
 

Quantitative and Qualitative Analysis in Social Sciences 

Volume 2, Issue 3, 2008, 1-34 

ISSN: 1752-8925 

Comparative Economic Cycles

Iolanda Lo Cascioa

University of Palermo

D.S.G. Pollockb

University of Leicester

Abstract

The income cycles that have been experienced by six OECD countries over the past 24 years are

analysed. The amplitude of the cycles relative to the level of aggregate income varies amongst the

countries, as does the degree of the damping that affects the cycles. The study aims to reveal both of

these characteristics. It also seeks to determine whether there exists a clear relationship between the

degree of damping and the length of the cycles. In order to estimate the parameters of the cycles, the

data have been subjected to the processes of detrending, anti-alias filtering and subsampling.

JEL Classifications: E32, C22.

Keywords: Business cycles, autoregressive models.

a Department of Economics, Business and Finance, Faculty of Economics, University of Palermo, Viale
delle Scienze 90128, Palermo, Sicily, Italy; tel.: +39 091 662 6312, email: locascio@economia.unipa.it
b Department Economics, University of Leicester, Astley Clarke Building 108, University Road, Leices-

ter LE1 7RH, UK; tel.: +44 (0)116 252 5368, email: d.s.g.pollock@le.ac.uk

© qass.org.uk



1 Introduction

This paper compares the economic cycles that have beset a group of six OECD countries,

which have experienced similar socio-economic conditions over the past quarter century.

The shocks and the disturbances that have impinged on their economies have had

differing intensities; and the effects have been mitigated by a wide variety of fiscal and

monetary policies. The aim is to determine the extent to which the consequences of

such differences are perceptible in the aggregate indices of economic activity.

For the purposes of this assessment, we shall employ a stylised model of the economic

cycle, for which we shall attempt to estimate the parameters from the data of each

country. These parameters will provide the basis for our comparisons. We shall employ

some simple methods of estimation, but we shall need to process the data in novel ways

in order to isolate the features that are of interest.

Within the framework of our analysis, there can be two explanations for the strength

of an economic cycle. The first explanation lies in the power of the disturbances that

are the driving force of the cycle. The second explanation lies in the ability of the

economy to dissipate the energy of these disturbances. This would be reflected in the

rate of convergence to the steady state of an economy that was somehow relieved of dis-

turbances, but it can also be estimated from the behaviour of an economy experiencing

disturbances, on the assumption that they constitute white noise.

The frictional effects of the tax system that are described as fiscal drag will serve to

dissipate the energy of the disturbances. An overreactive regime of economic regulation,

acting like a stiff spring in a mechanical system, might have the opposite effect of

maintaining this energy within the economic system. For example, it was the contention

of Dow (1964), in a monograph that was highly influential at the time, that, in the

early post-war years, such a regime had increased the frequency and the severity of the

fluctuations in the British economy.

The countries that we shall examine have experienced high levels of economic growth

throughout the period in question. The economic recessions that have occurred have

been characterised more often by diminutions in the rates of growth than by absolute

reductions in the levels of output. In other words, the economic cycles have been carried

on the backs of rising trends. The problem of separating the trends from the cycles

is a difficult one that has generated much debate, and we feel bound to offer our own

opinions.

Some of the distinctions that have arisen in the course of this debate, such as

the distinction between deterministic and stochastic trends, may have been drawn too
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firmly. (For discussions of these issues, see King et al., 1991, Nelson and Plosser, 1982,

Pagan, 1997, and Perron, 1988, 1989.) In practice, the data cannot be relied upon to

distinguish unequivocally between such stylised models as the polynomial trend and the

unit-root stochastic trend, when both are buried in noise. (The means of discriminating

between the two models have been discussed recently by Andreou and Spanos, 2003,

and by Marriott, Naylor and Tremayne, 2003.)

It may also be true that our own epigram concerning the determinants of the eco-

nomic cycle, which is based on a mechanical analogy that was adopted by the pioneering

econometrician Frisch (1933, 1965), is drawn too simply and that the underlying realities

are far more complex than we shall be proposing for the sake of argument. Nevertheless,

our model does take us into realms that have not been explored fully by economists.

