JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2006)07-0727-05

Holland-Walsh characterization for Besov spaces

WANG Guang-hong, REN Guang-bin

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Holland and Walsh first gave the derivative-free characterization of Bloch Spaces on the unit disc in \mathbb{C} . Later, Nowark got a similar result for the holomorphic Besov Spaces on the unit Ball in \mathbb{C}^n . Recently Ren Guangbin extended the result to hyperbolic harmonic Besov spaces on the unit ball in \mathbb{R}^n . Based on these results, We obtains the derivative-free characterization of holomorphic Besov spaces on the unit ball in \mathbb{C}^n .

Key words: harmonic; holomorphic; Möbius transformation; Besov space; Bloch space

CLC number: O174. 56

Document code: A

AMS Subject Classification (2000): 32A18

Besov 空间的 Holland-Walsh 刻画

王光宏,任广斌

(中国科学技术大学数学系,安徽合肥 230026)

摘要: Holland 和 Walsh 首先给出了复单位圆盘上 Bloch 空间的一个不依赖于导函数的刻画. 后来 Nowark 把该结果推广到 n 维复单位球上的全纯函数的 Besov 空间. 最近任广斌把该结果做到了 n 维实单位球上的 双曲调和函数 Besov 空间. 我们正是基于这些基础,得到 n 维复单位球上的全纯函数的 Besov 空间的一个不依赖于导函数的刻画.

关键词:调和;全纯;Möbius变换;Bloch 空间;Besov 空间

0 Introduction

Let \mathbb{B}_n be the unit ball in \mathbb{C}^n , d_{ν} the normalized measure on \mathbb{B}_n and d_{σ} the normalized surface measure on the unit sphere $\partial \mathbb{B}_n$.

For any holomorphic function $f \in \mathbb{B}_n$, write $\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \cdots, \frac{\partial f}{\partial z_n}(z)\right)$ and call $\nabla f(z)$ the gradient of f at z. Let φ_a be the Möbius transformation of \mathbb{B}_n (see Ref. [1, p.25])

$$\varphi_a(z) = \frac{a - P_a z - s_a Q_a z}{1 - \langle z, a \rangle},$$

where $\langle z,a \rangle$ denotes the usual inner product in \mathbb{C}^n , $|a|^2=\langle a,a \rangle, P_az=rac{\langle z,a \rangle}{|a|^2}a, Q_az=z-P_az$, and $s_a=(1-|a|^2)^{1/2}$. We define

$$\widetilde{\nabla} f(z) = \nabla (f \circ \varphi_z)(0)$$

and call $\widetilde{\nabla} f(z)$ the invariant gradient of f at z. Denote

^{*} **Received**: 2005-10-24; **Revised**: 2006-02-28

$$d_{\tau}(z) = (1 - |z|^2)^{-n-1} d_{\nu}(z),$$

which is invariant under Möbius transformations φ_a (see Ref. [1, p. 28]), namely

$$\int_{\mathbf{B}_a} f(z) d\tau(z) = \int_{\mathbf{B}_a} f \circ \varphi_a(z) d\tau(z).$$

We consider the Besov space \mathcal{B}_p , which consists of holomorphic functions f in \mathbb{B}_n such that $|\widetilde{\nabla} f(z)| \in L^p(\mathbb{B}_n, d_{\mathcal{T}})$ (see Ref. [2]). When $p \geqslant 1$, the space \mathcal{B}_p is a Banach space, which is invariant under the action of automorphism group on \mathbb{B}_n . When $p \to \infty$, it is exactly the Bloch space \mathbb{B}_p , which consists of holomorphic functions f in \mathbb{B}_n such that

$$||f||_{\mathfrak{B}} = \sup\{|\widetilde{\nabla} f(z)| : z \in \mathbb{B}_n\} < \infty.$$

We refer to Ref. [1], [2], [3], [4], [5] and [6] for various characterizations of \mathbb{B} and \mathbb{B}_p . For example, for any holomorphic function of f on \mathbb{B}_n ,

(I) $f \in \mathcal{B}$ if and only if $\sup\{(1 - |z|^2) | \nabla f(z) | z \in \mathbb{B}_n\} < \infty$;

([]) $f \in \mathcal{B}_p$ if and only if $(1 - |z|^2) |\nabla f(z)| \in L^p(\mathbb{B}_n, \mathrm{d}_{\overline{\iota}})$.

The purpose of this paper is to give a new type of Holland-Walsh characterization for the Besov space. We first mention some related known results.

