36457
20064F 7 A

Vol. 36,No. 7
Jul. 2006

¥ B # 2 & £ X ¢ 35 4

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article 1D:0253-2778(2006)07-0704-08

Investigating the normal structure of certain subgroups
and computing their induced characters

BEDAIWI Saad A, LI Shang-zhi

(Department o f Mathematics , University of Science and Technology of China, Hefei 230026 ,China)

Abstract: The normal structure of the maximal parabolic subgroups and Borel subgroups of the
finite general linear groups were investigated, and the induced characters of the finite general
linear group GL (n,q) from those subgroups were computed. A computer program system GAP
was used to check the results and generalize them.
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. one of such series, namely, chief series, and then
0 Introduction . : .
exploiting the fact that the chief factors are a direct
product of mutually isomorphic simple groups.

One of the most effective methods for

studying the normal structure of a given group is to
consider a specific kind of descending series
subgroups of that group. In order to investigate
the normal structure of the maximal parabolic
subgroups and Borel subgroups of a finite general

linear group, we have adapt this approach by using
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The later groups are completely classified in 1980.

Seeking for a better understanding for the
representation of the considered subgroups
(maximal parabolic and Borel), an attempt has
been made to compute their induced characters

with two different methods.
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Through out our work was used a computer
program system called GAP''Y was used to check

the results and generalize them.

1 Preliminaries

Definition 1.1 Let F be a finite field, a
parabolic subgroup P7 of the general linear group
GL (n,q) is the multiplicative subgroup of the
block triangular algebra

M, (F) M, , (F) - M, ()

N M
0 M, (F) e M, , (F)
0 0 M, (F)

where M, ; (F),1<(i, j<(t, is the i Xj matrix over
F.p= (ypsmpsssp) is a sequence of positive
integers such thatn = | 1]\ .

A maximal parabolic subgroup MP of the
finite general linear group GL (nn,q) takes the form
P*®"® A Borel subgroup B of the finite general
linear group GL (n,q) takes the form P"".

The following code was essentially designed to
compute the standard parabolic subgroups,
however, we will make a simple modifications on it
to get those subgroups of our concern, and then

make our investigation and computations on them.

Main Program:
gap> G *=GL(n,q);;
gap>> lambdas = OrderedPartitions(n);;
gap>> DirectProductMatGroup = function(G, H)
> local gens;
> gens = Concatenation(
> List(GeneratorsOfGroup(G) ,
x — > DirectSumMat(x,0One(H))),
> List(GeneratorsOfGroup(H) ,
y —>> DirectSumMat(One() ,y)));
> return Group(gens) ;
> end;
function(G, H)--+end

gap> StandardLevi = function(lambda, q)
> local G, i;

> G = GL(ambda[1],q);

> foriin[2..Length(lambda)] do

> G:=
DirectProductMatGroup(G, GL(lambdali],q));
>  od;
> return G;
> end;

function(lambda, q)+++end

gap> StandardParabolic := function(lambda, q)
> local L, gens, idx, g, i, j;

>

> L == StandardLevi(lambda, q);

> gens = ShallowCopy(GeneratorsOfGroup(l.)) ;
> foridx in[1 .. Length(lambda)—1] do

> g = MutableCopyMat(One(1.)) ;

> j = Sum(lambda {[1..idx—1]}) + 1;
> i *= Sum(lambda {[1..1idx]}) + 1;

> gli][j] = One(GF(q));

> Add(gens, Immutable(g));

>

> od;

> return Group(gens) ;

> end;

function(lambda, q)+--end

gap> # for example the standard parabolic subgroups
of GL(3,2) are:
gap>> n = 3;; q = 2;;
gap_> groups =
List(lambdas, lambda— >
StandardParabolic(lambda,q) ) ;
[ <matrix group with 8 generators>,
<matrix group with 5 generators™>,
<matrix group with 5 generators™>,
Group([ <<an immutable 3 X3 matrix over GF2>,
<Can immutable 3X3 matrix over GF2>) |

2 Investigating the normal structure

Definition 2. 1 A series of subgroups
G=G6G >G> >G =1

of a group G is called a chief series if for each 7.