2 A Schematic Model of the Economic Cycle

2.1 The Structural Time-series Model

In proposing simple macroeconomic models, we are liable to assume that the relative

proportions of the economic aggregates are maintained, approximately, despite varia-

tions in the levels. Examples are provided by the ratios of consumption and investment

to gross national product (GNP), of which the underlying constancy is frequently pos-

tulated. It is reasonable to assume that, making allowance for their stochastic nature,

the relative amplitude of the economic fluctuations is also maintained throughout the

period spanned by the data.

A schematic model of a macroeconomic index might, therefore, set

Y (t) = Ξ(t)B(t) with B(t) = 1 +
X
j

σj cos(ωjt+ θj), (1)

where Y (t) stands for an aggregate economic index, such as GNP, and where Ξ(t) is its

underlying trend. Modulating this trend is the factor B(t), which comprises a sum of

sinusoids. The jth sinusoid has an amplitude of σj, a phase angle of θj radians and a

period of τ j = 2π/ωj, where ωj is an angular velocity, or frequency, measured in radians

per period.

For statistical purposes, we might amend this model by replacing B(t) by the factor

1+β(t), where β(t) is generated by a linear stochastic process of an autoregressive (AR)

or autoregressive moving-average (ARMA) variety. Over a finite period, the output of

such a process can also be expressed as a sum of sinusoids, the parameters of which are
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assumed to have been drawn from statistical distributions.

However, there are some problems with this formulation. First, as we have defined

it, there is no limit on the range of the stochastic process β(t), whereas it is necessary,

at least, that its negative deviations should be limited in order to prevent Y (t) from

becoming negative. Secondly, it is likely that we should wish to include an additional

stochastic factor that is unrelated to the cycles.

The first difficulty is answered by setting

B(t) = eβ(t) =

µ
1 + β(t) +

{β(t)}2
2!

+ · · ·
¶
, (2)

where β(t) follows a linear stochastic process of variance σ2. Then, Ξ(t)B(t) can be

multiplied by the additional stochastic factor E(t), bounded in the same manner as
B(t), and the amended model becomes

Y (t) = Ξ(t)B(t)E(t) or y(t) = ξ(t) + β(t) + ε(t), (3)

where y(t) = lnY (t), ξ(t) = lnΞ(t), β(t) = lnB(t) and ε(t) = ln E(t) are the loga-
rithms of the factors. The equation in logarithms corresponds to a so-called structural

time series model or unobserved components model of the sort that has been treated

extensively by Harvey (1989).

It transpires that the economic cycle can be represented, within the logarithmic data,

by a second-order autoregressive AR(2) process. The equation of an AR(2) process can

be compared with a second-order differential equation, which is associated with numer-

ous physical processes that provide good analogies for the cycle. Accessible accounts

of linear differential equations and of their application to physical systems have been

provided by Gabel and Roberts (1987), Mayne (1984), and Thompson (1983).

2.2 Differential and Difference Equations

The simplest physical systems that are capable of generating cycles are commonly

represented by second-order differential equations of the form

d2y(t)

dt2
+ c

dy(t)

dt
+ hy(t) = f(t), (4)

where f(t) is the forcing function that drives the system. With an arbitrary forcing

function, it may be difficult to discern whether or not the system itself is contributing

to the apparent cyclicality of the output. If it were possible to do so, we might settle
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the matter by turning off the forcing function, by setting f(t) = 0 for t ≥ 0, in order
to observe the trajectory of the undisturbed system.

There are two possibilities. First, the system might tend to its state of rest by

following a combination of declining exponential trajectories:

y(t) = σ1e
γ1t + σ2e

γ2t. (5)

The second possibility involves overshooting the position of rest in a sequence of damped

sinusoidal fluctuations of declining amplitude. In that case, the trajectory would be

described by the equation

y(t) = σeγt cos(ωt− θ). (6)

Here, ω is the angular velocity or the frequency of the homogenous unforced system,

whereas γ < 0 indicates its exponential rate of convergence to the steady state. These

are the system’s parameters. The remaining parameters are determined by the initial

conditions. They are σ, which determines the amplitude at time t = 0, and θ, which

indicates the phase of the sinusoid at that time.

