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Abstract; Holland and Walsh first gave the derivative-free characterization of Bloch Spaces on the

unit disc in C. Later, Nowark got a similar result for the holomorphic Besov Spaces on the unit

Ball in C". Recently Ren Guangbin extended the result to hyperbolic harmonic Besov spaces on the

unit ball in R”.

Based on these results,

holomorphic Besov spaces on the unit ball in C".

We obtains the derivative-free characterization of
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0 Introduction

Let B, be the unit ball in C',dy the normalized
measure on B, and ds the normalized surface
measure on the unit sphere d B,.

For any holomorphic function f € B,, write
V() = <%(z) v“»%(z)) and call V f(2) the
adzy dzy

gradient of f at z. Let ¢, be the Mobius

transformation of B, (see Ref.[1, p. 25])
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where {z,a) denotes the usual inner product inC",

g () =19

lal? = (a,s a), Pz = <‘ch‘az>a,Q,z =z—P,z, and
se = (1—|al?)"?. We define
V() = V(fo g0

and call /va(z) the invariant gradient of f at z.

Denote
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de(z) = (1 — | 2|H) 7" 'du(2),
which is invariant under Mébius transformations ¢,
(see Ref. [1, p. 28]), namely

fB” F(de(z) = JB” f e g()de(2).

We consider the Besov space B, , which consists of

holomorphic functions f in B, such that

| V /()| € LP(B,.do) (see Ref. [2]). When p =
1, the space B, is a Banach space, which is
invariant under the action of automorphism group
onB,. When p — oo, it is exactly the Bloch space
B, which consists of holomorphic functions fin B,

such that

[ £« = supt| V()| + = € B,) < oo,

We refer to Ref. [1], [2], [3], [4], [5] and
[6] for various characterizations of 8 and ®,. For
example, for any holomorphic function of f onB,,

(1) f €
2DV (D] :x €B,) <oo;

(> € B, if and only if (1 —
2D [V (] € LB, do.

The purpose of this paper is to give a new type

B if and only if sup{(1 —

of Holland-Walsh characterization for the Besov
space. We first mention some related known
results.

In 1986, Holland and Walsh in Ref. [ 7] gave
the following characterization for the Bloch space
B(D) in the unit discD = {z € C: |z|<1}.

Theorem 0. 1" Let f be holomorphic in D.

Then f € B(D) if and only if

sup LLDZLE L 21— | e,
[z —wl

w € D,z £ w) < oo,

Stroethoff in Ref. [ 8] extended the result to
the Besov spaces in the unit disc.
Theorem 0.2 Let 2 << p << <o and f be
holomorphic inD. Then f € B, if and only if
([t

w—z|”

(1— w2>*3df<z>dr<w>} < oo,

Nowark Ref. [ 6 ] generalized Stroethoff’s

result to higher dimensions.
Theorem 0.3 Let 2n << p << ©© and f be
holomorphic in B,. Then f &€ B, if and only if

J J | f(2) — fGw) | ?
BJB,| |w— Puz — 5.Quz | ”

(1—|=z|H?

(11— |w|??de(2)de(r) } <oco. (1)

Recently, the Holland-Walsh characterization
of Bloch space in the unit disc has been extended to
the unit ball in Ref. [3].

Theorem 0. 4"  Let f be holomorphic in B,.
Then f € Bif and only if

sup M(l— ‘ 2‘2)%(1— | w0l 2)3 g,
[z —wl

w € B,,2 #£ w) < oo,

Observe that Nowark’s characterization for
Besov spaces in the unit ball would be natural if the
denominator | w— P,z — 5.Qu.z | in (1) is replaced
by |w—=].

Our main result is the following theorem.
Theorem 0.5 Let4n— 2 < p < oo and f be
holomorphic in B,. Then f &€ B, if and only if

o) — P .
Lh[ﬂigya_zg+ﬂ

(1= | D Pdu@ dv(w) | < oo,

Note that Theorem 0. 5 recovers Theorem 0. 2

when n = 1, and recovers Theorem 0. 4 when p —

oo,

1 Preliminaries

We shall invoke real techniques to deal with
the theory of holomorphic functions. We identify
C" with R" ,m = 2n, and denote by Q the unit ball
in R™.

For any x € R™, we write x = | x|z’ in polar
coordinates, so that ' € Q.

