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Abstract

1 Introduction

The objective of stream ciphers is to expand a short key into a long keystream
that is di¢ cult to distinguish from a truly random stream. The encryption is
done by XORing the plaintext with the keystream, and it should not be possi-
ble to reconstruct the key from the keystream. In many years linear feedback
shift registers, LFSRs, have been one of the most important building blocks in
keystream generators. The advantage with LFSRs is that they can easily be
designed to produce maximum-length streams, and they are fast and easy to
implement in hardware. However, the LFSRs have a lot of linear properties,
which make them easy to cryptanalyze and break. To make the LFSRs more
secure they must be combined with other elements, such as S-boxes or Boolean
functions. This complicates and slows down the ciphers in software.
Recently, T-functions are found to be useful tools, which help to realize fast

encryption under arithmetic(addition, multiplication) and logical operations.
Loosely speaking, a T-function is a map of n-bit words into n-bit words such
that each i-th bit of image depends only on low-order bit 0; :::; i of the pre-image.
From the viewpiont of P-adic Analysis, T-functions are continuous (and often
di¤erentiable!) functions with respect to the 2-adic distance. This observation
gives a powerful tool to apply 2-adic analysis to construct wide classes of T-
functions with provable cryptographic properties (long period, balance, uniform
distribution, high linear complexity, etc.); Vladimir Anashin [1 ], Combine with
the kowledge of dynamic system, developed a very general theory of T-function
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over local �elds and P-adic integer rings. In there, T-functions is actually the
so called "compatible" functions over Z2.
In the work [2 ], Jin-Song Wang and Wen-Feng Qi gived the su¢ cient and

necessary condition that a polynomial function f(x) = c0 + c1x + c2x2 + � � � +
cmx

m with integer coe¢ cients modulo 2n(n � 3) is a single cycle T-function,
That is, f(x) generates a single cycle if and only if c0, c1 are odd, 41;42

are even, 41 +42 + 2c1;1 � 0mod 4, and 41 + 2c2;0 + 2c1;1 � 0mod 4, where
41 = (c2+c4+� � � );42 = (c3+c5+� � � ). A Linear Equation over the coordinate
sequences of sequence fxiggenerated by iterated the polynomial single cycle T-
function, that is,

xi+2j�1;j = xi;j + xi;j�1 + ajAi;2 + a(j � 1) + bmod2; 3 � j � n� 1 (1)

given x0 2 Z=2nZ, where xi = f(xi�1)mod 2n, xi;jbe the j-th bit of xi. Ai;2 is
a sequence of period 4 and a, b are constants determined by the coe¢ cients ci.
In this paper, using Anashin�s general theory, some detail combinatorial

result of stirling numbers and Larin�s result [6 ] , we can give the counting
formula for the given degree polynomial ergodic(single cycle) T-function. we
deduce that Jin-Song Wang and Wen-Feng Qi�s result is a special case of ours,
and their linear relation on the coordinate sequences generated by single cycle
polynomial T-function can be extended to a more general function class. The
equation shows that the sequences generated by these T-functions have potential
secure problems.

2 Preliminary

Now we will try to state some general result of Anashin�s p-adic ergodic theory.
A (discrete) dynamical system is just a triple(S; �; f), where S is a measur-

able space endowed with a measure �, f : S! S is a measurable function; that
is, an f-preimage of any measurable subset is a measurable subset. A trajectory
of the dynamical system is a sequence

x0; x1 = f(x0); :::; xi = f(xi�1) = f
i(x0); :::

of points of the space S, x0 is called an initial point of the trajectory. Dy-
namical system theory study trajectories x0; x1 = f(x0); :::; xi+1 = f(xi) =
f i+1(x0); :::;In this case, for each measurable subset T � S, if �(f�1(T)) = �(T),
we say f is measure preserving, if for each measurable subsets T � S, we also
have f�1(T) = T holds either �(T) = 1,or�(T) = 0, we say f is ergodic. we
usually deal with dynamical systems on �nite sets; for every subset U of A, na-
ture discrete measure is �(U) = #U � (#A)�1. Obviously, the mapping f : A!
A preserves measure � if and only if it is bijective; that is, f is a permutation
on A. Finally, f is ergodic if and only if this permutation has only one cycle, of
length #A.In the latter case we say that f is transitive on A.
p is a prime number, Zp is the p-adic integer ring of local �eld Qp, It is

consisted by the elements of the form

x = x0 + x1p+ x2p
2 + � � �+ xnpn + � � � ; 0 � xi � p� 1 (2)

2



Zp is endowed with a non-Archimedean absolute value

jxjp = p
�ordpx (3)

j0jp = 0: ordp : Znf0g ! N0(N[0)is the p-adic valuation. The p-adic
absolute value is non-Archimedean, i.e. it not only satis�es the normal axioms
absolute value,but also the strong triangle inequality jx+ yj � max(jxj; jyj), It
induces a metric �(x; y) = jx� yjp.

De�nition 1 A function f : Zp ! Zp is called compatible if the congruence
u � v(mod pk) impliesf(u) � f(v)(mod pk); k 2 N0, for every pair u; v 2 Zp:

In other words, compatible functions are precisely all those functions that
satisfy the uniform 1-Lipschitz condition

jf(u)� f(v)jp � ju� vjp (4)

Proposition 1 .[1 ] A function f : Znp ! Zp is compatible if and only if for
every i = 1; 2; ::: the i-th coordinate function �i(f(x1; :::; xn)) does not depend
on �i+k(xs); for all s = 1; 2; :::; n and k = 1; 2; ::::�i(x) means the i-th coordinate
of p-adic expansion of x.

