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In this talk I describe an interesting relation between Feynman graphs at finite temperature and chemical
potential and the corresponding ones at zero temperature. The operator relating the two which we call the
“thermal operator”, simplifies the evaluation of finite temperature graphs and helps in understanding better
several physical questions such as cutting rules, forward scattering, gauge invariance etc at finite temperature.
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I. INTRODUCTION

Quantum field theories at zero temperature have been stud-
ied in great detail over many decades in the past. As a result,
we understand many features of the zero temperature quantum
field theory at least perturbatively. The perturbative calcula-
tions are carried out through the use of Feynman diagrams and
such calculations with necessary regularizations are fairly rou-
tine. Calculations in quantum field theroies at finite temper-
ature and chemical potential can also be carried out through
the use of finite temperature Feynman graphs, However, such
calculations prove a lot more challenging than the zero tem-
perature counterparts and, as a result, have not yet been em-
braced by the community at large and there is a continuous
effort to simplify such calculations. In this talk I will describe
how a simple relation exists between Feynman graphs at finite
temperature and the corresponding ones at zero temperature
through a “thermal operator”. As a result of this relation, cal-
culations at finite temperature can be simplified. But, more
importantly, such a relation allows one to better understand
various physical issues such as cutting rules, forward scatter-
ing amplitude, gauge invariance, divergence structure etc at
finite temperature. This talk is based on a series of papers that
we have written on the subject [1–4] where references to other
relevant papers may be found.

The talk is organized as follows. In section II, I will briefly
review the three formalisms that are commonly used to de-
scribe finite temperature quantum systems. In this section, I
will develop the notion of the thermal operator within the con-
text of the imaginary time formalism within the context of a
massive real scalar field. I will also describe various proper-
ties of the thermal operator as well as the meaning of such a
relation. In section III, I will develop the idea of the thermal
operator in the closed time path formalism (real time formal-
ism). The thermal operator representation is the most direct
in this formalism and I will discuss the thermal operator rep-
resentation for theories involving massive, real scalar field, a
massive fermion (without a chemical potential) as well as the
Yang-Mills theory. In section IV, I will describe the thermal
operator representation for a fermion with a chemical poten-
tial and give some results on how calculations at finite temper-
ature and finite chemical potential, in the case of QED, lead
to the result that the chemical potential is shifted by radiative
corrections. Finally, I will close with some observations on

possible future work in section V.

II. THERMAL OPERATOR REPRESENTATION IN THE
IMAGINARY TIME FORMALISM

At zero temperature, a given quantum field theory has a
set of causal propagators (Green’s functions) and interaction
vertices with which one can construct and calculate any Feyn-
man graph. Each Feynman graph, of course, represents a ra-
diative (quantum) correction to a given process and the cal-
culation of the Feynman graphs are best carried out in the
energy-momentum space. At finite temperature, the quantum
system can also be described by a quantum field theory. How-
ever, the boundary conditions at finite temperature are differ-
ent from the ones at zero temperature. Correspondingly the
propagators (Green’s functions) of the theory modify and be-
come functions of temperature to reflect the boundary condi-
tions although the interaction vertices have the same structure
as at zero temperature (and do not have any temperature de-
pendence).

There are basically three equivalent and commonly used
formalisms to describe quantum systems in equilibrium at fi-
nite temperature. The oldest of the formalisms is known as
the “Imaginary Time Formalism” [5–8] and is based on the
simple observation that if we let

t →− i
T

=−iβ, (1)

where T represents the equilibrium temperature, then the time
evolution operator becomes

e−iHt → e−βH , (2)

where we have set the Boltzmann constant to unity for sim-
plicity. This is, of course, reminiscent of the density matrix of
a quantum statistical system described by the Hamiltonian H
and correspondingly one can define the partition function for
the system in a straightforward manner.

