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Thermal Behavior of the Compactified 3-D Gross-Neveu Model
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We consider the N-component tri-dimensional massive Gross-Neveu model at finite temperature and with
compactified spatial coordinates. We study the behavior of the renormalized large-N effective coupling con-
stant, investigating its dependence on the compactification length and the temperature. We show that spatial
confinement exists for the model at T = 0, which is destroyed by raising the temperature.
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I. INTRODUCTION

In the most commonly accepted scenario for the early evo-
lution of the universe, the hadronic matter emerges in a confin-
ing phase transition where the quark-gluon plasma condenses
into material “droplets,” the hadrons, as the universe cooled
down. In the context of the standard model, the quantum
chromodynamics (QCD) should then be able to predict color
and spatial confinement, since hadrons are colorless and their
constituents, quarks and gluons, are confined in a region hav-
ing a linear size of order 1 f m (fossil quarks have never been
observed). Also, quarks are asymptotically free, the interac-
tion between them being very weak, at very high energies as
probed by deep inelastic scattering processes. QCD should
also account for the fact that the hadronization transition oc-
curred in the early universe at a finite temperature, estimated
of the order of 200MeV .

Nevertheless, although lattice calculations have given clear
indications, up to present day, no fully analytical treatment
with the standard model has been constructed capable of tak-
ing into account simultaneously all these different aspects of
hadronic matter. This is mainly due to the intricate field theo-
retical structure of non-Abelian QCD and, for this reason, ef-
fective theories and phenomenological approaches have been
developed over the last decades. The simplest effective theory
is the celebrated Gross-Neveu (GN) model [1], which consid-
ers direct four-fermions interaction.

In this spirit, we shall investigate the tri-dimensional Gross-
Neveu model, in the large-N limit, at finite temperature and
with one or two compactified spatial dimensions. Our aim
is to study analytically the simultaneous occurrence of spatial
confinement and asymptotic freedom, and investigate the ther-
mal deconfining transition. For that we will determine the de-
pendence of the renormalized effective coupling on the com-
pactification length and the temperature.

In this work, we first review our results for the 3-D GN

model with one compactified spatial coordinate, both at zero
and finite temperature, presented earlier [2, 3]. Then, we ex-
tend the analysis to the case where all spatial dimensions are
compactified.

II. COMPACTIFIED GROSS-NEVEU MODEL

Our starting point is the Wick-ordered massive Gross-
Neveu Lagrangian in a D-dimensional Euclidean space,

L =: ψ̄(x)(i 6∇+m)ψ(x) : +
u
2
(: ψ̄(x)ψ(x) :)2, (1)

where m is the mass, u is the coupling constant, x is a point of
RD and the γ’s are Dirac matrices. The quantity ψ(x) is a spin
1
2 field having N (flavor) components, ψa(x), a = 1,2, ...,N.
Summation over flavor and spin indexes is understood. Here
we consider the large-N limit (N →∞), which permits consid-
erable simplification. We use natural units, ~= c = kB = 1.

The compactification is engendered via a generalized Mat-
subara prescription, which corresponds to considering the sys-
tem in a topology RD−d × S11 × ·· ·S1d , thus treating spatial
and imaginary-time compactifications on the same footing.
To describe the model with d (≤ D) compactified Euclidean
coordinates, that is with xi restricted to segments of length
Li (i = 1,2, ....d) and the field ψ(x) satisfying anti-periodic
(bag model) boundary conditions, the Feynman rules should
be modified following the Matsubara replacements

∫ dki

2π
→ 1

Li

+∞

∑
ni=−∞

, ki →
2π(ni + 1

2 )
Li

. (2)

Then the Li-dependent four-point function at leading order
in 1/N and at zero external momenta, from which we will
define the effective coupling constant between the fermions,
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has the formal expression

Γ(4)
Dd(0;{Li},u) =

u
1+NuΣDd({Li}) , (3)

where Li-dependent Feynman one-loop (bubble) diagram is
given by

ΣDd({Li}) =
1

L1 · · ·Ld

∞

∑
{ni}=−∞

×
∫ dD−dq

(2π)D−d

[
m2−q2−∑d

i=1 ν2
i(

q2 +∑d
i=1 ν2

i +m2
)2

]
(4)

and νi = 2π(ni + 1
2 )/Li.