So, T-function is actually the compatible functions over Z2. From the in-
equality (4 ), we kown that all T-function are continue over 2-adic metric. We
can describe all p-adic continue functions using Mahler basis, i.e.

Theorem 1 .[3 ] W.H.Schikhof Functions
�
x
0

�
,
�
x
1

�
;
�
x
2

�
; : : :form a base of con-

tinue function space C(Zp;Qp), i.e. for every f 2 C(Zp;Qp);there exist unique
elements a0; a1; : : :of Qp, such that

f(x) =

1X
n=0

an

�
x

n

�
(5)

For this interpolation series
P1

n=0 an
�
x
n

�
;it converges uniformly on Zp if and

only if
p

lim
i!1

ai = 0;
p

lim
i!1

means limit under p-adic absolute value.

De�nition 2 .[1 ] in the ring Zp[[x]] of all formal power series in one variable
x over the ring Zp, consider a set C(x) of all series

s(x) =
1X
i=0

cix
i (ci 2 Zp; i = 0; 1; 2 : : :) (6)

and
p

lim
i!1

ci = 0: Polynomial function is obviously belongs to C(x).

As C(x)-class functions converge uniformly on Zp, they are maps Zp ! Zp:
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Now consider Mahler expansions for functions de�ned by series from C(x) :
Let

s(x) =
1X
i=0

si

�
x

i

�
(7)

using the second kind Stirling number S2(k; i) (xk =
Pk

i=0 S2(k; i)x
i) and

the de�nition of C(x), we can deduce that all sii! are p-adic integers.
We have some relations between properties of bijective and measure preserv-

ing; transitive and ergodic for the functions over Zp, that is

Proposition 2 .[1 ] A compatible function f : Zp ! Zp is bijective modulo pk
for all k = 1; 2; :::. if and only if f preserves measure.

Proposition 3 .[1 ] A compatible function f : Zp ! Zp is ergodic if and only
if f is transitive modulo pk for all k = 1; 2; :::.(i.e. f is transitive over all �nite
ring Z=pkZ k = 1; 2; :::).

3 Some properties of Stirling number

Denote xi = x(x� 1)(x� 2) � � � (x� i+ 1).

De�nition 3 The �rst kind Stirling number S1(n; k), and the second kind Stir-
ling number S2(n; k) are de�ned by

xn =

nX
k=0

S1(n; k)x
k (8)

xn =
nX
k=0

S2(n; k)x
k (9)

There are recursion formulas of these two kind of Stirling numbers

Proposition 4 [4 ] (concrete Mathematics)

S1(n; k) = S1(n� 1; k � 1)� (n� 1)S1(n� 1; k); 1 � k � n� 1 (10)

S2(n; k) = S1(n� 1; k � 1) + kS2(n� 1; k); 1 � k � n� 1 (11)

S2(n; k) =
n�1X
j=k�1

�
n� 1
j

�
S2(j; k � 1) (12)

From the de�nition of the two kinds Stirling number, we easily know that
S1(0; 0) = S2(0; 0) = 1; S1(1; 0) = S2(1; 0) = 0; S1(1; 1) = S2(1; 1) = 1;and when
k < 0, or k > n, S1(n; k) = S2(n; k) = 0. So further from identities (10 ),(11 ),
we know that S1(n; 0) = �(n�1)S1(n�1; 0) = � � � = (�1)n�1(n�1)!S1(1; 0) =
0, same calculation shows that S2(n; 0) = 0:S1(n; 1) = �(n � 1)S1(n � 1; 1) =
� � � = (�1)n�1(n � 1)!S1(1; 1) = (�1)n�1(n � 1)!; S2(n; 1) = S2(n � 1; 1) =
� � �S2(1; 1) = 1:S1(n; n) = S2(n; n) = 1:We �rst give some calculation about
S1(n; k) and S2(n; k), which we will need later.
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Lemma 1 S1(n; k) �
� bn2 c
k�dn2 e

�
mod2; so when k <

�
n
2

�
; S1(n; k) is even.

Proof. From (8 ), we know that

nX
k=0

S1(n; k)x
k = x(x� 1) � � � (x� n+ 1)

� x(x+ 1)x(x+ 1) � � �
� xdn2 e(x+ 1)bn2 c

� xdn2 e
bn2 cX
r=0

xrmod2

compare the coe¢ cient of xk of the two sides, we get the result.