(1) GndG;,

(1) GG,

() A H G which satisfy G;1; << H << G;.
The successive quotients G; /Gy, are called the chief
factors of G.

Remark 2.2 In GAP,according to Definition
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1.1, we can obtain the maximal parabolic
subgroups and Borel subgroups from the main

program as follows:

lambdas := OrderedPartitions (n, 2); # to get the
maximal parabolic subgroups of G L (n, q) for a specific
values of n and q;

lambdas :=OrderedPartitions(n.n); # to get the Borel

subgroup of GL(n,q) for a specific values of n and q.

We will take the group
G=GL(3,2) = SL(3,2)
as example, however, the same procedure can be

used for a different finite general linear group.

# Using Remark 2. 1, G has two maximal parabolic
subgroups:

gap> MP1 =groups[1];

< matrix group with 5 generators™>

gap> MP2 = groups[ 2 ];

<Umatrix group with 5 generators™>

# G has one Borel subgroup:

gap> B :=groups[ 1];

< matrix group with 8 generators™>

The following function is used to compute the

minimal normal subgroups.

gap> MinimalNormalSubgroups = function (G)
> local minimal, normal, n;
> normal =
ShallowCopy(NormalSubgroups(G)) ;
Sort(normal, function (x, y)
return Size(x)<Size(y) ;
end) ;
minimal = [ J;
for n in normal {[ 2 .. Length(normal) ]} do
if ForAll(minimal, function (x)
return not IsSubset(n, x);
end) then
Add(minimal, n);
fi;
od;
> return minimal;

> end;

VVVVVVVVYVVY

function(G)++-end

gap> # for example the Borel subgroup B

gap>> # has only one minimal normal subgroup which
is:

gap>> MinimalNormalSubgroups(B) ;

[ <Zgroup of 3X3 matrices of size 2 in characteristic 2> ]

The following function tests whether or not a
subgroup H is a minimal normal subgroup of a

group G.

gap> IsMinimalNormalSubgroup := function (G, H)
> local M, value;

> if IsSubgroup(G,H) then

> M := MinimalNormalSubgroups(G) ;

> i

> if H in M then

> value = true;
> else

> value = false;
> fi;

> return value;
> end;

function(G, H)-:-end

The chief factor G;/G;;; is a minimal normal
subgroup of the quotient group G/G;y; where
G=6G >G> >G =1
is the chief series of G. In GAP the following
function shows that this fact was achieved for

arbitrary group G as follows.

gap> TestCFisMinimalNormal = function (S)

> local hom,x,f,g.i.k;

> if IsGroup(S) then

> S :=ChiefSeries(S);

> i

> x=[]

> foriin[2..Length(S)] do
> hom =

Natural HomomorphismByNormalSubgroup(S[ 1], i]) ;

> g :=Image(hom,S[1]); # the quotient group
> { = Image (hom,S[i—1]); # the chief factor
>k = IsMinimalNormalSubgroup(g,f);

> Add(x,k);

> od;

> return x;

> end;

function(S) -+ end
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Take as example MP1, we have:

gap> TestCFisMinimalNormal(MP1) ;

[ true, true, true |

Since the chief factors are minimal normal
subgroups and hence a direct product of mutually
isomorphic simple groups which are completely
classified, we can write the following function that
displays the normal structure of a given group in

details.

gap>> DisplayChiefSeries = function (S)
> local f, i,C,T,numb;
> if IsGroup(S) then
> S :=ChiefSeries(S) ;
> fi;
> Print(GroupString(S[ 1], "G"), "\n");
> foriin[ 2.. Length(S) | do
>f =
Image(NaturalHomomorphismByNormalSubgroup
(SLi—1].90i));
> C = CompositionSeries(f) ;
> numb = Length(C)—1;
> Print("\n");
> Print(" | ",
IsomorphismTypelnfoFiniteSimpleGroup(T). name,

n non

, "number of direct factors=", numb,"\n");
> Print("\n");