In 1986, Holland and Walsh in Ref. [7] gave the following characterization for the Bloch space $\mathbb{B}(\mathbb{D})$ in the unit disc $\mathbb{D} = \{z \in C \colon |z| < 1\}$.

Theorem 0. $\mathbf{1}^{[7]}$ Let f be holomorphic in \mathbb{D} . Then $f \in \mathfrak{B}(\mathbb{D})$ if and only if

$$\sup \left\{ \frac{|f(z) - f(w)|}{|z - w|} (1 - |z|^2)^{\frac{1}{2}} (1 - |w|^2)^{\frac{1}{2}} : z, \right.$$

$$w \in \mathbb{D}, z \neq w$$
 $< \infty$.

Stroethoff in Ref. [8] extended the result to the Besov spaces in the unit disc.

Theorem 0. 2^[8] Let 2 and <math>f be holomorphic in \mathbb{D} . Then $f \in \mathcal{B}_p$ if and only if

$$\int_{\mathbf{D}} \int_{\mathbf{D}} \left[\frac{|f(z) - f(w)|^{p}}{|w - z|^{p}} (1 - |z|^{2})^{\frac{p}{2}} \right]$$

$$(1 - |w|^{2})^{\frac{p}{2}} d_{\tau}(z) d_{\tau}(w) < \infty.$$

Nowark Ref. [6] generalized Stroethoff's

result to higher dimensions.

Theorem 0.3^[6] Let 2n and <math>f be holomorphic in \mathbb{B}_n . Then $f \in \mathbb{B}_p$ if and only if

$$\int_{\mathbf{B}_{n}} \int_{\mathbf{B}_{n}} \left[\frac{|f(z) - f(w)|^{p}}{|w - P_{w}z - s_{w}Q_{w}z|^{p}} (1 - |z|^{2})^{\frac{p}{2}} \right]$$

$$(1 - |w|^{2})^{\frac{p}{2}} d_{\tau}(z) d_{\tau}(w)$$

$$< \infty . (1)$$

Recently, the Holland-Walsh characterization of Bloch space in the unit disc has been extended to the unit ball in Ref. [3].

Theorem 0. 4^[3] Let f be holomorphic in \mathbb{B}_n . Then $f \in \mathcal{B}$ if and only if

$$\sup \left\langle \frac{|f(z)-f(w)|}{|z-w|} (1-|z|^2)^{\frac{1}{2}} (1-|w|^2)^{\frac{1}{2}} : z,$$

$$w \in \mathbb{B}_n, z \neq w \right\rangle < \infty.$$

Observe that Nowark's characterization for Besov spaces in the unit ball would be natural if the denominator $|w-P_wz-s_wQ_wz|$ in (1) is replaced by |w-z|.

Our main result is the following theorem.

Theorem 0.5 Let 4n-2 and <math>f be holomorphic in \mathbb{B}_n . Then $f \in \mathbb{B}_p$ if and only if

$$\int_{\mathbf{B}_{n}} \int_{\mathbf{B}_{n}} \left[\frac{|f(z) - f(w)|^{p}}{|z - w|^{p}} (1 - |z|^{2})^{\frac{p}{2} - n - 1} \right]$$

$$(1 - |w|^{2})^{\frac{p}{2} - 2n} d\nu(z) d\nu(w)$$

Note that Theorem 0. 5 recovers Theorem 0. 2 when n=1, and recovers Theorem 0. 4 when $p \rightarrow \infty$

1 Preliminaries

We shall invoke real techniques to deal with the theory of holomorphic functions. We identify \mathbb{C}^n with \mathbb{R}^m , m = 2n, and denote by Ω the unit ball in \mathbb{R}^m .

For any $x \in \mathbb{R}^m$, we write x = |x|x' in polar coordinates, so that $x' \in \partial \Omega$.