Lemma 2 S2(n; 2) = 2n�1 � 1;S2(n; 3) = 3n�1+1
2 � 2n�1:

Proof. From (12 ) and S2(n; 1) = 1(n � 1)

S2(n; 2) =
n�1X
j=1

�
n� 1
j

�
S2(j; 1) =

n�1X
j=1

�
n� 1
j

�
= 2n�1 � 1 (13)

S2(n; 3) =
n�1X
j=2

�
n� 1
j

�
S2(j; 2) =

n�1X
j=2

�
n� 1
j

�
(2j�1 � 1) (14)

=
1

2

n�1X
j=2

�
n� 1
j

�
2j�1 �

n�1X
j=2

�
n� 1
j

�
=

1

2
[3n�1 � 1� 2(n� 1)]� [2n�1 � 1� (n� 1)]

=
3n�1 + 1

2
� 2n�1

4 Su¢ cient and Necessary Condition of single cycle T-Function

In [1 ], Anashin used his general ergodic result on functions with mahler ex-
pansion gived a su¢ cient and necessary Condition that a C(x)-class function
f is single cycle T-function, From formula (7 ), f(x) can be represented as
f(x) =

P1
i=0 eix

i, the condition is

Proposition 5 The C(x)-class function f is ergodic on Z2 if and only if

e0 � 1(mod 2); e1 � 1(mod 4); e2 � 0(mod 2); e3 � 0(mod 4); (15)
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Here, we �rstly use some combinatorial result of stirling numbers to give a
proof of the necessary and su¢ cient condition of functions belong to C(x) with
power series representation, and then, deduce the special result that jin-Song
Wang and Wen-Feng Qi got. As our condition is more simple than theirs, we
can further get a Counting formula for polynomial type single cycle T-function.

Theorem 2 Let the C-function f be represented via power series:f(x) =
P1

i=0 cix
i,

ci 2 Z2, i = 0; 1; 2; :::. Then the function f is ergodic on Z2 if and only if the
following congruences hold simultaneously:

c3 + c5 + c7 + � � � � 2c2(mod 4) (16)

c4 + c6 + c8 + � � � � c1 + c2 � 1(mod 4) (17)

c1 � 1(mod 2) (18)

c0 � 1(mod 2) (19)

Proof. From above proposition, we just need to prove that this condition is
equivalent to (15 ).
�rstly, we prove that if there is (15 ), then we have (16 ) and so on. At �rst,

we surely have

c0 = e0 � 1(mod 2)
c1 � e1 + e2 � 1(mod 2)

so, we have identities (18 ) (19 ). As

f(x) =

1X
j=0

cjx
j =

1X
j=0

cj(

jX
i=0

S2(j; i)x
i) (20)

=

1X
i=0

(

1X
j=i

S2(j; i)cj)x
i

So, we have

e1 =
1X
j=1

S2(j; 1)cj
S2(j;1)=1(j�1)

=
1X
j=1

cj (21)

e2 =

1X
j=2

S2(j; 1)cj
S2(j;2)=2

j�1�1(j�1)
=

1X
j=2

(2j�1 � 1)cj (22)
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so from (21 ), we know

1X
j=1

cj � e1 � 1(mod 4) (23)

1X
j=2

cj � e2 � 0(mod 2)

c2 + (
1X
j=3

cj) � e2(mod 4)

c1 �
1X
j=1

cj �
1X
j=2

cj � 1(mod 2) (24)

e3 =

1X
j=3

S2(j; 3)cj
S2(j;3)=

3j�1+1
2 �2j�1
=

1X
j=3

(
3j�1 + 1

2
� 2j�1)cj

�
1X
j=3

(1 + (j � 1) + (j � 1)(j � 2)
2

� 2)cj

�
1X
j=3

(1 + (j � 1) + (j � 1)(j � 2))cj(mod 4)

so, we have

e3 �
1X

j=3;j even

2cj +

1X
j=3;j odd

cj � 0(mod 4) (25)

from (23 ),(24 ), we have

(c2 + c4 + c6 + � � � ) + (c3 + c5 + c7 + � � � ) + 2c1;1 � 0(mod 4) (26)

(25 )�(23 ),

c4 + c6 + c8 + � � � � c2 + 2c1;1 (27)

� c1 + c2 � 1(mod 4)

(26 )�(27 ),

c2 + c3 + c5 + c7 + � � �+ 2c1;1 � �c1 � c2 + 1(mod 4)

)
c3 + c5 + c7 + � � � � 2c2(mod 4)

so, we proved (16 ),(17 ). Then we prove the inverse direction. we have e0 �
c0 � c1 � 1(mod 2); c3 + c5 + c7 + � � � � 2c2(mod 4); c4 + c6 + c8 + � � � �
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c1 + c2 � 1(mod 4):From (16 ),(17 ) and (21 ), we have

e1 �
1X
j=1

cj � c1 + c2 + 2c2 + c1 + c2 � 1

� 2c1 � 1 � 1(mod 4)

e2 �
1X
j=2

cj � c1 + c2 + c3 + � � � � c1 � 1� 1 � 0(mod 2)

e3 �
1X

j=3;j even

2cj +
1X

j=3;j odd

cj
(16 );(17 )
� 2c2 + 2(c1 + c2 � 1)

� 2c1 � 2 � 0(mod 4)

so we prove the theorem.
Then we show that Jin-Song Wang and Wen-Feng Qi�s result on the su¢ cient

and necessary condition of single cycle polynomial T-function is our special case.
As we said that, polynomial T-function surely belongs to C-class function. Their
result is f(x) = c0 + c1x + c2x2 + � � � + cmxm with integer coe¢ cients modulo
2n(n � 3) is a single cycle T-function, if and only if c0, c1 are odd, 41;42

are even, 41 +42 + 2c1;0 � 0mod 4, and 41 + 2c2;0 + 2c1;1 � 0mod 4, where
41 = (c2+ c4+ � � � );42 = (c3+ c5+ � � � ). From (16 ),(17 ),(18 ),(19 ), we easily
get c0, c1 are odd, 41;42 are even.