> if i<<Length(S) then

> Print(GroupString(S[i], "S"), "\n");

> else

> Print(GroupString(S[i], "1"), "\n");

> fi;

> od;

> return;

> end;

function(S) -+ end

gap> # for example MP1 has the following structure:
gap> DisplayChiefSeries(MP1) ;
G (size 24)
| Z(2): number of direct factors=1
S (3 gens, size 12)
| Z(3): number of direct factors=1
S (2 gens, size 4)

| Z(2): number of direct factors=2

1 (size 1)

Remark 2.3 When the number of the direct
factors equals 1, it means that the corresponding
chief factor is a simple group. For full exposition
for the isomorphism type of finite simple groups
see Ref. [14, p. 350~351]. The same function can
be used to view the normal structure of MP2, B

and other different groups.

3 Computing the induced characters

As we have seen in the previous section, G =
GL (3,2) has two maximal parabolic subgroups,
MP1 and MP2, and one Borel subgroup B,
moreover, we have some information about the
subgroups listed in Tab. 1.

Tab.1 Some information about the subgroups

group size number of conjugacy classes
G 168 6

MP1 24 5

MP?2 24 5
B 8 5

To save space we proceed only for MP1. The
corresponding representatives of the conjugacy

classes C; 4+++,C-; of MP1 are.

100 100
hy=1010|,h =001/,
001 011
100 1 0 0
h; =10 0 1|, hy =10 0 1},
110 0 1 0
1 0 0
h; = |0 1 0.
1 0 1

The corresponding representatives of the conjugacy

classes K;,+++, K; of G are;

1 0 0 01 0
rn=10 1 Ol,r,=11 0 0},
0 0 1 0 0 1
0 0 1 0 0 1
rs=11 0 1|, r,=11 0 0},
0 1 1 0 1 1
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0 0 1 1 0 0 In what follows we give two different methods
rs=11 0 1|,rs=10 0 1 for computing the induced characters of G from
01 0 0 1 1 MP1.
In GAP, one may use the following function 3.1 First method
to get these representatives. Proposition 3.1  Let H <C G, ¢ be a character
gap> Representatives = function (G) of Hand g € G. Then
= local i, cc.L; , J 0 (Cele)) oChy) if m>0,
> if IsGroup(G) then 90(’(g) l‘ 1 O (Cuhi))
> cc = ConjugacyClasses(G) ; if m=0,
> i where,m is the number of conjugacy classes of H
> L = List(cc,Representative) ; whose members are conjugate in G to g, hy,***.h,,
>~ are the representatives of the m classes, O(C;(g))
> foriin[1..Length(L)] do PrintArray(L[i]); is the order of the centralizer of g in G and
>  Print("\n"); O(Cy (h;)) is the order of the centralizer of h; in H.
> od;
= end; Proposition 3.2 The induced characters of G
function(G)-++end from MP1 are listed in Tab. 2, where ¢; (1 <Ci << 6)
The character tables of MP1 and G are: are the irreducible characters of MP1.,

Tab. 2 Induced characters of G from MP1

gap> tbll :+=CharacterTable(MP1) ; ; Display(last) ;

CT1 r r rs ry rs e
9 3 9 9 3 o 7 3 1 0 0 1
31 1 . . . o 7 —1 —1 0 0 1
o3 14 2 0 0 0 —1
la 3a 4a 2a 2b o 21 _3 1 0 0 0
X. 1 1 1 1 1 1 G _
¢ 21 1 1 0 0 0
X.2 1 1 —-1-1 1
X.3 2 -1 . . 2 Proof Since C, = K, C, C K., C;, C
X. 4 3. 1—-1-—1 K,&{C,,C;} C K,, moreover, there are no
X5 3. —1 1 -1 elements of MP1 which belong to the classes K, ,
gap>> tbl =CharacterTable(G) ; ; Display(last) ; K. together with proposition 3. 1 we have:
CT2 V1<<i<<6;
2 33 2 . . . Gy - OCeCr)) _
I TR #D T O iy M
71 1. B8 ),
la 2a 4a 7a 7b 3a . O(Cs(ry))
G _ c(r; (h
X1 1 1 1 1 1 1 ¢ = 0o oy PO T
X.2 3—-1 1 A /A . OCo(r)) oy
X35  3-1 1 /A A . OCCur (h: )
X4 6 2 . —1-1 . %¢i(h4)+%@(h5>,
X.5 7 —1 —1 . . 1
_ . O(Cs(r3))
X. 6 8 1 1 1 G(p ) — NGB/ 7 gy —
€)= O Cop (o) P