In order to simplify the use of regularization techniques,
we introduce the following dimensionless quantities: q′j =
q j/2πm ( j = d + 1, . . . ,D) and bi = (mLi)−2 (i = 1,2, . . . ,d).
To proceed, we extend the method developed in Refs. [2, 3]
to calculate the one-loop subdiagram, accounting for the com-
pactification of d (≤D) Cartesian coordinates. We use a mod-
ified minimal subtraction scheme, employing concurrently di-
mensional and analytical regularizations, where the countert-
erms are poles of the Epstein-Hurwitz zeta−functions [2].
The calculations go through the following steps.

First, using dimensional regularization techniques to per-
form the integral over q′, Eq. (4) becomes

ΣDd({bi}) = ΣDd(s;{bi})|s=2

=
mD−2

(2π)2

√
b1 · · ·bd

×
[

1
2π2 UDd(s;{bi})−UD(s−1;{bi})

]

s=2
,

(5)

with

UDd(µ;{bi}) = π
(D−d)

2
Γ(ν)
Γ(µ)

×
∞

∑
{ni}=−∞

[
d

∑
j=1

b j(n j +
1
2
)2 +(2π)−2

]−ν

,

(6)

where ν = µ− D−d
2 .

Secondly, transforming the summations over half-integers
into sums over integers, Eq. (6) can be written as

UDd(µ;{bi}) = π
(D−d)

2
Γ(ν)
Γ(µ)

4ν
[
Zh2

d (ν,b1, . . . ,bd)

−
d

∑
i=1

Zh2

d (ν, . . . ,4bi, . . .)

+
d

∑
i< j=1

Zh2

d (ν, . . . ,4bi, . . . ,4b j, . . .)

− ·· ·+(−1)d Zh2

d (ν,4b1, . . . ,4bd)
]
, (7)

where h = π−1 and

Zh2

d (ν,{ai}) =
∞

∑
{ni}=−∞

[
d

∑
j=1

a jn2
j +h2

]−ν

(8)

is the multiple-variable (d-dimensional) Epstein-Hurwitz
zeta-function. The function Zh2

d (ν,{ai}) can be analytically
extended to the whole complex ν-plane [4], through a gener-
alization of the procedure presented in Refs. [5, 6]; one finds

Zh2

d (ν,{ai}) =
πd/2

√
a1 · · ·ad Γ(ν)

[
1

h2(ν−d) Γ(ν− d
2
)

+4
d

∑
i=1

∞

∑
ni=1

(
πni

h
√

ai

)ν− d
2

Kν− d
2

(
2πhni√

ai

)

+8
d

∑
i< j=1

∞

∑
ni,n j=1


π

h

√
n2

1
a1

+
n2

2
a2




ν− d
2

×Kν− d
2


2πh

√
n2

1
a1

+
n2

2
a2


 + · · ·

+2d+1
∞

∑
{ni}=1


π

h

√
n2

1
a1

+ · · ·+ n2
d

ad




ν− d
2

×Kν− d
2


2πh

√
n2

1
a1

+ · · ·+ n2
d

ad





 , (9)

where Kν(x) is the Bessel function of the third kind.
Thirdly, we notice that the first term in the square bracket

of Eq. (9) leads to the following, bi-independent, contribution
to ΣDd(s;{bi}):

Σpolar
Dd (s) =

mD−2 π
D
2

(2π)D−2(s−2) Γ(s)

×
[

2Γ
(

s− D
2

)
− (s−1)Γ

(
s−1− D

2

)]
.