Corollary 1 For polynomial single cycle T-function, theorem 2 is equivalent to
c0, c1 are odd, 41;42 are even, 41 +42 + 2c1;0 � 0mod 4, and 41 + 2c2;0 +
2c1;1 � 0mod 4.

Proof. ")" as c0 � c1 � 1(mod 2), and (16 ),(17 ), we have

c2 + (c4 + c6 + c8 + � � � ) + (c3 + c5 + c7 + � � � ) � c2 + c1 + c2 � 1 + 2c2
� 2c1;1(mod 4)

so we get 41 +42 + 2c1;1 � 0mod 4

c2 + (c4 + c6 + c8 + � � � ) � c2 + c1 + c2 � 1
� 2c2;0 + 2c1;1mod4

so we get 41 + 2c2;0 + 2c1;1 � 0mod 4:
"(" we have c0 � c1 � 1(mod 2);

41 +42 + 2c1;0 � 0mod 4 (28)

41 + 2c2;0 + 2c1;1 � 0mod 4 (29)

(28 )�(29 ), ) 42 � 2c2;0 � 0(mod 4), i.e

c3 + c5 + c7 + � � � � 2c2(mod 4)
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from (29 ), we have c2 + c4 + c6 + � � �+ 2c2;0 + 2c1;1 � 0mod 4)

c4 + c6 + c8 + � � � � 3c2 + 2c2;0 + 2c1;1

� c2 + 2c1;1

� c2 + c1 � 1(mod 4)

5 Formula for the number of ergodic polynomial functions over Z=2nZ

and degree level structure

In [5 ], Wenying Zhang and Chuan-Kun Wu give the number of single-cycle
T-functions over Z=2nZ, that is 22n�n�1. Here, we can even known the number
of single-cycle polynomial type T-functions over Z=2nZ using more simple con-
dition (15 ). Firstly, using two kinds Stirling numbers, we can give one to one
transformation between the representation of polynomial and falling factorial
series.

f(x) =
mX
i=0

eix
i =

mX
i=0

ei(
iX

j=0

S1(i; j)x
j) =

mX
j=0

(
mX
i=j

S1(i; j)ei)x
j (30)

f(x) =
mX
j=0

cjx
j =

mX
j=0

cj(

jX
i=0

S2(j; i)x
i) =

mX
i=0

(
mX
j=i

S2(j; i)cj)x
i (31)

The result is

Theorem 3 Denot Nm;n is the number of polynomial type T-functions de�ned
on Z=2nZ, whose degree are not exceed m, and transitive(single-cycle) on all
Z=2kZ; k � 2, Nm;n is

Nm;n =

8>>>><>>>>:
0; m = 0
1; n = 1 m = 1

22n�3; for �xed n � 2 m = 1
23n�4; for �xed n � 2 m = 2
2mn+n�6; for �xed n � 2 for �xed m � 3

(32)

Proof. If we have a polynomial f(x) =
Pn

i=0 eix
i, when m = 0, there is no

single-cycle polynomial T-functions.
1. When m = 1, n = 1, there is only one single-cycle polynomial, i.e

f(x) = x+ 1.
2. When m = 1, n = 1, we know that there are only 1-degree polynomials

over Z=2Z; when n � 2, from e0 � 1(mod 2); e1 � 1(mod 4); e0 has 2n�1 choices,
e1 has 2n�2 choices, so there are 22n�3 single-cycle 1-degree polynomial T-
functions.
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3. When m = 2, we naturally demand n � 2, from e0 � 1(mod 2); e1 �
1(mod 4); e2 � 0(mod 2); e0 has 2n�1 choices, e1 has 2n�2 choices, e2 has 2n�1
choices,so there are 23n�4 single-cycle 2-degree polynomial T-functions.
4. When m = 3, from e0 � 1(mod 2); e1 � 1(mod 4); e2 � 0(mod 2); e3 �

0(mod 4); e0 has 2n�1 choices, e1 has 2n�2 choices, e2 has 2n�1 choices, e3 has
2n�2 choices, so there are 24n�6 single-cycle 3-degree polynomial T-functions.
When m > 3;the later coe¢ cients ei;i>3 have no restriction, so there are

2(n�1)+(n�2)+(n�1)+(n�2)+n(m+1�4) = 2mn+n�6 (33)

single-cycle m-degree polynomial T-functions.
So, we have the table above(32 ).

Remark 1 a. In (32 ), we look the di¤erent polynomials but raise the same
transformation on Z=2nZ as di¤erent ones. In [6], M.V.Larin give the number
of single-cycle polynomial transformation over Z=2nZ; n � 3:But at there, he
look the di¤erent polynomials that raise the same transformation on Z=2nZ as
a single one. For example, in [6], he give a table of all transitive polynomials
over Z=8Z in his sense

x+ 1 5x+ 1 2x2 + 3x+ 1 2x2 + 7x+ 1
x+ 3 5x+ 3 2x2 + 3x+ 3 2x2 + 7x+ 3
x+ 5 5x+ 5 2x2 + 3x+ 5 2x2 + 7x+ 5
x+ 7 5x+ 7 2x2 + 3x+ 7 2x2 + 7x+ 7

but, we still have 1 + x+ 4x2(0! 1! 6! 7! 4! 5! 2! 3! 0);raise the
same orbit with 5x+1; 1+7x+6x2(0! 1! 6! 3! 4! 5! 2! 7! 0);raise
the same orbit with 2x2+3x+1;and so on. So in our sense, we have a table of
all transitive 2�degree polynomials over Z=8Z as