Since in this formalism the time variable is rotated to the
(negative) imaginary axis, such a description of a quantum
system at finite temperature is commonly known as the imag-
inary time formalism. In this formalism, therefore, one deals
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FIG. 1: Time contour in the imaginary time formalism.

with an Euclidean field theory. However, since time takes val-
ues over a finite interval

0≤ τ≤ β, (3)

where τ represents the time along the negative imaginary axis,
the conjugate energy variable takes only discrete values

p0 =
{

2kiπT for bosons
(2k +1)iπT for fermions , (4)

where k is an integer. These energy values are commonly
known as the Matsubara frequencies. As a result, for a real,
massive scalar field, for example, the propagator will have the
form of an Euclidean propagator

∆(T )(p) =
1

(2πkT )2 +E2 , E =
√

~p 2 +m2, (5)

with the energy taking discrete values given by the Matsub-
ara frequencies. In a scalar field theory, one can now calcu-
late Feynman graphs with this propagator and the interaction
vertices for the Euclidean field theory to determine quantum
corrections at finite temperature. However, since energy now
takes discrete values, in loops we have to replace the integra-
tion over the loop energies to summation over internal Mat-
subara frequencies. Summation over these integers at higher
loops presents a nontrivial challenge in this formalism.

In the imaginary time formalism, as we have seen, the time
variable is traded in for temperature. However, one can also
define a formalism to describe a quantum system at finite tem-
perature where both time and temperature are present. This
known as the real time formalism (there are two such for-
malisms that are commonly in use). The price one has to pay
for this is to have an elaborate time contour in the complex
time plane as shown in Fig. 2. Here σ is a real parameter
taking values in the interval 0 ≤ σ ≤ 1. For σ = 0, the real
time formalism is due to Schwinger known as the closed time
path formalism [8–10] while for σ = 1

2 , the real time formal-
ism corresponds to thermofield dynamics [8, 11] of Umezawa
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FIG. 2: Time contour in the real time formalisms.

et. al. Thermofield dynamics is quite useful in understand-
ing questions involving the Hilbert space structure of a theory
while the closed time path formalism is quite versatile and is
useful even in studies of certain kinds of nonequilibrium phe-
nomena.

In the real time formalisms, since time takes values over the
entire real interval (the contributions from imaginary branches
decouple since they lie at Re t →±∞) much like in the zero
temperature theory, energy has a continuous spectrum. How-
ever, now there are two real branches of the time contour lead-
ing to a necessity for doubling the field degrees of freedom.
Thus, if we denote the two field degrees for a massive real
scalar field in the closed time path formalism as φ±, we see
that the propagator in such a case will be a 2×2 matrix of the
form

∆(T )(p) =

(
∆(T )

++(p) ∆(T )
+−(p)

∆(T )
−+(p) ∆(T )

−−(p)

)
, (6)

with (n(|p0|) is the BE distribution function)

∆(T )
++(p) =

i
p2−m2 + iε

+2πn(|p0|)δ(p2−m2),

∆(T )
+−(p) = 2π(θ(−p0)+n(|p0|))δ(p2−m2),

∆(T )
−+(p) = 2π(θ(p0)+n(|p0|))δ(p2−m2),

∆(T )
−−(p) = − i

p2−m2− iε
+2πn(|p0|)δ(p2−m2). (7)

The problem of summation over integer energy values of the
imaginary time formalism is here replaced by the doubled de-
grees of freedom. This leads to many more Feynman diagrams
for a given process at any higher loop involving products of
highly singular delta functions. This brief review of the dif-
ferent formalisms describing quantum field theories at finite
temperature is simply meant to illustrate the challenges fac-
ing any calculation of Feynman graphs at finite temperature.
This also makes it clear that if there exists a simple relation
between a Feynman graph at finite temperature and the cor-
responding one at zero temperature, that will be of immense
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use for a variety of reasons as indicated in the introduction. In
this section, we will describe such a relation in the imaginary
time formalism before moving on to the real time formalism
(where the relation is much simpler) in the remaining sections.