(10)

When we take s = 2, for even dimensions D≥ 2, this term di-
verges due to the poles of the Γ-functions; therefore, it should
be subtracted in order to obtain a finite, renormalized, Σ. For
the sake of uniformity, this term should also be suppressed
for odd dimensions D, when no poles of the Γ-functions are
present; in such cases, we perform a finite renormalization.
The renormalized one-loop (bubble) diagram, which arises
from the regular part of the analytical continuation of the
Epstein-Hurwitz zeta-function, is then given by

ΣR
Dd({bi}) =

[
ΣDd(s;{bi})−Σpolar

Dd (s)
]

s=2
. (11)

Inserting ΣR
Dd({bi}) into Eq. (3) and taking the limit N →

∞, with Nu = λ fixed as usual, we find the large-N effective
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({bi}-dependent) renormalized coupling constant, for d (≤D)
compactified dimensions, as

gDd({bi},λ) = lim
N→∞

[
NΓ(4)R

Dd (0,{bi},u)
]

=
λ

1+λΣR
Dd({bi})

. (12)

This is the basic result for subsequent analysis. But, instead
of pursuing the problem for general dimension D, we shall
restrict our discussion to the D = 3 case considering, initially,
the case where only one spatial dimension is compactified.

III. THE 3-D GROSS-NEVEU MODEL WITH ONE
COMPACTIFIED SPATIAL DIMENSION

Taking D = 3 and d = 1 in the preceding formulas, and
fixing b1 = L−2 (thus measuring L in units of m−1, as it will
be done from now on), we find

ΣR
31(L) =

m√
2π

3
2

[
2

∞

∑
n=1

(√
2Ln− 1√

2Ln

)
K 1

2
(2Ln)

−
∞

∑
n=1

(√
Ln− 1√

Ln

)
K 1

2
(Ln)

]
. (13)

Using the expression for the Bessel function of order 1
2 ,

K± 1
2
(z) =

√
π

exp(−z)√
2z

, (14)

and performing the resulting geometric series, Eq. (13) be-
comes

ΣR
31(L) =

m
2π

[
1
L

log(1+ e−L)− 1
1+ eL

]
. (15)

The behavior of ΣR
31 as a function of L is illustrated in Fig. 1.

We find from Eq. (15) that ΣR
31(L) diverges (→+∞) when L→

0 and tends to 0, through negative values, as L → ∞. Numer-
ically, we find that ΣR

31(L) vanishes for L = Lmin ' 1.14m−1,
being negative for L > L(1)

min; it also assumes a minimum (neg-
ative) value, ΣRmin

31 ' −0.0091m, for L = Lmax ' 1.84m−1.
This dependence of ΣR

31 on L, in particular the fact that ΣR
31(L)

is negative for L > Lmin, has remarkable influence on the be-
havior of the renormalized effective coupling constant.

In the present case, Eq. (12) becomes

g31(L,λ) =
λ

1+λΣR
31(L)

. (16)

We first note that, due to the divergence of ΣR
31, g21(L,λ) ap-

proaches 0 as L → 0, independently of the value of λ; there-
fore, the system presents a kind of asymptotic-freedom behav-
ior for short distances. On the other hand, starting from a low
value of L (within this region of asymptotic freedom) and in-
creasing the size of the system, g31 will present a divergence at

1 2 3 4 5
L

0.02

0.04

0.06

0.08

0.1

S

FIG. 1: Plot of S = ΣR
31(L)/m as a function of L (in units of m−1).

a finite value of L (Lc), if the value of the fixed coupling con-
stant (λ) is high enough. In fact, this will happen for all values
of λ above the “critical value” λc = (−ΣRmin

31 )−1 ' 110.0m−1.
The behavior of the effective coupling as a function of L is
illustrated in Fig. 2 for some values of the fixed coupling con-
stant λ. We interpret this result by stating that, in the strong-
coupling regime (λ≥ λc) the system gets spatially confined in
a segment of length Lc(λ). We find also that

Lc(λ) ∈ (Lmin,Lmax] , (17)

with Lmax corresponding to the confining length when λ = λc
while Lmin is associated with λ→ ∞. The value of Lc(λ), for
an arbitrary value of λ > λc, can be found by searching for the
smallest solution of the equation 1+λΣR

31(L) = 0.