x+ 1 5x+ 1 2x2 + 3x+ 1 2x2 + 7x+ 1 4x2 + x+ 1 6x2 + 3x+ 1
x+ 3 5x+ 3 2x2 + 3x+ 3 2x2 + 7x+ 3 4x2 + x+ 3 6x2 + 3x+ 3
x+ 5 5x+ 5 2x2 + 3x+ 5 2x2 + 7x+ 5 4x2 + x+ 5 6x2 + 3x+ 5
x+ 7 5x+ 7 2x2 + 3x+ 7 2x2 + 7x+ 7 4x2 + x+ 7 6x2 + 3x+ 7

4x2 + 5x+ 1 6x2 + 7x+ 1
4x2 + 5x+ 3 6x2 + 7x+ 3
4x2 + 5x+ 5 6x2 + 7x+ 5
4x2 + 5x+ 7 6x2 + 7x+ 7

b. When1 � n < 3, a single cycle orbit on Z=2nZ which can be represented
by polynomial and transitive over all Z=2kZ(k � n); is also a polynomial trans-
formation and transitive on Z=2kZ(0<k < n). When n � 3, polynomial single
cycle orbit on Z=2nZ, which can be transitive over all Z=2kZ(k 2 N):Because,
if a polynomial transitive on Z=23Z, it will transitive on all Z=2kZ(k 2 N).

C-function can be represented as (7 ), and we have

10



Proposition 6 [1 ] A function f : Zp ! Zp with mahler expansion is 0(mod pk)
for all � 2 Zp if and only if for all coe¢ cients of its Mahler expansion (7 ) are
0 modulo pk;i.e.

jsijp � p
k; for all i 2 N0

In our case, when C-function f(x) =
Pm

i=0 eix
i; ord2(j!ej) � n, we havePm

i=j ej�
j � 0(mod 2n) for all � 2 Zp: So, to a single-cycle polynomial, �xed n,

when degree m � j, it must raise a transformation coincides with a transforma-
tion on Z=2nZ induced by a smaller degree polynomial.

Proposition 7 [6 ] (M.V.Larin. Transitive polynomial transformations of residue
class rings) The number of transitive polynomial transformations of residue class
ring Z=2nZ is For p =2 f2; 3g; n = 1;there are (p � 1)!Transitive polynomial
transformations; for n = 2, the number is (p � 2)!(p � 1)p+1pp�1;n � 3;it is
(p � 2)!(p � 1)p+1pp�1+"(p;3)+���+"(p;n); where "(p; k) = min(i � 0 : ordp(i!) �
k):For p = 2; n = 3;there are 16 Transitive polynomial transformations, n � 4,
the number is 24+"(2;4)+���+"(2;n);For p = 3; n = 3;there are 25310 Transitive
polynomial transformations, n � 4, the number is 25310+"(3;4)+���+"(3;n):

So, from above propositions and proposition (5 ), we can deduce the smallest
degree m, that the transitive polynomials of degree not exceed m constitute the
whole set of single-cycle polynomial transformations over Z=2nZ. Actually, now,
we can know how many single-cycle T-functions over Z=2nZ are not polynomial
type.

Theorem 4 For �xed n 2 N;when n = 1; 2; 3, all single-cycles that induced by
T-function can be represented by polynomial; when n � 4, there are 22n�n�1 �
24+"(2;4)+���+"(2;n)single-cycles in all T-function induced single-cycles on Z=2nZ
that not induced by polynomial.

Proof. On Z=2nZ, the single-cycle T-function can be represented as

f(
n�1X
i=0

�i2
i) =

n�1X
i=0

	i(�0; : : : ; �i)2
i;

where 	i(�0; : : : ; �i) = �i � 'i(�0; : : : ; �i�1); '0 = 1;

'i(�0; : : : ; �i�1) = �0�1 : : : �i�1 � �(�0; : : : ; �i�1);

where �(�0; : : : ; �i�1); i = 1; 2; : : : n�1 are Boolean functions of i variables with
algebraic degree being less than i, and there are 22

i�1 such Boolean functions, so
there are 2(2�1)+(2

2�1)+(23�1)+���+(2n�1�1) = 22
n�n�1single-cycle T-functions on

Z=2nZ, and they raise di¤erent permutations, i.e. di¤erent single-cycle orbits
on Z=2nZ. We already know that, there is only one polynomial single-cycle
f(x) = x+1, and two polynomial single-cycles f(x) = x+1; f(x) = x+3 when
n = 1 and n = 2:And from proposition [7 ], there are 16 polynomial single-
cycles when n = 3:But 22

n�n�1 = 1; 2; 16 when n = 1; 2; 3:So, all single-cycles
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that induced by T-function can be represented by polynomial. Proposition [7 ]
shows that there are 24+"(2;4)+���+"(2;n) single-cycle polynomial transformations
on Z=2nZ, so we have 22n�n�1�24+"(2;4)+���+"(2;n) non-polynomial single-cycles
in all T-function induced single cycles.
We have a table as follow