The question of which of these two modes of behaviour will prevail can be determined

by finding the roots of the characteristic polynomial. For cyclical behaviour to arise,

the roots must be complex-valued and of the form κ, κ∗ = γ ± iω. Then the equation
becomes

0 = s2 + cs+ h = (s− κ)(s− κ∗) (7)

= s2 − 2γ + (γ2 + ω2),

from which

(i) c = −2γ, (ii) h = γ2 + ω2, (iii) ω = h− c2/4. (8)

For the system to devolve towards its position of rest, the roots must lie in the left

half of the complex plane. However, an immediate desideratum of damped complex

behaviour is the relative values of the parameters c and h. A sinusoidal trajectory of

the sort depicted by equation (6) will arise if and only if c2 < 4h.

The parameter c, which is associated with the first derivative dy(t)/dt, i.e. the

velocity, determines the resistance to the motion of the system, which increases in

direct proportion to the velocity. It may be described as the friction parameter. The

parameter h governs the forces that drive the system towards its position of rest; and
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these forces increase in direct proportion to the system’s distance from that position.

We shall call h the stiffness parameter, which is an allusion to its role in a model of a

mechanical system.

In a model of a national economy, the parameter c would correspond to the resistance

that arises from the inertia of the economic agents, their resistance to change and the

cost of the making whatever adjustments are called for by changing economic circum-

stances. For example, if large compensatory payments are associated with the shedding

of labour from commercial enterprises, then this will be reflected in a heightened value

of c.

The parameter h corresponds to the strength of the forces that drive the economy

towards its equilibrium position. It is liable, in part, to reflect the costs of being out

of equilibrium. For example, an enterprise that is overproducing relative to the level of

demand will incur costs that should induce it to reduce its output.

The parameter h will also reflect the alacrity with which the government attempts

to regulate the economy via fiscal and monetary policies in order to bring it back on

course. Overactive regulatory policies are liable to lead to over corrections, which may

induce cyclical behaviour in the level of economic activity.

Information on the behaviour of the system can be gathered by a process of regular

sampling at equally-spaced points in time, indexed by t ∈ I = {0,±1,±2, . . .}. The
Nyquist—Shannon sampling theorem indicates that, if the sampling is at a rate sufficient

to generate two observations in the time that it takes for the unforced system to com-

plete a cycle, then its continuous trajectory can be inferred from the sampled data. If,

on the contrary, the cycle is completed in less than the time spanned by two sampling

intervals, then a problem of aliasing will arise whereby the cycle will be mistaken for

one of a lesser frequency.

To demonstrate this outcome, consider the case where the process y(t) contains a

component that is a pure cosine wave of unit amplitude and zero phase, whose frequency

ω lies in the interval π < ω < 2π. Let ω∗ = 2π − ω. Then,

cos(ωt) = cos {(2π − ω∗)t} (9)

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)

= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here, ω∗ < π,

which will be mistaken for the true frequency, is described as the alias of ω > π.

Provided that ω < π, there will be a straightforward correspondence between the
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homogeneous differential equation, obtained by setting f(t) = 0 in (1) and a discrete-

time difference equation in the form of

0 = y(t) + α1y(t− 1) + α2y(t− 2) (10)

= y(t)− 2ρ cos(ω)y(t− 1) + ρ2y(t− 2),

On the assumption that (6) describes the solution of the differential equation, which is

to say that the system is generating complex dynamics, the solution of the difference

equation is given by

y(t) = σρt cos(ωt− θ). (11)

The solutions must agree at the points in discrete time at which the difference equation

is defined. The comparison of (6) and (11) indicates that they agree when

eγt = ρt, which is when γ = ln ρ. (12)

It should be observed that the value of ρ depends on the rate of sampling. This cir-

cumstance has been concealed by the fact that, for simplicity, the samping interval has

been taken as the unit of time for both the differential and the difference equation.

2.3 Aliasing, Interference and Inference

The ease and the accuracy with which the parameters of the differential or the difference

equation can be estimated depends upon the nature of the forcing function that drives

the system. This function is unobservable, and we are bound to make the assumption

that it is a species of white-noise process.