1 2 3 4
L

1

2

3

4

5

6

G

FIG. 2: Plots of the relative effective coupling constant, G =
g31(L,λ)/λ, as a function of L (in units of m−1) for some val-
ues of λ: 90m−1 (dotted line), 70m−1 (dotted-dashed line), 30m−1

(dashed line) and 110m−1 (full line). The vertical lines, passing by
Lmin ' 1.14 and Lmax ' 1.84, are plotted as a visual guide.

We now consider the GN model, with one compactified spa-
tial dimension, at finite temperature. To do so, we have to
compactify the imaginary (Euclidean) time in a length β =
1/T , where T represents the temperature. Taking b1 = L−2
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and b2 = β−2 in the formulas of Sec. II, we obtain

ΣR
32(L,β)

m
=

1
2π

[
1
L

log(1+ e−L)+
1
β

log(1+ e−β)
]

− 1
2π

[
1

1+ eL +
1

1+ eβ

]

+
1
π

[G2(L,β)−2G2(L,2β)

−2G2(2L,β)+4G2(2L,2β)] , (18)

where the function G2(x,y) is defined by

G2(x,y) =
∞

∑
n,l=1

exp
(
−

√
x2n2 + y2l2

)[
1− 1√

x2n2 + y2l2

]
.

(19)
Notice that the numerical computation of ΣR

32(L,β) is greatly
facilitated by the fact that the double series defining the func-
tion G2(y,z) is rapidly convergent.

As a first remark, observe that ΣR
32(L,β) reduces to the ex-

pression (15) for the T = 0 case, if we take β → ∞. On the
other hand, ΣR

32(L,β) → ∞ when β → 0. This implies that,
independently of the value of λ, the effective renormalized
coupling constant,

g32(L,β,λ) =
λ

1+λΣR
32(L,β)

, (20)

vanishes when β→ 0 and, so, the system gets asymptotically
free at very high temperatures, as expected. Therefore, if we
start with the confined system (λ ≥ λc) at T = 0 and raise
the temperature, at some value T = Td(λ), the divergence of
g32(L,β,λ) is suppressed, the system becoming unconfined.

For a fixed value of λ (≥ λc), the determination of the de-
confining temperature, Td(λ), can be implemented by exam-
ining of the minimum value of g−1

32 (L,β,λ) for various val-
ues of β; the value of β, βd(λ), for which the minimum van-
ishes gives the deconfining temperature. In Fig. 3, we plot
g−1

32 (L,β,120) as a function of L, for some values of β, to
illustrate the process. In this example with λ = 120m−1,
the minimum of g−1

32 vanishes for β = βd ' 1.56m−1 and
is positive for β > βd ; thus, the deconfining temperature is
Td = β−1

d ' 0.64m when λ = 120m−1. For an arbitrary value
of λ (≥ λc), we have

Td(λ) ∈
[
T min

d ,T max
d

)
, (21)

where T min
d ' 0.6m is the deconfining temperature when λ =

λc and T max
d ' 0.87m is the upper bound, which would be

only reached when λ→ ∞.