Ring:Z=2nZ n = 1 n = 2 n = 3 for �xed n � 4
number of T-function

single-cycles
1 2 16 22

n�n�1

number of polynomial

single-cycles
1 2 16 24+"(2;4)+���+"(2;n)

rate of polynomial

T-function single-cycles in

all T-function single-cycles

1 1 1 2n+5+["(2;4)+���+"(2;n)�2
n

Simple calculation shows that "(2; 4) = 6; "(2; 5) = 8; "(2; 6) = 8; "(2; 7) =
8; "(2; 8) = 10; : : : :Because there is a exponential function about n, rate will de-
crease very quickly, for example, the �rst 10 values are1; 1; 1; 0:5; 0:0039; 0:466�
10�9; 0:129� 10�25; 0:778� 10�61; 0:550� 10�134; 0:336� 10�284:
Now, for �xed n, we can know, what�s the least degree m that all the single-

cycle polynomial transformations can be expressed as the polynomials that de-
gree does not exceed m over Z=2nZ:

Theorem 5 When n = 1;the only one single-cycle polynomial transformations
is x+ 1;n = 2;the whole single-cycle polynomial transformations are x+ 1; x+
3;n = 3;the whole 16 single-cycle polynomial transformations can be represented
by single-cycle polynomials degree not exceed 2;when �xed n � 4;denote

T (m) =
mX
i=4

ord2(i!); S(n) =
nX
j=4

"(2; j); "(2; k) = min(i � 0 : ord2(i!) � k)

the least degree m is the integer that satisfy the following equation

n(m+ 1)� 8� T (m) = 4 + S(n) (34)

Proof. When n = 1; 2; 3;the result is simple followed by the above theorem.
Fixed n � 4, if we have two polynomials

f(x) =

mX
i=0

eix
i; ~f(x) =

mX
i=0

~eix
i

that raise the same single transformation on Z=2nZ, then

f(�)� ~f(�) =
mX
i=0

ei�
i �

mX
i=0

~ei�
i =

mX
i=0

(ei � ~ei)�i � 0(mod 2n); for all � 2 Zp

(35)
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we always assume deg(f(�) � deg( ~f(�)), ei;i>deg(f(�) = 0 = ej;j>deg( ~f(�)). From
proposition[6 ], we have8>>>><>>>>:

ord2(e0 � ~e0) � n i = 0
ord2(e1 � ~e1) � n i = 1

1 + ord2(e2 � ~e2) � n i = 2
1 + ord2(e3 � ~e3) � n i = 3

ord2(i!) + ord2(ei � ~ei) � n i � 4

(36)

ord2(e0 � ~e0) � n demands e0 = ~e0 On Z=2nZ, by the same reason, e1 = ~e1
On Z=2nZ. For �xed e2, ~e2;n�1 can be di¤erent from e2;n�1;so there are two
choices for ~e2;n�1;i.e. ~e2;n�1 = e2;n�1 or ~e2;n�1 6= e2;n�1;so there are two
choices for ~e2:The same reason shows that, ~e3 have two choices on Z=2nZ.
By ord2(i!) + ord2(ei � ~ei) � n; i � 4;we know that the �rst (n � ord2(i!))-
digits must be equal, so ~ei has 2ord2(i!) choices. So for �xed m � 3;there are
21+1+

Pm
i=4 ord2(i!) = 22+T (m) polynomials raise the same single cycle transfor-

mation with f(x). Actually from (33 ), there are

2mn+n�6=22+T (m) = 2m(n+1)�8�T (m) (37)

di¤erent single-cycle polynomial transformations. Combine with proposition [7
]

2m(n+1)�8�T (m) = 24+"(2;4)+���+"(2;n)

)
m(n+ 1)� 8� T (m) = 4 + "(2; 4) + � � �+ "(2; n) = 4 + S(n)

solve this equation about m;we get the least degree.

Remark 2 a. In fact, we get another formula of transitive polynomial transfor-
mation on residue class rings Z=2nZ di¤erent from M.V.Larin[6]. Our equation
(37 ) has another parameter m, which can tell us more information about de-
gree. For �xed n, T (m) is a function corresponding with m!, m(n+ 1)� 8 is a
linear function of m;so, while m increase, m(n+1)� 8�T (m) will be negative,
this m is surely meaningless.
b. Actually, from ord2(i!)+ord2(ei�~ei) � n; (i � 3), and n � ord2(ei�~ei) �

0, we surely have m � minfj; ord2(j!) � ng.

Acoording to above theorem, we can do some calculation. For example, we
can get the following table

Z=2nZ 24+S(n) = 2m(n+1)�8�T (m) m
n = 4 210 5
n = 5 218 7
n = 6 226 7
n = 7 234 7
n = 8 244 9
n = 9 256 11
...

...
...
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6 Linear Equation on ergodic power-series T-Function

in the work [7 ] (Linear Properties in T-Functions) Molland.H and Tor Helleseth
give a linear equation of sequence generated by xi = x2i�1 _ C + xi�1mod2n
proposed by Klimov and Shamir.That is

xi;j + xi+2j�1;j + xi;j�1 + a2xi;1 + a1xi;0 + a0 = 0mod 2

where xi;j is the j-th digit of xi, and a2; a1; a0 are constants de�ned by the
binary digit of C. Jin-Song Wang and Wen-Feng Qi calculate a similar equation
for single cycle polynomial T-function, that is, given an initial point x0 2 Z=2nZ,
xi = f(xi�1); f(x) = c0+c1x+c2x

2+ � � �+cmxm;then, there is a linear equation

xi+2j�1;j = xi;j + xi;j�1 + ajAi;2 + a(j � 1) + bmod2; 3 � j � n� 1

Ai;2 is a sequence of period 4 and a, b are constants determined by the
coe¢ cients ci.
Now we generalized their result to our general case C(x)-class functions.