Although at zero temperature, the computation of Feyn-
man diagrams is conventionally carried out in the energy-
momentum space, for the purpose of obtaining a thermal op-
erator representation, it is most useful to work in the mixed
space where the energy variable is Fourier transformed so that
the propagator is a function of time and the spatial component
of momentum. Such a (mixed space) representation is quite
useful in many studies at finite temperature. We note that if
we Fourier transform the scalar propagator (5) in the energy
variable, we obtain

∆(T )(τ,E) = T ∑
k

e−i2πkT τ

(2πkT )2 +E2 (8)

=
1

2E

[
(θ(τ)+n(E))e−Eτ +(θ(−τ)+n(E))eEτ]

= (1+n(E)(1−S(E)))∆(T=0)(τ,E)

= O(T )(E)∆(T=0)(τ,E), − 1
T
≤ τ≤ 1

T
. (9)

Here τ is the Euclidean time and n(E) represents the Bose-
Einstein distribution function

n(E) =
1

eβE −1
. (10)

This is a remarkable result which shows that in the mixed
space, the thermal propagator in the imaginary time formal-
ism can be separated nicely into a zero temperature part and
a finite temperature part much like in the real time formalism
(see (7)). Furthermore, it shows that the thermal propagator
can be factorized such that it is related to the zero temperature
propagator through the basic thermal operator

O(T )(E) = 1+n(E)(1−S(E)), (11)

which is independent of the time variable. This basic fac-
torization of the thermal propagator is really at the heart of
the thermal operator representation for any finite temperature
Feynman graph (the proof of which is most direct in the closed
time path formalism). For example, let us note that given the
factorization of the basic propagator of the scalar field theory,
any finite temperature Feynman diagram where all vertices are
external will factorize. For example, in a φ3 theory the one
loop graph the N-point graph with all vertices external (see
Fig. 3) is easily seen to factorize as follows.

E
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FIG. 3: One loop N-point graph in φ3 theory that is easily seen to
factorize.

Γ(T )
N =

∫ N

∏
i=1

d3ki δ(3)(ki− ki+1 + pi+1)γ
(T )
N

=
∫ N

∏
i=1

d3ki δ(3)(ki− ki+1 + pi+1)

×∆(T )(τ1− τ2,E1) · · ·∆(T )(τN − τ1,EN)

=
∫ N

∏
i=1

d3ki δ(3)(ki− ki+1 + pi+1)

×
N

∏
i=1

(1+ni(1−Si))

×∆(T=0)(τ1− τ2,E1) · · ·∆(T=0)(τN − τ1,EN)

=
∫ N

∏
i=1

d3ki δ(3)(ki− ki+1 + pi+1)O(T )γ(T=0)
N , (12)

where ni = n(Ei),Si = S(Ei) and we have identified

O(T ) =
N

∏
i=1

O(T )(Ei) =
N

∏
i=1

(1+ni(1−Si)) . (13)

This shows for simple graphs that if we evaluate the zero tem-
perature graph, the value of the finite temperature graph can be
obtained from it by operating with the thermal operator (13).
The integration over the spatial momenta, of course, need to
be done. However, the summation of Matsubara frequencies
has already been taken care of.

Such a simple factorization of graphs is easily seen to hold
even at higher loops if the graph involves only external ver-
tices. For example, the same line of analysis as done above
can be carried out for the two loop graphs shown in Fig. 4
in the φ4 theory. However, the extension of this relation to
graphs with internal time vertices (sse Fig. 5) is not at all
obvious. The difficulty arises because the internal time coor-
dinates of a graph have to be integrated. At finite temperature,
the range of integration in the imaginary time formalism, as
we have already noted, is given by

∫ 1
T

0
dτ. (14)
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FIG. 4: Some two loop graphs in the φ4 theory that are easily seen to
factorize.
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FIG. 5: Two loop diagrams in the φ3 theory with internal time coor-
dinates.