IV. THE 3-D GROSS-NEVEU MODEL WITH BOTH
SPATIAL DIMENSIONS COMPACTIFIED

We now consider the 3-dimensional GN model at T = 0,
where both spatial coordinates x1 and x2 have been compacti-
fied. Naturally, the expression for ΣR

32(L1,L2) can be obtained

2 3 4 5
L

-0.002

0.002

0.004

0.006

0.008

0.01

g-1

FIG. 3: Inverse of the effective coupling constant g−1
32 , with λ =

120m−1 fixed, as a function of L (in units of m−1), for some val-
ues of β (in units of m−1): 2.0, 1.56 and 1.4 (dashed, full and dotted
lines, respectively).

from Eq. (18) replacing L and β by L1 and L2. But, instead of
considering the general situation, we shall restrict our analysis
to the case where both compactification lengths L1 and L2 are
equal to L. We then obtain

ΣR
32(L)
m

=
1
π

[
1
L

log(1+ e−L)− 1
1+ eL

]

+
1
π

[G2(L,L)−4G2(L,2L)+4G2(2L,2L)] ,

(22)

with the function G2(x,y) given by Eq. (19).
The function ΣR

32(L) has a behavior similar to that of
ΣR

31(L), but the numbers are distinct: it vanishes at L = Lmin '
1.3m−1 and assumes the minimum value, ΣRmin

32 '−0.0099m,
for L = Lmax ' 2.1m−1. Also, ΣR

32(L) diverges when L → 0
and tends to 0, as L → ∞. The plot of ΣR

32(L)/m is shown in
Fig. 4.

1 2 3 4 5 6
L

-0.02

0.02

0.04

0.06

0.08

S

FIG. 4: Plot of S = ΣR
32(L)/m as a function of L (in units of m−1).

Thus, in the present case, the effective renormalized cou-



Brazilian Journal of Physics, vol. 36, no. 4A, December, 2006 1169

pling constant,

g32(L,λ) =
λ

1+λΣR
32(L)

, (23)

maintains the same characteristics as before; it vanishes as
L → 0, irrespective to the value of λ, and for λ ≥ λc =
(−ΣRmin

32 )−1 ' 101.0m−1, it presents a divergence at a finite
value of L, Lc(λ) ∈ (Lmin,Lmax]. Therefore, in the fully com-
pactified 3-D model, we still have a behavior that is quite sim-
ilar to the asymptotic freedom for small distances and spatial
confinement in the strong-coupling regime, λ ≥ λc. Now, it
remains to investigate the effect of finite temperature on the
effective renormalized coupling constant.

To consider temperature effects, we have to compactifiy
the imaginary time in a length β = 1/T . In this case, tak-
ing L1 = L2 = L and L3 = β in the formulas of Sec. II, we find
the following expression for the L-β dependent renormalized
bubble diagram:

ΣR
33(L,β)

m
=

1
2π

[
2
L

log(1+ e−L)+
1
β

log(1+ e−β)
]

− 1
2π

[
2

1+ eL +
1

1+ eβ

]

+
1
π

[G2(L,L)+2G2(L,β)−4G2(L,2L)

−4G2(L,2β)−4G2(2L,β)+4G2(2L,2L)
+8G2(2L,2β)−2G3(L,L,β)+4G3(L,L,2β)
+8G3(2L,L,β)−8G3(2L,2L,β)
− 16G3(2L,L,2β)+16G3(2L,2L,2β)] , (24)

where G2(x,y) is given by Eq. (19) and the function G3(x,y,z)
is defined by

G3(x,y,z) =
∞

∑
n,l,r=1

exp
(
−

√
x2n2 + y2l2 + z2r2

)

×
[

1− 1√
x2n2 + y2l2 + z2r2

]
. (25)

Note that, making β → ∞, Eq. (24) reduces to ΣR
32(L), given

by Eq. (22).
As before, the increase of the temperature destroys the

spatial confinement that exists for λ ≥ λc at T = 0. We
can determine the deconfining temperature by searching for
the value of β(λ) for which the minimum of the inverse of
the effective renormalized coupling constant, g−1

33 (L,β,λ) =
(1 + λΣR

33(L,β))/λ, vanishes. For example, taking the spe-
cific case of λ = 150m−1, we find βd ' 1.41m−1 which corre-
sponds to the deconfining temperature Td ' 0.71m; this result
could be illustrated in a figure with the same pattern as that
appearing in Fig. 2 for the case where only one spatial co-
ordinate is compactified. Again, the relation (21) holds with

T min
d ' 0.54m, the deconfining temperature when λ = λc, and

T max
d ' 0.87m being the upper bound, achieved when λ→∞.