The exogenous disturbances that cross the boundary of the system that represents

the national economy might not follow a white-noise process. Nevertheless, we can

postulate that they have their origin in a primum mobilethat is white noise. We can

also postulate that the transfer function that links this primum mobileto the boundary-

crossing disturbances is linear and time invariant. In that case, it can be regarded as

a property of the economy, which will be subsumed in the autoregressive process with

which we intend to characterise the leading index of the economy.

For the successful analysis of the system, it is necessary that its inherent frequency

ω should not exceed the so-called Nyquist frequency of π radians per period of ob-

servation, which corresponds to the highest frequency that is detectable in regularly

sampled data. However, the analysis would remain viable even if the frequencies within
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the forcing function were to exceed this level. In that case, the data generated by

a 2nd-order stochastic differential equation should be represented in discrete time by

an ARMA(2, 1) model, in which the moving-average parameter is a function of the

autoregressive parameters.

This result has been established in two separate but related contexts. Telser (1967)

has shown that, if the discrete data generated by an AR(p) process are subsampled,

or ‘skip sampled’ in his terminology, then it is appropriate to describe them by an

ARMA(p, p− 1) model. Here, we may imagine that the original AR(p) process stands
for a valid discrete-time representation of a stochastic differential equation in which the

forcing function is a white-noise process bounded by the Nyquist frequency associated

with the original sampling rate, and that the period corresponding to the inherent

frequency of the system is no less than the time covered by two intervals of the skip

sampling.

The result has also emerged from the analysis of stochastic differential equations

powered by a stream of infinitesimal impulses that constitute the increments of aWiener

process. Thus, by following the arguments of Bartlett (1946), Phadke and Wu (1974)

have demonstrated that a stochastic differential equation of order p, powered in this

manner, can be represented in discrete time by an ARMA(p, p − 1) process. Pandit
and Wu (1975) have considered, in the same manner, the discrete representation of a

second-order differential equation.

An ordinary discrete-time white-noise process that drives an autoregressive process

is assumed to have a uniform spectral density function extending over the interval [0, π].

If the forcing function of a continuous-time band-limited white-noise process is likewise

supported on the Nyquist interval [0, π], then there is a one-to-one correspondence

between the parameters of a pth-order differential equation and those of an AR(p)

equation. Also, the continuous-time trajectory of the data process can be recovered

directly from the sampled ordinates. This can be achieved by using the sinc function

kernel as the means of interpolating values between the sampled ordinates.

The generic sinc function is defined by

ψ(t− k) =
sin{π(t− k)}

π(t− k)
=
1

2π

Z π

−π
eiω(t−k)dω, (13)

where k ∈ I = {0,±1,±2, . . .}, and it is illustrated in Figure 1 for the case where
k = 0. The figure also shows the sampled ordinates of the function, which constitutes

an impulse sequence. The sinc function is just the Fourier transform of a frequency-

domain rectangle on the interval [−π, π]. The continuous function interpolated through
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the ordinates of the sequence y(t) = {yt, t = 0,±1,±2, . . .} is given by

y(t) =
X
k

ykψ(t− k); t ∈ R, (14)

where R denotes the real line.

Figure 1
The sinc function ψ(t) = sin (πt) /πt

The function ψ(t) with t ∈ I is nothing but the unit impulse sequence. Therefore,
the set of all sequences {ψ(t−k); t, k ∈ I}, obtained by integer displacements k of ψ(t),
constitutes the ordinary orthogonal Cartesian basis in the time domain for the set of

all real-valued discrete-time sequences.

When t ∈ R is a real-valued index of continuous time, the set of displaced sinc

functions {ψ(t− k); t ∈ R, k ∈ I} constitute a basis for the set of continuous functions
of which the frequency content is bounded by the Nyquist value of π radians per unit

time interval. In common with their discretely sampled counterparts, the sequence of

continuous sinc functions at integer displacements constitutes an orthogonal basis.

The sinc function ψ(t − k) has a value of unity at t = k and a value of zero on

all other integer points. Thus, instead of distributing the value of the data point yk
over other adjacent integers, the sinc function interpolator leaves their values intact.

However, it does attribute values to the non-integer points that lie in the interstices,

thereby producing a continuous function from discrete data.