On the other hand, in the zero temperature Euclidean theory,
the time variable takes values over the entire real line so that
a zero temperature graph would have the internal time coordi-
nate integrated over

∫ ∞

−∞
dτ. (15)

So, in order to establish a relation between finite temperature
graphs and the zero temperature ones, one has to somehow
extend the range of integration of the internal time coordinates
at finite temperature to the entire real line as well.

When there is integration over only a single internal time
coordinate, it can be shown explicitly that

∫ 1
T

0
dτ

N

∏
i=1

∆(T )(τ− τi,Ei)

= O(T )
∫ 1

T

0
dτ

N

∏
i=1

∆(T=0)(τ− τi,Ei)

= O(T )
∫ ∞

−∞
dτ

N

∏
i=1

∆(T=0)(τ− τi,Ei). (16)

Namely, the extra terms needed to extend the range of the in-
tegration are annihilated by the thermal operator (they are not
zero by themselves). The same feature also arises explicitly
when there are integrations over two internal time coordinates.
In fact, in general, we can prove that the range of the integra-
tion (0, 1

T ) for any internal time coordinate can be extended
to (−∞,∞) under the action of the thermal operator. I refer
the reader to [1] for the proof which is a bit involved. As we
will see in the next section, the proof of a relation between fi-
nite temperature graphs and the zero temperature ones is most
direct in the closed time path formalism.

As a result, it follows that independent of whether there
are internal time coordinates (that need to be integrated) in a
Feynman graph or not, a finite temperature Feynman graph
can be factorized into the corresponding zero temperature

graph and a thermal operator which we call the thermal opera-
tor representation for a finite temperature graph. Explicitly, if
we have diagram corresponding to a N-point function at any
loop, we can write

Γ(T )
N =

∫ I

∏
i=1

d3ki

(2π)3

V

∏
v=1

(2π)3δ(3)
v (k, p)γ(T )

N

=
∫ I

∏
i=1

d3ki

(2π)3

V

∏
v=1

(2π)3δ(3)
v (k, p)O(T )γ(T=0)

N , (17)

where I denotes the number of internal propagators and V the
number of interaction vertices in the graph. Furthermore, we
have identified the thermal operator for the graph as

O(T ) =
I

∏
i=1

O(T )(Ei). (18)

We also note that since the thermal operator is independent
of the time variable, we can now Fourier transform the time
variables to go to the energy-momentum space and the factor-
ization continues to hold. In other words, the sum over the
Matsubara frequencies for a finite temperature graph can be
obtained from the integrals over energies of the corresponding
zero temperature graph of the Euclidean field theory under the
action of the thermal operator.

This factorization of a finite temperature graph in terms of
the corresponding zero temperature one is a powerful result,
but this raises some interesting questions. For example, one
wonders how such a relation is possible. After all, at finite
temperature, a Feynman diagram represents an ensemble av-
erage of a time ordered correlation function whereas at zero
temperature a diagram is related to the vacuum expectation
value. Therefore, for a relation to exist between the two, we
must have

〈T (
N

∏
i=1

φ(τi,~pi))〉T ∼ 〈0|T (
N

∏
i=1

φ(τi,~pi))|0〉. (19)

Clearly, this is possible only if the expectation value of any
product of operators in any state is proportional to the vacuum
expectation value. We cannot show this in general to be true.
However, we can give some plausibility arguments in support
of this by looking at the tree level propagator of the theory.

Let us consider a free scalar field in Euclidean space. In the
mixed space we can have the field decomposition of the form

φ(τ,~p ) =
1√
2E

(
e−Eτa(~p )+ eEτa†(−~p )

)
, (20)

where the annihilation and the creation operators, a,a†, satisfy
the usual commutation relations. Given this, it can be directly
checked that in the N-quantum state

〈N,~p |T (φ(τ1,~p1 )φ(τ2,~p2 )) |N,~p 〉= δ(3)(~p−~p1)
×(1+N(1−S(E1))〈0|T (φ(τ1,~p1)φ(τ2,~p2)) |0〉. (21)

Namely, the expectation value of the time ordered product of
two fields in any N quantum state is proportional to the vac-
uum expectation value of the same. Furthermore, summing
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over all such states with the Boltzmann weight factor leads to
basic the thermal operator representation for the propagator
derived earlier.