We denote the real Möbius transformation in Ω by ψ_a (see Ref. [9, p. 25]). It is an involutionary automorphism of Ω , which is of the form

$$\psi_a(x) = \frac{|x-a|^2 a - (1-|a|^2)(x-a)}{|a|x-a'|^2} \quad (a,x \in \Omega).$$

Obviously

$$|\psi_a(x)| = \frac{|x-a|}{|a|x-a'|} \tag{2}$$

and

$$1 - |\psi_a(x)|^2 = \frac{(1 - |x|^2)(1 - |a|^2)}{|a|x - a'|^2}.$$
 (3)

We consider the measure

$$d\lambda(x) = (1 - |x|^2)^{-2n} d\nu(x),$$

which is invariant under the real Möbius transformation ψ_a (see Ref. [4]), namely

$$\int_{\Omega} f(x) d\lambda(x) = \int_{\Omega} f \circ \psi_{a}(x) d\lambda(x).$$

Write $x = (z_1, \dots, z_n)$ with $z_j = x_j + iy_j$, then we can define

$$\nabla f(x) = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right)$$

and the real invariant gradient

$$\Lambda f(x) = \nabla (f \circ \psi_x)(0)$$

and know that

$$|\Lambda f(x)| = (1 - |x|^2) |\nabla f(x)|.$$

For any $a \in \Omega$ and $\delta \in (0,1)$ we denote

$$E(a,\delta) = \{x \in \Omega : |\psi_a(x)| < \delta\},\,$$

$$B(a,\delta) = \{x \in \Omega : |x-a| < \delta\},\,$$

clearly, $E(a,\delta) = \psi_a(B(0,\delta))$.

From now on, we will use the symbol C to denote a positive constant which may vary at each occurrence and we also use the symbol $M \simeq N$ to denote C^{-1} $M \leqslant N \leqslant CM$.

Lemma 1.1 Let $0 \le \alpha \le \lambda$. Then there exists a positive constant $C = C(\delta)$ such that, for any $x \in \Omega$ and $y \in E(x, \delta)$,

$$\frac{(1-|x|^2)^{\alpha}(1-|y|^2)^{\lambda-\alpha}}{|x-y|^{\lambda}}\geqslant C.$$

Proof For $x \in \Omega$ and any $y \in E(x,\delta)$, we have (see Ref. [4])

$$1 - |x|^2 \simeq 1 - |y|^2. \tag{4}$$

So that

$$\frac{(1-|x|^{2})^{\alpha}(1-|y|^{2})^{\lambda-\alpha}}{|x-y|^{\lambda}} \simeq \frac{(1-|x|^{2})^{\frac{\lambda}{2}}(1-|y|^{2})^{\frac{\lambda}{2}}}{|x-y|^{\lambda}} = \frac{(1-|x|^{2})^{\frac{\lambda}{2}}(1-|y|^{2})^{\frac{\lambda}{2}}}{|y-y|^{\lambda}} = \frac{(\sqrt{1-|\psi_{x}(y)|^{2}})^{\lambda}}{|\psi_{x}(y)|}$$

$$(\frac{\sqrt{1-\delta^{2}}}{\delta})^{\lambda}$$

as desired.

Let F be the hypergeometric function [10]

$$F(a,b;c;s) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(k)!(c)_k} s^k,$$

for $a,b,c \in \mathbb{R}$ and c neither zero nor a negative integer, where $(a)_k$ denotes the Pochhammer symbol with $(a)_0 = 1$ and $(a)_k = a(a+1)\cdots(a+k-1)$, $k \in \mathbb{N}$.

Lemma 1. 2^[4] Let $\alpha > -1$ and $\beta \in \mathbb{R}$. Then, for any $x \in \Omega$, we have

$$\int_{a} \frac{(1-|y|^{2})^{a}}{|x|y-x'|^{2n+\alpha+\beta}} d\nu(y) \simeq$$

$$\begin{cases} (1-|x|^{2})^{-\beta}, & \text{if } \beta > 0; \\ \ln \frac{1}{1-|x|^{2}}, & \text{if } \beta = 0; \\ 1, & \text{if } \beta < 0. \end{cases}$$

Recall that the Lemma 4.2 in Ref. [4] is

Lemma 1.3^[4] Let $p \ge 1$ and $\alpha > -1$, if f is hyperbolic harmonic on Ω . Then

$$\int_{\Omega} \left(\int_{0}^{1} \frac{\left| \widetilde{\nabla} f(ta) \right|}{1 - t \left| a \right|} dt \right)^{p} d\nu_{a}(a) \leqslant C \int_{\Omega} \left| \widetilde{\nabla} f(a) \right|^{p} d\nu_{a}(a).$$

To prove Theorem 0. 5, we need to improve it into the following. The difference is obvious.