Whereas the sample data can be recovered precisely by sampling the continuous

function at the integer time points, some equivalent information, described by the same

discrete-time process, would be obtained by sampling the continuous function at the

points {τ = t+ θ; t = 0,±1,±2, . . .} where θ ∈ (0, 1) denotes an arbitrary phase shift.

9

QASS, Vol. 2 (3), 2008, 1-34

© qass.org.uk



It is also the case that

y(t) =

Z
y(k)ψ(t− k)dk, (15)

and, for this reason, the sinc function can be described as a reproducing kernel. The

concept was defined by Aronszajn (1950) and it has been employed in a statistical

context byWahba (1999), Pearce andWand (2006), and Dagum and Bianconcini (2008),

amongst others.

Various untoward circumstances arise when there is a mismatch between the fre-

quency content of the discrete-time process and that of the sinc function. Consider a

discrete-time process that is band-limited to a subinterval [0, α] of [0, π]. A continuous

function constituted from the ordinates of the process according to the formula of (14)

would comprise frequencies from the entire Nyquist range; and, in that respect, it would

misrepresent the discrete-time process.

The sinc function that is appropriate to the band-limited process is

ψα(t) =
sin{α(t)}

πt
=
1

2π

Z α

−α
eiωtdω. (16)

However, the continuous function q(t) =
P

k ykψα(t − k) with t ∈ R would no longer

interpolate the ordinates of the sample sequence y(t) = {yt; t = 0,±1,±2 . . .}, since the
displaced functions ψα(t− k) take nonzero values at the integer time points. The phe-

nomenon can be described as the mutual interference of the sinc functions. Moreover, it

will be observed that the sequence of functions {ψα(t−k); t, k ∈ I}, obtained by integer
displacements k of ψα(t), no longer constitutes the orthogonal basis. To generate an

orthonormal basis, the functions must be separated from each other by the wider time

intervals of π/α > 1.

In order to represent a band-limited process successfully by an estimated difference

or differential equation, it is necessary to transform the process so that it is supported

on the entire Nyquist frequency interval. In general, this will require the synthesis of

a corresponding continuous-time band-limited process, which must then be resampled

at the appropriate rate, with observations at time intervals of q = π/α. In some

favourable circumstances, this time interval has an integer value. In that case, the

original band-limited data can be resampled simply by taking one in every q of the

original observations.

Such is the circumstance that affects the quarterly data of the six OECD countries.

It has been found that, after the elimination of the seasonal fluctuations, virtually

nothing remains in the data apart from the low-frequency trend—cycle component that

10

QASS, Vol. 2 (3), 2008, 1-34

© qass.org.uk



is confined to the frequency interval [0, π/8]. This spectral structure, which is the object

of our investigation, can be expanded to cover the frequency interval [0, π] by taking

one in eight observations from data that have been purged of seasonal fluctuations and

of minor elements of noise.

3 The Trend Component

3.1 Polynomial Detrending

We shall now explore two of the alternative methods that are available for extracting

the trend from the data. What remains will contain the economic cycle as well some

other motions, such as the seasonal fluctuations, that will need to be removed and

discarded.

In seeking to define the trend, we need not regard it as a wholly objective entity.

Its definition can be adapted to the analytic purposes of the study as well as to the

circumstances of the economy over the period in question. In our case, a quadratic

trend within the logarithmic data provides a firm benchmark against which the cyclical

activities of the economy can be measured. Whereas a linear trend in the logarithms

would signify constant exponential growth, a quadratic trend can accommodate a rate

of growth that is changing over time. We shall also investigate the effects of using the

more flexible filtering method of Hodrick and Prescott (1980, 1997) for generating the

trend. The method is also attributable to Leser (1961).

We begin by considering the matrix versions of the difference operator and its in-

verse, which is the cumulation operator. These will be useful in portraying both the

method of polynomial regression and the method of Hodrick and Prescott. Indeed, our

purpose is to depict the linear trend as a limiting case of the Hodrick—Prescott trend.

Consider, therefore, the identity matrix of order T defined by

IT = [e0, e1, . . . , eT−1], (17)

where ej represents a column vector that contains a single unit preceded by j zeros and

followed by T − j − 1 zeros. Then, the finite-sample lag operator is the matrix

LT = [e1, . . . , eT−1, 0], (18)

which has units on the first subdiagonal and zeros elsewhere. This is obtained from the

identity matrix by deleting the leading column and by appending a column of zeros to
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the end of the array.

