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Two-photon Absorption Processes in Semiconductor Quantum Dots
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The two-photon absorption process is a nonlinear phenomenon that shows very low optical efficiency in bulk
semiconductors. For this reason the detection of these processes becomes very difficult from the experimental
point of view. Nevertheless, when dealing with semiconductor QD’s with few nanometer radii, these transi-
tions are enhanced and the detection is possible. In this contribution we present analytical calculations for
the absorption coefficient in CdSe spherical QD’s subjected to these second order processes, as a function of
the characteristic dot parameters. The intensities of the absorption peaks, as well as the statistical treatment
involving QD’s ensembles, are also reported.
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I. INTRODUCTION

As a result of the spatial confinement of charged carri-
ers in small volumes, semiconductor quantum dots (QD’s),
although having the size of relatively large clusters, exhibit
some atomic-like characteristics, in particular, the complete
quantization of the energy levels. Such attributes of the QD’s
makes, indeed, quite a difference when compared with the
physical behavior of isolated atoms or bulk materials. Conse-
quently, some unfledged applications in optics and electronics
technology, as well as new nonlinear optical responses, have
been disclosed in recent researches [1] on these low dimen-
sional systems. As a natural consequence, QD systems based
on III-V materials as well as II-VI semiconductor nanocrystal-
lites embedded in glass have been systematically investigated
during the last years [2,3]. The importance of these nonlinear
optical processes are related to the fabrication of devices ex-
ploring second harmonic generation, sum and difference fre-
quency generation, parametric oscillation, optical rectification
and linear electrooptic effect.

Following this tendency, we have developed a theoretical
study of two-photon absorption processes in semiconductor
QD’s applied, in particular, to spherical CdSe zinc-blende-
type nanocrystals. It is a well known fact that the simulta-
neous absorption of two photons in bulk semiconductors is
difficult to be detected because the associated peak intensi-
ties are very small if compared with the one-photon absorp-
tion peaks. The two-photon-related absorption coefficient is
inversely proportional to the volume and to the photon mean-
free-path of the irradiated sample. Therefore, we may expect
that intense laser beams, illuminating QD’s with dimensions
up to few nanometer, show high two-photon optical efficiency.

Let us consider an isolated CdSe spherical QD described
in the framework of the parabolic effective-mass approach.
Exact solutions for electron and hole quantum states, satis-
fying Dirichlet’s boundary conditions in the presence of an
infinite potential barrier, are well known [4]. In general, the
sample could be illuminated using photons with two differ-
ent frequencies and/or polarization, supplied by independent
monochromatic laser beams. For the sake of simplicity, here
we will consider only photons with equal frequencies and par-

allel linear polarizations along an axis perpendicular to the
wave-vector. Under these restrictions, which can be explored
in future generalization, we have obtained exact formulae for
the transition matrix elements involving two-photon absorp-
tion processes. Thus, we report an explicit expression for
the nonlinear absorption coefficient which is graphically il-
lustrated in this work.

In order to take into account the broadening of the energy
levels, due to the temperature effects or defects, we introduce
in our calculations a Lorentzian line-shape function replacing
the standard energy conservation represented by a Dirac delta-
function. Furthermore, since real QD samples present size and
shape distributions, at the end of this communication we per-
formed a study of the absorption coefficient for an ensemble of
spherical QD’s characterized by a Gaussian distribution over
radii. In this general situation, no compact analytical formula
for the description of two-photon transitions is available and
only numerical calculation allows an insight on this question,
except if the Lorentzian line-shape function is treated by the
standard Dirac delta-function. Both cases will be illustrated in
this work. In the next section we present the theoretical model
as well as the numerical results.

II. THEORETICAL MODEL AND NUMERICAL RESULTS

We shall start by considering the simultaneous absorption
of two photons, of different frequencies (ωi, i = 1,2) and po-
larization (ηi, i = 1,2), in a semiconductor. The diagrams in-
volved in these processes are shown in Fig. 1.
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FIG. 1: Feynman diagrams for absorption processes involving two
photons of frequencies ω1 and ω2.
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FIG. 2: First three peaks intensities for two-photon absorption
processes in a spherical CdSe QD of radius R = 3 nm, as a func-
tion of the difference between the two-photon (2~ω) and gap (Eg)
energies of the material.

FIG. 3: Calculated two-photon absorption for an ensemble of spheri-
cal CdSe dots with an average radius R0 = 4 nm. We used a Gaussian
distribution, with half-width σ = 0.4 nm (panel a)) and σ = 0.2 nm
(panel b)), for the spreading over R0. The dashed lines are analyti-
cal solutions using delta-functions and the solid lines use Lorentzian
functions with Γ = 5 meV.

The corresponding transition matrix elements are given as
MT = MA +MB, where

MA(B) = ∑
|a〉

〈n | Ĥ(k)
E−R |a〉〈a |Aiη̂i · p̂ |~ωi〉

~ωi−Ea
. (2.1)

The index A or B labels the associated diagram involved in
each process or, more specifically, A corresponds to i = 1, k =
2 and B to i = 2, k = 1 processes, respectively.