Lemma 1.4 Let $p \geqslant 1$ and $\alpha > -1$. If f is harmonic on Ω , then for any real Möbius transformation ψ in Ω

$$\int_{\Omega} \left(\int_{0}^{1} \frac{\left| \Lambda f \circ \psi(ta) \right|}{1 - t \left| a \right|} dt \right)^{p} d\nu_{\alpha}(a) \leqslant$$

$$C \int_{\Omega} \left| \Lambda f \circ \psi(a) \right|^{p} d\nu_{\alpha}(a).$$
(5)

Proof Fix $\varepsilon \in (0,1)$. Observe that, for any $t \in [0,1]$ and $a \in \Omega$, if at least one of t and |a| is less than ε , then $|ta| = t|a| < \varepsilon$ such that $\frac{1}{1-t|a|} \leqslant \frac{1}{1-\varepsilon}$. Thus the left side of (5) can be

controlled by

$$\int_{\Omega - \varepsilon \Omega} \left(\int_{\varepsilon}^{1} \frac{\left| \Lambda f \circ \psi(ta) \right|}{1 - t \left| a \right|} dt \right)^{p} d\nu_{\alpha}(a) + C \sup_{x \in \varepsilon \Omega} \left| \Lambda f \circ \psi(x) \right|^{p}.$$

Denote the first summand above by *I*. From the polar coordinate integral formula and Minkowski's inequality we get

$$I = 2n \int_{\varepsilon}^{1} \int_{\partial\Omega} \left(\int_{\varepsilon}^{1} \frac{|\Lambda f \circ \psi(ts\zeta)|}{1 - ts} dt \right)^{p} d\sigma(\zeta) s^{2n-1} (1 - s^{2})^{\alpha} ds \leqslant$$

$$C \int_{\varepsilon}^{1} \left(\int_{\varepsilon}^{1} \frac{M_{p}(ts, |\Lambda f \circ \psi|)}{1 - ts} dt \right)^{p} s^{2n-1} (1 - s^{2})^{\alpha} ds \leqslant$$

(6)

$$C \int_{\varepsilon}^{1} \left(\int_{\varepsilon^{2}}^{s} h(\rho) \, \mathrm{d}\rho \right)^{p} (1 - s^{2})^{\alpha} \, \mathrm{d}s,$$

where

$$h(\rho) = \frac{\rho^{\frac{2n-1}{p}} M_p(\rho, |\Lambda f \circ \psi|)}{1 - \rho}.$$

Applying Flett's inequality (see Ref. [11, p. 758]) $\int_{0}^{1} \left(\int_{0}^{s} h(\rho) d\rho \right)^{p} (1-s)^{\alpha} ds \leqslant C \int_{0}^{1} h^{p}(t) (1-t)^{\alpha+p} dt,$

we have

$$\begin{split} I &\leqslant C \!\!\int_0^1 \!\! \left(\int_0^s \!\! h(\rho) \, \mathrm{d}\rho \right)^p (1-s)^a \, \mathrm{d}s \leqslant \\ C \!\!\int_0^1 \!\! t^{2n-1} (1-t)^a \!\! M_p^{\ p}(t, |\Lambda f \circ \psi|) \, \mathrm{d}t = \\ C \!\!\int_0^1 \!\! |\Lambda f \circ \psi(a)|^p \, \mathrm{d}\nu_a(a). \end{split}$$

It remains to show that

$$\sup_{x \in \epsilon\Omega} |\Lambda f \circ \psi(x)|^p \leqslant C \int_{\Omega} |\Lambda f \circ \psi(a)|^p d\nu_a(a).$$

It is well known that

$$|g(x)| \leq C \int_{E(x,\delta)} |g(w)| d\lambda(w)$$

for any harmonic function g. Since each partial derivative of harmonic function remains harmonic, we have

$$|\nabla f(x)| \leq C \int_{F(x,\delta)} |\nabla f(w)| d\lambda(w).$$

Recall that $d\lambda(w) = (1 - |w|)^{-2n} d\nu(w)$ is real Möbius invariant, $|\Lambda f(x)| = (1 - |x|^2) |\nabla f(x)|$, $1 - |w| \simeq 1 - |x|$ for $w \in E(x, \delta)$. Applying Fubini's theorem we obtain

$$| \Lambda f(x) |^{p} \leqslant C \int_{E(x,\delta)} | \Lambda f(w) |^{p} d\lambda(w) \leqslant$$

$$C \int_{E(\psi(x),\delta)} | \Lambda f \circ \psi(y) |^{p} d\lambda(y).$$

Because ψ is an involutionary automorphism of Ω , we get

$$|\Lambda f \circ \psi(x)|^p \leqslant C \int_{E(x,\delta)} |\Lambda f \circ \psi(y)|^p d\lambda(y).$$

Since $1 - |y| \simeq 1 - |x| \simeq 1$ for $x \in \Omega$ and $y \in E(x, \delta)$, the assertion (6) follows.