We denote the real Mobius transformation in
Q by ¢, (see Ref. [9, p. 25]). It is an involutionary

automorphism of 2, which is of the form

() = lz—al’a— (1 — \?\22)(1—61) (@or € Q.
la|x—d|

Obviously
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L‘l‘/‘ (2)

[ lalae —a

gba(.r) ‘ =

and
2 — A—]x[»A—]a|» (

[lale—a'l?

3)

1— [ ()

We consider the measure
() = A— |z (2,

which is invariant under the real Mbobius

transformation ¢, (see Ref.[4]), namely
| rd = | £ e g .
0 o)

Writex = (z1,°*,2,) withz; = x; +iy;, then we

can define

vV f(z) = (iﬁ ﬂ)

Iz, oz,
and the real invariant gradient
Af(x) = V(fe¢)(0)
and know that
IAf()|=A—|z|D]| VS .
For anya € Qandé € (0,1) we denote
EGa,» ={x €0+ g ()<},
Ba,® ={x € Q: |x—al<0)},
clearly, E(a,8) = ¢.(B(0,8)).

From now on, we will use the symbol C to

denote a positive constant which may vary at each
occurrence and we also use the symbol M ~ N to
denote C' M<C N < (M.
Lemma 1.1 Let 0<Cq<CA. Then there exists
a positive constant C = C(§) such that, for any x €
Qandy € E(x,d),
aA—|x[»Ha—
|z — y[*
Proof Forx € O and any y € E(x,0), we
have (see Ref.[4])

2 Vi«
‘y‘ ) = C.

1— |z =1—]y|% 4)
So that
(1— ‘1‘2)a<17 ‘y‘Z)/\fa:
Eik
A—lxHPa—]yl>HF _
|z —y[*
<«/1f 0. () ) >
| () |
(52
1)

as desired.

Let F be the hypergeometric function "%

(a)k(b)kgk
(1O

for a,b,c € R and ¢ neither zero nor a negative

Fla.bsc;s) = 2
k=0

integer, where (a), denotes the Pochhammer
symbol with (a), =1and (@), = ala+1)-(a+F
— D, ke N

Lemma 1.2 Leta >—1and 3 € R. Then,

for any x € (2, we have

J A—[y"

ol x|y —2a e () =

(I—Tlz[»7*, ifp>0;

L =0,
111’11_‘127 lfﬂ—O,
1, if g<C0.

Recall that the Lemma 4. 2 in Ref. [4] is
Lemma 1.3 Let p >1anda >—1, if fis
hyperbolic harmonic on 2. Then
JQ(J; %&)Pm@ < cjg 15 f) | Pdy, (@),
To prove Theorem 0. 5, we need to improve it

into the following. The difference is obvious.

Lemmal.4 ILetp >1anda >—1. If [ is
harmonic on (2, then for any real Mobius
transformation ¢ in

. .
Af o gla) | | \*
JQ(JO l—Z‘a‘ dt) dvi (@) <
cjg IAS e gl | *dv, (). (5)

Proof Fixe € (0,1). Observe that, for any
r€[0,1]anda € Q, if at least one of 7 and |a| is
less than e, then || = t|lal << e such that

1
1—tla

‘ < ie' Thus the left side of (5) can be

1
controlled by

jm (Jl Mdr)/’duam) +

1—1¢lal
Csup|Af - gb(x)\”.
x€ed
Denote the first summand above by I. From the
polar coordinate integral formula and Minkowski’s

inequality we get

T | (] A—ff_gl%mdty(ﬂa(;’).&ﬂ A—ryds<

([} M- 8L gD o (1 e
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CJL <J 7o) d{0>p(1 — ?Yeds any holomorphic function f on B, ,
o [ J [ Ll et
where B,JB, |z —w|?

_ 0T M, ps [ AL gD,
1=p
Applying Flett’s inequality (see Ref. [11, p. 758])

h(p)

J.; (J;h(‘o)dp>p(1 75)ad5< CJ';h/)(t)(l — petrde,
we have
1

1< | (| ndp) (1 —ords <

0

1
cf 2 (L — DM, (1 | Af o gl )de =
0

cj'ﬂ [AS o ¢la) | 7y, (a).