The matrix that takes the d-th difference of a vector of order T is given by

∇d
T = (I − LT )

d. (19)

The matrix may be partitioned such that ∇d
T = [Q∗, Q]

0, where Q0
∗ has d rows. The

inverse matrix is partitioned conformably to give ∇−dT = [S∗, S]. We may observe that

h
S∗ S

i " Q0
∗

Q0

#
= S∗Q

0
∗ + SQ0 = IT , (20)

and that "
Q0
∗

Q0

# h
S∗ S

i
=

"
Q0
∗S∗ Q0

∗S

Q0S∗ Q0S

#
=

"
Id 0

0 IT−d

#
. (21)

The matrix ∇−dT = [S∗, S] is a lower-triangular Toeplitz matrix, which is charac-

terised completely by its leading column. The elements of that column are the ordinates

of a polynomial of degree d−1, of which the argument is the row index t = 0, 1, . . . , T−1.
Moreover, the leading d columns of the matrix ∇−dT , which constitute the submatrix
S∗, provide a basis for all polynomials of degree d − 1 that are defined on the integer
points t = 0, 1, . . . , T − 1.
The ordinates of a polynomial of degree d−1 defined over the integers t = 0, 1, . . . , T−

1 are given by

p = S∗r∗, where r∗ = Q0
∗p. (22)

Since the polynomial is fully determined by the elements of the starting-value vector

r∗, fitting it to the data in the vector y = [y0, . . . , yT−1]0 according to the least-squares

criterion is a matter of minimising

(y − p)0(y − p) = (y − S∗r∗)
0(y − S∗r∗) (23)

with respect to r∗. The resulting values are

r∗ = (S
0
∗S∗)

−1S0∗y and p = S∗(S
0
∗S∗)

−1S0∗y. (24)

For an alternative expression, we may use the identity

S∗(S
0
∗S∗)

−1S0∗ = I −Q(Q0−1Q0, (25)
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which follows from the fact thatQ and S∗ are complementary matrices such thatQ0S∗ =

0 and Rank[Q,S∗] = T .

Using (25) in (24) gives the following expression for the vector of polynomial ordi-

nates:

p = y −Q(Q0−1Q0y. (26)

3.2 The Spectral Structure of the Data

Figure 2 shows the quarterly sequence of the logarithms of aggregate income in the U.K.

for the period 1964 to 2003, through which a quadratic trend has been interpolated by

a weighted least-squares regression. The weights, which are increasing towards the

beginning and the end of the sample, have the effect of ensuring that, in these vicinities

at least, the trend adheres closely to the data. This is so as to avoid any disjunctions

in the periodic extension of the residual sequence at the points where the end of one

replication of the sample joins the beginning of the next. The quadratic trend is virtually

a linear trend. Figure 3 shows the periodogram of the residuals, which are the deviations

of the sequence from this trend.

The spectral signature of the low-frequency cycles that surround the trend is clearly

represented in the periodogram. It occupies a range of frequencies extending from

zero to π/8 radians. Centred on the frequencies of π/2 and π are the spikes that are

the spectral signature of the seasonal variations that affect the income sequence. The

remainder of the periodogram may be described as dead space punctuated by small

elements of noise.

The periodogram of the original trended data is of little use in discerning the low-

frequency structure. The latter is concealed within the slew of spectral power that is

attributable to the disjunctions that occur in the periodic extension of the data.

It is also the case that none of the low-frequency spectral structure will be evident

in the periodograms of either the first or the second differences of the data. The gain

factor of the second-differencing operator at π/10, for example, is 0.00958, which means

that the low-frequency ordinates of the periodogram are so severely attenuated by the

differencing operation as to become invisible.

It is evident from equation (26) that the residuals from fitting a polynomial of degree

d − 1, which are found in the vector y − p, contain exactly the same information as

the differences of order d within the vector Q0y. Nevertheless, they serve to reveal the

spectral structure over the entire range of frequencies. It should be emphasised that

the use of polynomial residuals as a means of revealing the spectral structure does not
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imply any decision to model the trend via a polynomial function.