2 Proof of the Theorem

Theorem 0.5 can be restated as the following result.

Theorem 2.1 Let $p \in (4n-2,\infty)$. Then, for

any holomorphic function f on \mathbb{B}_n ,

$$\int_{\mathbf{B}_{n}} \int_{\mathbf{B}_{n}} \left[\frac{|f(z) - f(w)|^{p}}{|z - w|^{p}} (1 - |z|^{2})^{\frac{p}{2}} \cdot (1 - |w|^{2})^{\frac{p}{2} - 2n} d\tau(z) d\nu(w) \right] < \infty, \tag{7}$$

if and only if

$$\int_{\mathbf{B}_{\epsilon}} (1 - |w|^2)^p |\nabla f(w)|^p d\tau(w) < \infty. \quad (8)$$

Proof of Theorem 2.1 As mentioned above, we identify \mathbb{C}^n with \mathbb{R}^{2n} and \mathbb{B}_n with Ω , then the holomorphic function f is harmonic on Ω .

If
$$f \in \mathcal{B}_p$$
, then for any $a \in \Omega$

$$\frac{\left| f \circ \psi_z(a) - f \circ \psi_z(0) \right|}{\left| a \right|} = \left| \int_0^1 \nabla f \circ \psi_z(ta) \frac{a}{\left| a \right|} dt \right| \leqslant \int_0^1 \frac{\left| \Lambda f \circ \psi_z(ta) \right|}{1 - t \left| a \right|} dt.$$

We take p-th power on both sides and integrate over Ω with respect to $d\nu_{\alpha}$ for any $\alpha > -1$. Then Lemma 1.3 shows

$$\int_{\Omega} \frac{\left| f \circ \psi_{z}(a) - f \circ \psi_{z}(0) \right|^{p}}{\left| a \right|^{p}} d\nu_{\alpha}(a) \leqslant$$

$$C \int_{\Omega} \left| \Lambda f \circ \psi_{z}(a) \right|^{p} d\nu_{\alpha}(a). \tag{9}$$

Because p > 4n-2, we can set $\alpha = \frac{p}{2} - 2n$. Now we take the transform $w = \psi_z(a)$. We integrate both sides in (9) with respect to $d\tau(z)$ and notice

the fact that $d\nu_{\alpha}(a) = (1 - |a|^2)^{\alpha} d\nu(a) = (1 - |a|^2)^{\alpha + 2n} d\lambda(a)$

$$\int_{\Omega} \int_{\Omega} \frac{|f(w) - f(z)|^{p}}{|\psi_{z}(w)|^{p}} \frac{(1 - |\psi_{z}(w)|^{2})^{\frac{p}{2}}}{(1 - |w|^{2})^{2n}} d_{\tau}(z) d_{\nu}(w) \leqslant C \int_{\Omega} \int_{\Omega} \left[|\Lambda f(w)|^{p} \frac{(1 - |\psi_{z}(w)|^{2})^{\frac{p}{2}} (1 - |w|^{2})^{n+1}}{(1 - |w|^{2})^{2n} (1 - |z|^{2})^{n+1}} \right]$$

By (2) and (3), the left side of (10), denoted by *I*, turns out to be

(10)

 $d\nu(z)d\tau(w)$.

$$I = \int_{\Omega} \int_{\Omega} \frac{|f(w) - f(z)|^{p}}{|\psi_{\varepsilon}(w)|^{p}} \frac{(1 - |\psi_{\varepsilon}(w)|^{2})^{\frac{p}{2}}}{(1 - |w|^{2})^{\frac{p}{2}}} d_{\tau}(z) d_{\nu}(w) =$$

$$\int_{\Omega} \int_{\Omega} \left[\frac{|f(z) - f(w)|^{p}}{|z - w|^{p}} (1 - |z|^{2})^{\frac{p}{2}} \cdot (1 - |w|^{2})^{\frac{p}{2} - 2n} d_{\tau}(z) d_{\nu}(w) \right].$$

To estimate the right side of (10), we denote it by J. Because p>4n-2, then $\frac{p}{2}-n+1>1$,