One can similarly wonder about the meaning of such a re-
lation and the meaning of the thermal operator. To understand
the meaning of the thermal operator better, let us note that the
basic thermal operator for the propagator can be checked to
correspond to a projection operator,

(O(T )(E))2 = O(T )(E). (22)

Therefore, it begs the question as to what does it project onto.
This is easily understood by noting that the finite temperature
Feynman propagator can be written as

∆(T )(τ,E) = O(T )(E)∆(T=0)(τ,E). (23)

Since the zero temperature propagator has no particular pe-
riodicity properties while the finite temperature propagator
does, this shows that the basic thermal operator projects onto
the space of periodic functions (for bosons). This, in turn,
yields an ensemble average.

There are other interesting properties that the basic thermal
operator satisfies. Let me simply note one other. It can also
be checked that

O(T2)(E)O(T1)(E) = O(T1)(E). (24)

Namely, the application of a second thermal operator at a dif-
ferent temperature has no effect. This may seem strange at
first. However, this is exactly what one would expect from the
property of the thermal operator described earlieer. Namely,
once the application of the first thermal operator has produced
an ensemble average, the second operator can only average the
identity operator over the ensemble leading to nothing new.

III. CLOSED TIME PATH FORMALISM

As we have mentioned earlier, in the real time formalism
known as the closed time path formalism, the proof of the
factorization of finite temperature Feynman graphs is most di-
rect. Let us recall that in the closed time path formalism (as in
any real time formalism), the matrix has a 2×2 matrix struc-
ture. For the real, massive scalar field, the components of the
propagator matrix were already given in the momentum space.
Fourier transforming this to the mixed space (namely, Fourier
transforming the energy variable), it is easy to check that the
basic finite temperature propagator again factorizes. What is
more impressive is that although the propagator is a matrix,
each component of the matrix factorizes by the same scalar
thermal operator so that we can write

∆(T )
ab (t,E) (25)

= (1+n(E)(1−S(E)))∆(T=0)
ab (t,E) (26)

= O(T )(E)∆(T=0)
ab (t,E), a,b =±. (27)

The basic thermal operator is exactly the same as the one we
had already derived earlier in the imaginary time formalism.

The further simplicity of the real time formalism is that in
this formalism, time takes values over the entire real axis both
at zero as well as at finite temperature. Consequently, when
we have internal time coordinates in a Feynman graph, we do
not worry about extending the range of integration (as we did
in the imaginary time formalism). As a result, the thermal
operator representation follows directly even when there are
internal time coordinates. Indeed, in this formalism, the proof
of thermal operator representation for any finite temperature
Feynman graph is the most direct. It is worth noting here that
even though thermofield dynamics corresponds to the other
commonly used real time formalism, the finite temperature
propagator in thermofield dynamics only has a matrix factor-
ization (unlike the scalar factorization for the closed time path
formalism) and as such the thermal operator representation is
hard to prove.

Since the thermal operator representation in the closed time
path formalism is so simple, we will now discuss other theo-
ries in this formalism. First, we note that if we have fermion
theory without a chemical potential, then in the closed time
path formalism, it is easy to see in the mixed space that the
2×2 propagator matrix factorizes through a scalar basic ther-
mal operator as

S(T )
ab (t,~p ) = O(T )