After the absorption of the first photon, identified by ωi,
ki, and ηi, one electron is created at the “intermediate state”
|a〉 (Ea = Ee +Eh +Eg). In the next step, the interaction with
the second photon (ωk,kk,ηk) induces a transition to the fi-
nal electron state |n〉. Here, Ee and Eh are the energies of the
electron and hole, respectively. The first one is measured with
respect to the bottom of the conduction band, and the second
one is referred to the top of the valence band. Finally, Eg is the

energy band gap. Finally, Ai = (e×m−1
0

√
V )

√
2π~/ωi× ε2

i
is associated to the average density of energy in the radiation
field, V is the volume of the sample, e is the electron charge,
m0 its rest mass and εi = ε(ωi) the refractive index of the ma-
terial for the incident frequency ωi. The Hamiltonian, in the
left side of Eq. (2.1) is composed of, Ĥ(k)

E−R = Ĥ(k)
e−R− Ĥ(k)

ν−R.
Each component has a similar expression as the right side, ex-
cept that m−1

0 in Ai is replaced by the effective-mass tensors
M̃−1 for electron (e−R) or for holes (h−R). The absorption
coefficient is written as K = 〈ε〉W/c, where c is the speed of
light in vacuum, 〈ε〉 is an “average refractive index” for the
frequencies, and

W =
2π
~ ∑

|n〉
|MA +MB|2δ(~ω1 +~ω2−En), (2.2)

is the number of optical transitions per unit of vol-
ume and per unit of time. For spherical QD with ra-
dius R and under Dirichlet’s conditions for infinite barri-
ers, the parabolic solutions can be written as[4] |aν〉 =

Nlν,nν jlν

(
µ(lν)

nν r
R

)
Ylν,mν |uν〉, (ν = e,h) with eigen-values

Eaν =
~2

(
µ(lν)

nν

)2

2mνR2 . Here Nlν,nν =
√

2/R3

jlν+1

(
µ(lν)

nν

) is the normal-

ization, µ(l)
n is the n’th root of the spherical Bessel function

of order l ( jl(x)), Ylν,mν is the spherical Harmonic and |uν〉 is
the periodic Bloch states at the zone-center. For two photons
of frequencies (ω1 = ω2 = ω) and linear polarizations perpen-
dicular to the common wave-vector k, we obtain

W =
2π
~ ∑

l,m
ne,nh

{
|M+|2δ

(
2~ω−Eg− ~

2(µ(l+1)
ne )2

2m∗
eR2 − ~

2(µ(l)
nh )2

2m∗
hR2

)

+|M−|2δ

(
2~ω−Eg− ~

2(µ(l−1)
ne )2

2m∗
eR2 − ~

2(µ(l)
nh )2

2m∗
hR2

)}
.

(2.3)
The sum should run over all quantum numbers of electron

and hole states. Note that the sum is restricted to states with
l ≥ 1 in the second term. The matrix elements M± determin-
ing the oscillator strength, can be expressed as
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M± =
2α2ez ·πcv

R
C±nemh

[
(l + 1

2 ± 1
2 )2−m2

]

(2l +1)(2l +1±2)


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e
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(
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)2
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+
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h

~ω−Eg− ~2
(

µ(l±1)
ne

)2

2m∗R2


 , (2.4)

and

C±ne,nh =
µ(l)

nh µ(l±1)
ne(

µ(l)
nh

)2− (
µ(l±1)

ne
)2 , (2.5)

m∗
e and m∗

h are the electron and hole effective masses, respec-
tively, m∗ is the effective reduced mass (m∗ = m∗

em∗
h/(m∗

e +
m∗

h)), and πcv = 〈uc | p̂ |uv〉, at k = 0 is the element determin-
ing the optical selection rules for interband transitions.

The first three peaks of two-photon absorption in spherical
CdSe QD with radius R = 3 nm, as a function of the difference
between the two-photon energy (2~ω) and Eg, are illustrated
in Fig. 2. The CdSe parameter used in our calculation are
m∗

e = 0.12, m∗
h = 0.45, Eg = 1.865 eV. Note the strong depen-

dence of the intensity on the transition energy.
To study the nonlinear absorption in an ensemble of spher-

ical dots, we introduced a distribution function over radii, in
Eq. (2.3), for the dot-size variable R. Using spherical coordi-
nates, the Gaussian distribution assumes the form exp

[−(R−
R0)2/σ2

]
, where R0 is the average value and σ its half-width

spreading. Because of the presence of Dirac delta-functions
in Eq. (2.3), the analytical integration is easy. Nevertheless, to
be more realistic, we could also replace the delta-function by

a Lorentzian line-shape function and the integrals can only be
calculated numerically.

The Fig. 3 shows the absorption coefficient for an ensem-
ble of spherical CdSe QD’s, using both the approximations
described above. The parameters used are R0 = 4 nm with
delta-function spreading σ = 10% (a) and σ = 5% (b) around
R0, respectively. For the Lorentzian function case, we con-
sider a Gaussian distribution half-width Γ = 5 meV. As can be
noted, the spectra almost overlap each other, revealing the fact
that the analytical approach using the delta-function with ap-
propriated spreading can be quite reasonable to the description
of nonlinear optical absorption effects in QD’s ensembles, at
least for dots with the characteristic parameters shown here.
Also, in low quality samples (large Γ), weak nonlinear tran-
sitions may be washed-out. Further calculations concerning
more general situations with different photon frequencies and
polarizations are now in progress and will be published else-
where.
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