 $\frac{p}{2} - n - 1 > -1$. By Lemma 1. 2 we have

$$\int_{\Omega} \frac{(1-|\psi_{z}(w)|^{2})^{\frac{\rho}{2}}(1-|w|^{2})^{n+1}}{(1-|w|^{2})^{2n}(1-|z|^{2})^{n+1}} d\nu(z) =$$

$$\int_{\Omega} \frac{(1-|w|^{2})^{\frac{\rho}{2}-n+1}(1-|z|^{2})^{\frac{\rho}{2}-n-1}}{||z|w-z'|^{\rho}} d\nu(z) \simeq C.$$

Since $|\Lambda f(w)| = (1 - |w|^2) |\nabla f(w)|$, we finally obtain

$$J \leqslant C \int_{\Omega} (1 - |w|^2)^p |\nabla f(w)|^p d\tau(w).$$

Combine the above estimates to yield the fact that (8) implies (7).

Conversely, let f be holomorphic in \mathbb{B}_n and satisfy (8), we need to show that (9) holds. Since f is harmonic on Ω , we find that for any fixed $\delta \in (0,1)$

$$(1-|z|^2)^p |\nabla f(z)|^p \leqslant$$

$$C \int_{E(z,\delta)} |f(z)-f(w)|^p d\lambda(w).$$

Since $d\lambda(w) = (1 - |w|^2)^{-2n} dv(w)$, we have

$$\int_{\Omega} (1 - |z|^{2})^{p} |\nabla f(z)|^{p} d\tau(z) \leqslant
C \int_{\Omega} \int_{E(z,\delta)} \frac{|f(z) - f(w)|^{p}}{(1 - |w|^{2})^{2n}} d\tau(z) d\nu(w).$$

Lemma 1.1 implies that, for any $w \in E(z,\delta)$,

$$\frac{(1-|z|^2)^{\frac{b}{2}}(1-|w|^2)^{\frac{b}{2}}}{|z-w|^b} \geqslant C,$$

which means

$$\frac{1}{(1-|w|^2)^{2n}} \leqslant C \frac{(1-|w|^2)^{\frac{p}{2}-2n}(1-|z|^2)^{\frac{p}{2}}}{|z-w|^p}.$$

Hence

$$\begin{split} & \int_{\Omega} (1 - |z|^{2})^{p} |\nabla f(z)|^{p} d\tau(z) \leqslant \\ & C \int_{\Omega} \int_{\Omega} \left[\frac{|f(z) - f(w)|^{p}}{|z - w|^{p}} (1 - |z|^{2})^{\frac{p}{2}} \cdot \right] \end{split}$$

$$(1-|w|^2)^{\frac{p}{2}-2n}\mathrm{d}\tau(z)\mathrm{d}\nu(w)\bigg].$$

This completes the proof.

References

- [1] Rudin W. Function Theory in the Unit Ball of C^{*}[M]. New York: Springer-Verlag, 1992.
- [2] Zhu K. Spaces of Holomorphic Functions in the Unit Ball of Cⁿ, GTM 226[M]. New York: Springer-Verlag, 2004.
- [3] Ren G, Tu C. Bloch space in the unit ball of \mathbb{C}^n [J]. Proc. Amer. Math. Soc. ,2005,133:719-726.
- [4] Ren G, Kähler U. Weighted Hölder continuity hyperbolic harmonic Bloch functions [J]. Z. Anal. Anwen, 2002,21:599-610.
- [5] Hahn K T, Youssfi E H. Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball in Cⁿ[J]. Complex Variables, 1991, 17: 89-104.
- [6] Nowak M. Bloch space and Möbius invariant Besov spaces on the unit ball in $\mathbb{C}^n[J]$. Complex Variables, 2001,44:1-12.
- [7] Holland F, Walsh D. Criteria for membership of Bloch space and its subspace, BMOA [J]. Math. Ann., 1986,273:317-335.
- [8] Stroethoff K. Besov type characterization for the Bloch space[J]. Bull. Austral. Math. Soc., 1989, 39: 405-420.
- [9] Ahlfors L V. Möbius transformations in several dimensions [M] // Ordway Professorship Lectures in Mathematics. Minneapolis: University of Minnesota, School of Mathematics, 1981.
- [10] Rainville E D. Special Functions[M]. Bronx: Chelsea Publishing Co., 1971.
- [11] Flett T. The dual of an inequality of Hardy and Littlewood and some related inequalities[J]. J Math. Anal. Appl., 1972, 38:746-765.