F (E)S(T=0)
ab (t,~p ), a,b =±, (28)

where

O(T )
F (E) = (1−nF(1−S(E))) ,

S(T=0)
++ (t,~p ) =

1
2E

[
Aθ(t)e−iEt +Bθ(−t)eiEt] ,

S(T=0)
+− (t,~p ) =

1
2E

BeiEt ,

S(T=0)
−+ (t,~p ) =

1
2E

Ae−iEt ,

S(T=0)
−− (t,~p ) =

1
2E

[
Bθ(t)eiEt +Aθ(−t)e−iEt] ,

(29)

with

A = γ0E−~γ ·~p+m, B =−γ0E−~γ ·~p+m, (30)

and nF(E) denoting the Fermi-Dirac distribution function.
Since this thermal operator is time independent, if we take an
interacting theory of scalar and fermion fields, it is clear that
any Feynman graph in this interacting theory at finite temper-
ature will factorize in terms of the corresponding zero tem-
perature graph and the thermal operator that would be product
of bosonic and fermionic thermal operators depending on the
particular graph.

In the same manner, we can also look at a gauge theory
in this formalism. For example, if we consider a Yang-Mills
theory in the Feynman gauge, we know that the gauge propa-
gator is given by a (massless) scalar propagator up to a trivial
Lorentz structure and the internal symmetry structure. Since
we know that in the mixed space the 2× 2 finite temperature
matrix propagator for a scalar field in the closed time path for-
malism factorizes through a scalar thermal operator, it follows
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that for the gauge field in the Feynman gauge, we can write

Dαβ(T )
µν,ab (t,E) =−ηµνδαβ∆(T )

ab (t,E)

= O(T )(E)Dαβ(T=0)
µν,ab (t,E), a,b =±. (31)

In any other gauge, only the Lorentz structure multiplying
the scalar propagator modifies and, consequently, the factor-
ization continues to hold. Similarly, the ghost propagator
is a scalar propagator which we know factorizes and so in
the Yang-Mills theory all the 2× 2 finite temperature matrix
propagators factorize through the same basic thermal opera-
tor. Yang-Mills theory, on the other hand, is different in the
sense that it is an interacting theory and in the mixed space,
it has derivative interactions. However, since the basic ther-
mal operator is independent of time, derivatives commute with
the thermal operator and the thermal operator representation
holds for Yang-Mills theory as well as for QCD (interacting
gauge fields and fermions). This shows, therefore, that the
thermal operator representation holds for any interacting the-
ory (scalar, fermion and gauge) at finite temperature and zero
chemical potential. We will take up the interesting issue of
theories at finite temperature and finite chemical potential in
the next section.

IV. FERMIONS (WITH CHEMICAL POTENTIAL)

The systems at finite temperature with a chemical poten-
tial are, in general, harder to handle. The chemical potential
can be thought of as a coupling to a background electrosta-
tic potential. At zero temperature its effect is to introduce a
trivial phase factor (depending on the chemical potential) into
the components of the (2×2) matrix propagator. This is triv-
ial to handle. However, at finite temperature, in addition to
this phase factor, the positive and the negative frequency com-
ponents develop a chemical potential dependent distribution
function which makes it harder to handle them. Namely, the
positive and the negative frequency terms respond differently
to a chemical potential. (Another way of saying is that par-
ticles and anti-particles have different distribution functions.)
For example, in the case of a complex fermion field at finite
temperature and chemical potential, the mixed space 2×2 ma-
trix propagator in the closed time path formalism takes the
form

S(T,µ)
++ =

eiµt

2E

[
A(θ(t)−n−)e−iEt +B(θ(−t)−n+)eiEt] ,

S(T,µ)
+− =

eiµt

2E

[−An−e−iEt +B(1−n+)eiEt] ,

S(T,µ)
−+ =

eiµt

2E

[
A(1−n−)e−iEt −Bn+eiEt] ,

S(T,µ)
−− =

eiµt

2E

[
A(θ(−t)−n−)e−iEt +B(θ(t)−n+)eiEt] ,(32)

where n± = nF(E± µ). Therefore, it is not clear whether the
thermal propagator will factorize in this case. However, a little
bit of work shows that in spite of this complex structure, the

propagator has a thermal operator representation given by

S(T,µ)
ab (t,~p ) = eiµtO(T,µ)