From the de�nition of C(x)-class function, integer coe¢ cients polynomial T-
function surely belongs to this function class. (to n-degree polynomial T-
function, we can identify ci = 0; i > n). There are many other kinds of T-
functions besides polynomial T-function in C(x). for example f(x) = x + (1 +
p3x)�1; f(x) = ax =

P1
i=0 p

iri
�
x
i

�
, where p is odd, and a � 1(mod p); f(x) =

(1 + 4r)x; p = 2; r 2 Z2.
If f(x) = c0+ c1x+ � � �+ cmxm+ � � � is a C-class ergodic transformation over

Z2, as the theorem [2 ] shows, c0; c1 are odd, and 41 = (c2 + c4 + c6 � � � );42 =
(c3 + c5 + c7 � � � ) are even. We should mention a result of Anashin about the
ergodic transformation over Z2:

Proposition 8 A function f : Z2 ! Z2 is 1-Lipschitz and measure-preserving(re
spectively, is 1-Lipschitz and ergodic) if and only if it can be represented in the
form f(x) = c + x + 2 � v(x) (respectively, in the form f(x) = 1 + x + 2 �
4v(x);4v(x) = v(x+ 1)� v(x)), where c 2 Z2 and v(x) is a 1-Lipschitz func-
tion.

As the identities (16 )(17 )(18 )(19 ), we also have some similar identities
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with Jin-Song Wang and Wen-Feng Qi�s. That is

1X
j=2

cjj �
1X

j=2;j is odd

cjj � 0mod 2; (38)

1X
j=2

cjj � 2(42=2 +
1X

j=2;j�2;3mod 4
cj;0)mod 4 (39)

1X
j=2

cjj(j � 1) � 2
1X

j=2;j�2;3mod 4
cj;0mod4; (40)

c2
n�1

1 � 1mod 2n+1 (41)

c2
n�2

1 � 1 + 2n(c1;1 � c1;2)mod 2n+1 (42)

c0(1 + c1 + � � �+ c2
n�1�1
1 ) � 2n�1(c1;1 � 1) +

2n(c0;1 � c0;1c1;1 � c1;1 � c1;2)mod 2n+1(43)

Sequence fxig, generated by iterated the C(x)-class function f , is

x1 = f(x0) = c0 + c1x0 +

1X
j=2

cjx
j
0

As C(x)-class function converges everywhere on Zp;so f(x0) converges to a
2-adic integer x1.

x2 = c0(1 + c1) + c
2
1x0 +

1X
j=2

cjx
j
1 + c1

1X
j=2

cjx
j
0

...

x2n�1 = c0(1 + c1 + � � �+ c2
n�1�1
1 ) + c2

n�1

1 x0 +

2n�1�1�iX
i=0

c2
n�1�1�i
1

1X
j=2

cjx
j
i (44)

use above identities, we can get

x2n�1 � 2n�1(c1;1 � 1) + 2n(c0;1 � c0;1c1;1 � c1;1 � c1;2) (45)

+x0 +
1X
j=2

cj(
2n�1�1X
i=0

c2
n�1�1�i
1 xji )mod 2

n+1
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and

1X
j=2

cj(
2n�1�1X
i=0

c2
n�1�1�i
1 xji )mod 2

n+1

�
1X
j=2

cjf
2n�1�1X
i=0

c2
n�1�1�i
1 [(ximod2

n�1)j + jxi;n�12
n�1(ximod2

n�1)j�1

+jxi;n2
n(ximod2

n�1)j�1]gmod2n+1

Almost the same caculation with Jin-Song Wang and Wen-Feng Qi

1X
j=2

cjjxi;n2
n(ximod2

n�1)j�1 (46)

� 2nf
1X
j=2

cjj
2n�1�1X
i=0

c1;0(xi;nxi;0)mod 2g = 0mod 2n+1

� 0

2n�1f
1X
j=2

cjj(
2n�1�1X
i=0

c2
n�1�1�i
1 xi;n�1(ximod2

n�1)j�1)mod 4gmod2n+1 (47)

� 2n�1f
1X
j=2

cjj(

2n�1�1X
i=0

c2
n�1�1�i
1 (xi;n�1xi;0 + 2(j � 1)xj�2i;0 xi;1xi;n�1))mod 4gmod2n+1

� 2n�1(

1X
j=2

cjj(

2n�1�1X
i=0

xi;n�1xi;0mod2)mod 4)mod 2
n+1

� 2naA0;n�1mod2
n+1

where a = 42=2+
P1

j=2;j�2;3mod 4 cj;0mod2, A0;n�1 =
P2n�1�1

i=0 xi;n�1xi;0mod2:The

same caculation with [2], Ai;n =
P2n�1

k=0 xi+k;nxi+k;0mod2 = A0;n�di; fdig is a
sequence of period 4 (d0; d1; d2; d3) = (0; x0;0; 1; x0;0� 1); Another part denoted
by

Bn =
1X
j=2

cj(
2n�1�1X
i=0

c2
n�1�1�i
1 (ximod2

n�1)j)mod 2n+1(n � 4) (48)