A=EMD+E@2+E(M4

4
—(—1+ER(—7)/2=b7 5 #iChs)s
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SD?(’Z;) - (pf’(rg) — Ov
(,)(C(,‘(rg)) )
O(Capr (B ¥

%Sﬁj (hz) .

@E;(ra) == (hz) -

Substituting the values of the irreducible
characters ¢; of MP1 in the above equations we
have done. L]

Remark 3.3 ([ )In GAP we can show the
relations between the conjugacy classes of group G

and its subgroup H as follows.

gap> RelationsBetweenConjClasses =
function (G, H)
local C, K, 1, j;
if IsGroup() and IsGroup(H) then
C := ConjugacyClasses(H) ;
K = ConjugacyClasses((3) ;
fi;
foriin[ 1.. Length(C) ] do
forjin[ 1.. Length(K) ] do
if C[1]=KI[j] then
Print("C",i,"is equal","K",j,"\n");
elif IsSubset(K[j], C[i]) then
Print("C",1,"is proper subset of ","K",j,"\n");

else

VVVVVVVVVVVYVYVVVY

od;

return;

> end;

function(G, H)--+end

\

gap> # using this function we have:

gap> RelationsBetweenConjClasses(G, MP1) ;
Cl is equal K1

C2 is proper subset of K6

C3 is proper subset of K3

C4 is proper subset of K2

C5 is proper subset of K2

(Il ) The orders of the centralizers of the
representatives in G and MP1 can be obtain easily

in GAP as follows.

gap> ccG = ConjugacyClasses(G) ; ;
gap> L *=List(ccG, Representative) ; ;

gap> OCeG =
List(L,x —> Order(Centralizer(G,x))) ;

[ 168, 8, 4,7,7,3]
gap> # for MP1 we have:
gap> ccMP1 := ConjugacyClasses(MP1) ; ;
gap> L *=List(ccMP1, Representative) ; ;
gap> OCeMP1 :=

List(L,x —> Order(Centralizer(MP1,x)));
[24,3,4,4,8]

3.2 Second method
Definition 3. 4
s+, y. be the irreducible characters of H and G,

Let H <G,901 RN and)@ s

respectively. The induction-restriction table of
(G, H) is the wX z matrix whose (i,j)-entry is the
common value of (¢f’,y;)¢ and (¢; s y; | ).

The i’ th row in the induction-restriction table
represent the multiplicities with which the ;
appears in the decomposition of ¢/.

The j’ th column in the induction-restriction
table represents the multiplicities with which the ¢;
appears in the decomposition of y; | 1.

Proposition 3.5 The restriction characters of
G on MP1 are listed in Tab. 3.

Tab. 3 Restriction characters of G on MP 1

G G G Cy Cs
x| v 1 1 1 1 1
x2 | v 3 0 1 —1 -1
xs L ver 3 0 1 —1 —1
x| v 6 0 0 2 2
x5 | e 7 1 -1 —1 -1
X6 | vp1 8 —1 0 0 0

Proof Direct calculations using the relations
between the conjugacy classes of MP1 and those of
G stated in the proof of Proposition 3. 2. []

Corollary 3.6  Let ¢, (1 << i << 5), be the
irreducible characters of MP1, then

Xl‘MI’lZGD17

X2 ImP1— Qo>
e ‘Ml’l: (2

X4‘MP1:§01+¢3+§059
Xs‘Mm:gDz“—qu‘f’gDsy
XG‘Mm:gDs_‘_%‘i‘gDs-
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Proposition 3.7 The induction-restriction

table of (G,MP1) is listed in Tab. 4.