F (E,∂t)S
(T=0=µ)
ab (t,~p ), (33)

where a,b =± and

O(T,µ)
F (E,∂t) = 1− n+ +n−

2
(1−S(E))

+
n+−n−

2
(1+S(E))

1
E

i∂t . (34)

This is the factorization one obtains if we insist on restricting
ourselves to the use of the reflection operator, S(E), as has
we have done in the earlier discussions. We note that when
µ = 0, this thermal operator reduces to the one described ear-
lier for the fermions. It can also be checked that in spite of
its complex form, this thermal operator continues to be a pro-
jection operator. However, its basic structure is different from
the earlier ones in the following way. Although it still does
not depend on the time coordinates, it now depends on time
derivative (basically, this reflects the asymmetry in particles
and anti-particles and vanishes when µ = 0). It is because of
the presence of this derivative operator that it is no longer pos-
sible to give a thermal operator representation for an arbitrary
graph in terms of this basic thermal operator. (Mainly, we
cannot take out the derivative terms out of integrals involving
internal time coordinates in a simple manner.)

On the other hand, if we allow for other operators besides
S(E) in defining a factorization for the thermal propagator,
one can avoid this difficulty. In particular, if we introduce a
distribution operator, N̂(T,µ)(E) such that acting on the posi-
tive and the negative frequency terms, it gives the appropriate
distribution functions [3]

N̂(T,µ)
F (E) e∓i(E∓µ)t = n∓(E) e∓i(E∓µ)t , (35)

then the thermal propagator can be factorized with a thermal
operator that is independent of time as well as time deriva-
tives. With this, one can give a thermal operator representa-
tion for any arbitrary graph at finite temperature and chemical
potential.

As an application of this, one can calculate the fermion self-
energy in QED at one loop at finite temperature and chemical
potential. Even in the absence of a chemical potential, such a
calculation is highly nontrivial and the analysis of the poles of
the fermion propagator is involved. In the presence of a chem-
ical potential, the analysis of the pole of the fermion propa-
gator leads to the fact that the tree level chemical potential
renormalizes at finite temperature [2]. It is, of course, a finite
renormalization. At very high temperature (T À m where m
denotes the tree level fermion mass), the pole occurs at

mF =
eT

2
√

2
, µR = µ

(
1− e2

16π2

)
. (36)

The thermal mass of the fermion is well known, however, the
renormalization of the chemical potential, to the best of our
knowledge, has not been discussed in the literature. From the
point of view of the Lagrangian density, the chemical potential
represents a parameter that, in principle, can be renormalized
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and we see that the renormalization has a screening behavior
much like one would expect from the renormalization of an
Abelian charge (remember that an alternate way of viewing
the chemical potential is to think of this as a coupling to a
background electrostatic field).

V. SUMMARY

In this talk I have tried to describe to you a very beauti-
ful relation between the finite temperature Feynman graphs
and the corresponding zero temperature graphs, both in the
imaginary time formalism and the real time (closed time path)
formalism. Such a relation holds for any interacting theory
with scalars, fermions and Yang-Mills fields with or without a
chemical potential. In addition to being of computational use,
the thermal operator representation is a powerful result which
allows one to study many aspects of thermal field theories in
a direct manner. One can, for example, study the cutting rules
at finite temperature and chemical potential [4, 8, 12] in a sim-

pler manner from the behavior at zero temperature. Similarly,
questions such as gauge invariance, divergence structure in
thermal field theories can be investigated from the correspond-
ing behaviors in the zero temperature theory. One may be able
to give a simpler derivation of the forward scattering ampli-
tude method at finite temperature through the application of
the thermal operator and hard thermal loops may be easier to
understand from this point of view. One may be able to de-
rive a renormalization group flow of thermal amplitudes with
respect to temperature directly since the temperature depen-
dence of a graph is contained entirely in the thermal operator.
Of course, there are many other possible questions that one
can think of which can be analyzed in a simpler manner in
this framework.
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