= 2n�1c1;1 + 2
n([c2;0 41 =2mod 4]1 + c2;1 + c1;1c2;0

+
mX

j=6;j�2mod 4
cj + a

n�2X
l=2

A0;l + c1;1x0;0)mod 2
n+1
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denot

b = c0;1 + c0;1c1;1 + c1;1 + c1;2 + c2;1 + c1;1c2;0

+[c2:0 +41=2mod 4]1 +
1X

j=6;j�2mod 4
cj;0mod2

Combine above identities. we get

x2n�1;n = x0;n + x0;n�1 + c1;1xi;0 + a
n�1X
l=2

A0;l + bmod2; (n � 5) (49)

As the above equation is correct for all x0, it is also correct for the sequence
shift i positions, that is,

xi+2n�1;n = xi;n + xi;n�1 + c1;1xi;0 + a
n�1X
l=2

Ai;l + bmod2; (n � 5) (50)

As xi mod2n contains all the subsequences xi mod2j(1 � j � n� 1), then
the above equation is correct for all j(4 � j � n� 1), that is

xi+2j�1;j = xi;j + xi;j�1 + c1;1xi;0 + a

j�1X
l=2

Ai;l + bmod2 (3 � j � n� 1) (51)

From [2], we know

Ai;j =

�
Ai;j�1; j > 4

Ai;2 + a(j � 2); j = 3
mod 2

then
Ai;j = Ai;j�1 = � � � = Ai;2 + a(j � 2)mod 2 (52)

then, from (51 )(52 ), we have

xi+2j�1;j = xi;j + xi;j�1 + ajAi;2 + a(j � 1) + bmod2(3 � j � n� 1)

So, sum up, we get a theorem generalized the result of [2].

Theorem 6 For an ergodic C(x)-class function f , de�ned over Z2, sequence
fxig is generated by x0 2 Z2; xi+1 = f(xi) = � � � = f i(x0):Fixed any n � 5, we
have

xi+2j�1;j = xi;j + xi;j�1 + ajAi;2 + a(j � 1) + bmod2 (3 � j � n� 1) (53)

fAi;2g is a the sequence of period 4:So,

xi+2j�1;j = xi;j + xi;j�1 + a+ bmod2; (aj � 0mod 2) (54)

xi+2j�1;j = xi;j + xi;j�1 + a+ b+ 1mod 2; (aj � 1mod 2) (55)
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Since to the sequencefxig geberated by ergodic T-function, we know that
xi+2j ;j � xi;j + 1mod 2, for all i = 0; 1; 2; : : :.So

xi+1+2j ;j + xi+2j ;j + xi+1;j + xi;j � 0mod 2 (56)

is the characteristic polynomial of the j-th coordinate sequence. Then combine
(53 )(54 )(55 )(56 ), we can get many indentities about the coordinate sequence.,
for example, (53 )+(56 ), we get

xi+1+2j ;j+xi+2j ;j+xi+2j�1;j � xi+1;j+xi;j�1+ajAi;2+a(j�1)+bmod2 (57)

and so on.

7 Conclusion

In theorem [2 ], we �rst give a proof that translate the ergodic condition for
C(x)-class function represented by falling factorial series to its power series rep-
resentation. Then, we use it to deduce that Jin-Song Wang and Wen-Feng
Qi�s result on transitive polynomial T-function is a special case of our ergodic
C(x)-class function. Next, use Anashin�s result, we give a number formula for
polynomial type T-functions de�ned on Z=2nZ, whose degree are not exceed
m, and transitive(single-cycle) on all Z=2kZ; k � 2;i.e theorem [3 ], then com-
bine with Larin�s result [6], we give the number formula for non-polynomial
single-cycle T-functions on Z=2nZ, and easily caculate the rate of single-cycle
polynomial T-functions in all single-cycle T-functions on Z=2nZ, i.e theorem [4
]; using proposition [6 ], we deduce the least degree m that all the single-cycle
polynomial transformations can be expressed as the polynomials that degree
does not exceed m over Z=2nZ,(n is �xed), i.e. theorem[5 ], and caculate some
value of m for some small n. At last, for the close relation between C(x)-class
function and polynomial function, we generalized Jin-Song Wang and Wen-Feng
Qi�s result of linear equation over single cycle polynomial T-function to linear
equation over ergodic C(x)-class function.
Actually, we can generalized corresponding result to more general function

class, i.e. B(x)-class function. f(x) 2 B(x) if and only if f(x) =
P1

i=0 bix
i; (bi 2

Zp). In other words,

B(x) = f
1X
i=0

ai

�
x

i

�
:
ai
i!
2 Zp; i = 0; 1; 2; : : :g

On Z=2nZ, as a function, in force of a criterion for convergence of Mahler

interpolation series, i.e.
p

lim
i!1

ai = 0; series from B(x) are uniformly convergent
on Zp and thus de�ne uniformly continuous functions on Zp:And we have: [1 ]
A B-function (and thus a C-function) f is measure-preserving if and only if f
is bijective modulo p2. The function f is ergodic if and only if f is transitive
modulo p2 whenever p =2 f2; 3g, or modulo p3 whenever p 2 f2; 3g:As power-
series expression is more convenient to caculate, so we use two kinds Stirling
numbers to translate B-function from falling factorial series to power-series, and
discuss our problem. Further result will be followed.
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