Tab. 4 Induction-restriction table of (G,MP1)

X1 | mp1 X2 | v X3 | mp1 x4 | mp1 x5 | v X6 | mp1

o 1 0 0 1 0 0
@ 0 0 0 0 1 0
e 0 0 0 1 0 1
o0 1 1 0 1 1
@5 0 0 0 1 1 1
Proof Using Corollary 3.6 and the inner
product of irreducible characters. []

Corollary 3.8 The induction-restriction table

(Tab. 4) could be written equivalently by means of

induced characters of G from MP1 as seen in

Tab. 5.
Tab.5 Equivalent view for table 4

X be e x e X
o 1 0 0 1 0 0
¢ 0 0 0 0 1 0
¢ 0 0 0 1 0 1
o 0 1 1 0 1 1
¢ 0 0 0 1 1 1

We can deduce from Corollary 3.8 and

Definition 3. 4 that.

=0t

@ = X

& =T
&=ttt oxes
¢ =0T+

In GAP, we can use the following function to

get the induction-restriction table.

gap—> ResTab = function (tG, tU)
local r;
if IsGroup(tG) then

tG = CharacterTable(tG);
fi;
if IsGroup(tU) then

tU := CharacterTable(tU);
fi;

vV VVVVVYV

> r = Restricted(tG, tU, Irr(1G));

> return MatScalarProducts(tU, r, Irr(tU));
> end;

function(tG, tU) -+ end

gap> ResTab(G,MP1);

(£1,0,0,1,0,01,£0,0,0,0,1,07,
(0,0,0,1,0,17,[0,1,1,0, 1,17,
[0,0,0,1,1,17]

Equivalently, but the outputs displayed as

columns, we have:

gap>> RestTab = function (tG,tU)

> local r;

> if IsGroup(1G) then

> tG = CharacterTable (1G);

> fi;

> if IsGroup (tU) then

> tU = CharacterTable (tU);

> fi;

> r = InducedClassFunctions(Irr(tU), tG);
> return MatScalarProducts (tG, r, Irr (tG));
> end;

function(tG, tU) -+ end

gap>> RestTab (G,MP1);

([1,0,0,0,0],[0,0,0,1,07,
L0,0,0,1,0],[1,0,1,0,1],
[0,1,0,1,10,[0,0,1,1,1]]

gap>> # we can use the command TransposedMat

gap> # to display the result as required:

gap> TransposedMat(last) ;

[[1,0,0,1,0,0],[0,0,0,0,1,0 1],
(0,0,0,1,0,1],[0,1,1,0, 1,117,
£L0,0,0,1,1,1]]

To check the computed induced characters in

GAP we can do the following.

gap> 1= Irr(MP1);;
# Irreducible Characters of MP1
gap> IndChars = InducedClassFunctions(I1,G);
# the required induced characters
[ Character(CharacterTable(SL(3,2)),
[7.3,1,0,0,10,
Character(CharacterTable(SL(3,2)),
(7, —1, =1, 0,0, 1],
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Character(CharacterTable(SLL(3,2)),
[ 14, 2,0,0,0, —1 ],
Character(CharacterTable(SLL(3,2)),
[ 21, —3,1,0,0,0 0D,
Character(CharacterTable(SLL(3,2)),
(21,1, —1,0,0,00D ]

The induced characters of G from MP2 are
identical to those induced from MP1.

The induced characters of G from B are listed
in Tab. 6, where ¢;(1 <7 <C 6) are the irreducible
characters of B.

Tab. 6 Induced characters of G from B

r rs r3 ry rs re

oK 21 5 1 0 0 0
3 21 —3 1 0 0 0
o 21 1 -1 0 0 0
o 21 1 —1 0 0 0
gk 42 =2 0 0 0 0
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