It remains to show that
supl Af = g0 [* < [ [Af < gl Pdu,(@.
(6)
It is well known that

s <] gt |

for any harmonic function g. Since each partial
derivative of harmonic function remains harmonic,

we have

V@< 7 G | dicw.

Recall that d\(w) = (1 — |w]|) *du(w) is real
Mébius invariant, | Af(x) | = A — |z | V()] ,
1— |w|l=~1— |z| for w € E(x,8). Applying

Fubini’s theorem we obtain

\Afm\ﬁgcj A£G | Pdatw) <
E(x,0)

. ] ,
(/J‘E(gb(r),m |AS () [ 2dA(y).

Because ¢ is an involutionary automorphism of (2,

we get
o P ) o r
[Af o gl <LJE(L5)\A]‘ o) [ PdA(y).

Sincel— |y|=1—|z|l=~1forx € Q and y €
E(x,8), the assertion (6) follows.

2 Proof of the Theorem

Theorem 0. 5 can be restated as the following
result.
Theorem 2.1 Let p € (4n—2,00), Then, for

(= lw|Hf de@dw) | <co (D
if and only if
JB (1— |w|)"| 7 flw)

Proof of Theorem 2. 1
we identify C' with R* and B, with Q, then the
holomorphic function f is harmonic on £.

If f€ ®B,, then for anya € 0

| fog@—fop (O]

al

Pde(w) < oo, (8)

As mentioned above,

1
U()Vfo . (ta) ﬁdt <
Jl Af e ggz(z‘a)‘dt
0 1—1: ‘ a ‘ )
We take p-th power on both sides and integrate
over () with respect to dy, for any « >— 1. Then

Lemma 1. 3 shows

J, EATACH=S KX AOLF I

lal?
CJQ\Afogbz(a)\”dua(a). 9
Because p > 4n— 2, we can set g = g — 2n. Now
we take the transform w = ¢.(a). We integrate

both sides in (9) with respect to dz(z) and notice
the fact that

dy, (@) = A —|a|»H)*d(a) = 11— |a|Hd (@)
to yield

| f) — f | ? A— | g ) |D? ,
JQJQ ‘ (/1;('&)) ‘ » a1— ‘ u,‘ 2)2,1 dT(Z)dV(u) <

| - ) 2 g — 2\t
d, {Aﬂw) , A= lg@]HfA—|wl®
oJ 0

1— ‘w‘ 2)271(17 ‘ Z‘ Z)zhl
du(z)dr('w)} . (10)

By (2) and (3), the left side of (10), denoted by

I, turns out to be

[ [ Lw—r@l? A=1ga>f 4 e
! J J PRI A— || dr(x)du(w)
| fO—f@)|? | a2
A—[=[*7
ola |2 —w| ?

(1— |w| 2)52"dr(z)dv(w)}.
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To estimate the right side of (10), we denote

it by J. Because p > 4n—2, theng—n+1> 1,

g —n—1>—1. By Lemma 1. 2 we have

(1_‘¢z(w) 2)%(1_‘10‘2),#1 B
J‘Q (17"&)‘2)2”(1—‘2‘2)71—%1 dy(z)i
. o 2 g*H‘H o 2 gfnfl
.4 DT A =D e ~ ¢
o Telw—2Tr
Since |Af(w) | = A — [w[H | V[, we

finally obtain

2)/)

J< cjau D V£ | PdeCro).

Combine the above estimates to yield the fact that
(8) implies (7).

Conversely, let f be holomorphic in B, and
satisfy (8), we need to show that (9) holds. Since
fis harmonic on 2, we find that for any fixed § €
0,1

(1— |z

2y | f() | P <
cj | F(2) — £ | Pdaw).
E(z,8)
Since dA(w) = (1 — |w

2 dy(w), we have

| a=1zl21 7 | rdete) <
A | f() — fG) |,
cum) T e,
Lemma 1. 1 implies that, for any w € E(z,8),
AY NS %
(1— =z \‘w‘z)'—>

e —wl’ =

which means

1
11— |w

Hence

Jn(lf | 2

. | f) — faw) [P, 2y,
cjau (1— | 2|5

T —w|?

HE A~ [2]*)?
B '

2)211 ~

T w

DIV ()] Pde(z) <

(1—|w 2>%2"df<z>dv<w>]
This completes the proof. []
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