dashed) line 4: total force by a direct numerical
method.
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ak2

Figure 3: For in-plane problem, with b/a = 0.5 and k2/k1 = 2. Total force
applied |Hσ

0 |/(μu0) (line 1), principal (far-field) displacement |u∞|/u0 (line 2)
and (integrated) energy flux E/(πμu2

0) (line 3) vs. frequency parameter ak2 in
the one-mode range (0, π).
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Figure 4: For both anti-plane and in-plane problems, with x/b = 0.75 ,
b/a = 0.9 and ak = ak2 = 2.5 (k2/k1 = 2). Displacement fields |w(y)|/w0

and |uy(y)|/u0 vs. depth parameters ky and k2y (lines 1 and 2, respectively).
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Figure 5: For both anti-plane and in-plane problems, with x/b = 0.75 ,
b/a = 0.5 and ak = ak2 = 2.5 (k2/k1 = 2). Displacement fields |w(y)|/w0

and |uy(y)|/u0 vs. depth parameters ky and k2y (lines 1 and 2, respectively).
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Figure 6: For both anti-plane and in-plane problems, with x/b = 0.75 ,
b/a = 0.1 and ak = ak2 = 2.5 (k2/k1 = 2). Displacement fields |w(y)|/w0

and |uy(y)|/u0 vs. depth parameters ky and k2y (lines 1 and 2, respectively).
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