Note that T min
d , for the fully compactified model, is smaller

than the value when only one spatial dimension is com-
pactified. This is because, in the present case, the modulus
of the absolute minimum of ΣR

32(L1,L2) (which occurs for
L1 = L2 = Lmax) is larger than that of ΣR

31(L), leading to
a smaller critical value λc when both spatial coordinates
are compactified. On the other hand, T max

d is the same for
both cases of one or two spatial dimensions compactified.
This is not a mere coincidence but reflects the fact that,
in the extremely strong-coupling regime, the deconfining
temperature is independent of the number of compactified
spatial dimensions.

V. CONCLUDING REMARKS

We have analyzed the N-component 3-D massive Gross-
Neveu model with compactified spatial dimensions, both at
zero and finite temperatures. The large-N effective coupling
constant g, for T = 0, shows a kind of asymptotic freedom
behavior, vanishing when the compactification length tends to
zero, irrespective the value of the fixed coupling constant λ. In
the strong coupling regime, where the fixed coupling constant
is greater than some critical value, starting from small com-
pactification lengths and increasing the size of the system, a
divergence of the renormalized effective coupling constant ap-
pears at a given length, Lc(λ), signaling that the system gets
spatially confined. When the temperature is raised, a decon-
fining transition occurs at a temperature Td(λ), as the min-
imum of the inverse of the renormalized effective coupling
constant reaches zero.

It should be emphasized that these results are intrinsic of
the model and do not emerge from any adjustment. The limit
values of Lc(λ) and Td(λ) depend only on the fermion mass.
Thus, to get an estimate of these values we have to fix the
parameter m. To do so, we consider the Gross-Neveu model
as an effective theory for the strong interaction (in which the
gluon propagators have been shrunk, similarly to the Fermi
treatment of the weak force) and take m to be the constituent
quark mass, m ≈ 350MeV ' 1.75fm−1 [7]. With such a
choice, for the model with both spatial coordinates compacti-
fied, we find 0.74fm < Lc(λ) < 1.20fm and, correspondingly,
305MeV > Td(λ) > 189MeV. These values should be com-
pared with the experimentally measured proton charge diame-
ter (≈ 1.74fm) [8] and the estimated deconfining temperature
(≈ 200MeV) for hadronic matter [9]. A detailed analysis of
such a comparison, for arbitrary dimensions and in particular
for D = 4, will be presented elsewhere.
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NSERC (Canada).



1170 A. P. C. Malbouisson et al.

[1] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[2] A. P. C. Malbouisson, J. M. C. Malbouisson, A. E. Santana, and

J. C. Silva, Phys. Lett. B 583, 373 (2004).
[3] F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson, H.

Queiroz, T. M. Rocha-Filho, A. E. Santana, and J. C. Silva, Phys.
Lett. B 624, 316 (2005).

[4] A. P. C. Malbouisson, J. M. C. Malbouisson, and A. E. Santana,
Nucl. Phys. B 631, 83 (2002).

[5] A. Elizalde and E. Romeo, J. Math. Phys. 30, 1133 (1989).
[6] K. Kirsten, J. Math. Phys. 35, 459 (1994).
[7] Particle Data Group, Phys. Lett. B 592, 1 (2004); see page 475.
[8] S. G. Karshenboim, Can. J. Phys. 77, 241 (1999).
[9] A. Smilga, Lectures on QCD (World Scientific, Singapore, 2001)

p. 279.