Figure 2

Notes: The quarterly sequence of the logarithms of income in the U.K. for the years 1964 to
2003, together with a quadratic trend interpolated by a weighted least-squares regression.

Figure 3

Notes: The periodogram of the residuals obtained by fitting a quadratic trend through the
logarithmic sequence of U.K. income. A band, with a lower bound of π/16 radians and an
upper bound of π/3 radians, is masking the periodogram.

3.3 The Hodrick—Prescott Filter

The second method of trend extraction entails the notion of a stochastic trend. This

represents the cumulative effects of stochastic elements that impart an upward drift to

the economy. The usual statistical model of such a trend is a second-order, or integrated,

random walk, which may be subject to drift. A common device for extracting such

trends is the Hodrick—Prescott (1980, 1997) filter.

The Hodrick—Prescott (H—P) filter may be derived in reference to an equation

y(t) = ξ(t) + η(t), (27)
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in which the doubly-infinite data sequence y(t) is expressed as the sum of a trend

component ξ(t), which follows a second-order random walk, and a residual component

η(t), which is white noise. (We shall use the corresponding roman letters x(t) and h(t)

to denote the estimates of ξ(t) and η(t), respectively.) The random walk is described by

the equation (1−L)2ξ(t) = ζ(t), where ζ(t) is a white-noise process that is independent

of η(t), and where L is the lag operator, such that Ly(t) = y(t − 1). Therefore, the
differenced data sequence

(1− L)2y(t) = (1− L)2ξ(t) + (1− L)2η(t) (28)

= ζ(t) + κ(t)

constitutes a stationary process; and the autocovariance generating functions of the

differenced components are

γζ(z) = σ2ζ and γκ(z) = σ2η(1− z)2(1− z−1)2. (29)

According to the Wiener—Kolmogorov principle, the detrending highpass filter is

derived by setting z = L in the following ratio of autocovariance generating functions:

ψ(z) =
γκ(z)

γκ(z) + γζ(z)
=

σ2η(1− z)2(1− z−1)2

σ2η(1− z)2(1− z−1)2 + σ2ζ
. (30)

The residual component is estimated by h(t) = ψ(L)y(t). The complementary lowpass

filter, which estimates the trend, is derived by setting z = L within the function 1−ψ(z).
Setting z = e−iω in ψ(z) gives the frequency response of the filter which, in this

instance, is a real-valued function on account of the symmetry of the filter in respect

of z and z−1. The squared modulus of the frequency response function, which, in this

case, is just the square, constitutes its squared gain. This is plotted in Figure 4, for

a particular value of λ = σ2η/σ
2
ζ, as the curve that is labelled B. Also plotted on the

diagram is the pseudo spectrum of a first-order random walk labelled A.

The curve labelled C in the diagram, is the spectral density function of a detrended

sequence derived from the random walk by applying a filter with a smoothing parameter

of λ = 100. In place of this single curve, one can imagine a family of curves generated

by varying the value of λ. In that case, one would discern that the functions associated

with lower values of λ have peaks of lesser height located at higher frequency values.

The inference is that the lower the value of the smoothing parameter λ the shorter are

the durations of the cycles in the detrended series and the less is their amplitude.
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Figure 4

Notes: The effect of applying the Hodrick—Prescott filter to a random walk. The smoothing
parameter is λ = 100 and the variance of the white-noise process driving the random walk is
σ2ε= 25.

3.4 The Finite-Sample Filter

In practice, the data are available as a finite sequence, which constitutes a vector

y = ξ + η, where ξ is the trend and η is the noise. Therefore, filters must be derived

that operate on finite sequences. LetQ0, defined by (18)—(21), denote the matrix version

of the second-difference operator. Then

Q0y = Q0ξ +Q0η (31)

= ζ +Q0η,

where

E(ζ) = 0, D(ζ) = σ2ζIT−2, (32)

E(η) = 0, D(η) = σ2ηIT ,

and C(ζ,Q0η) = 0.

The independence of ξ and η implies that D(Q0y) = σ2ηQ
02
ζ I.

On the assumption that the components have a normal distribution, there is the

following joint density function:

N(ζ, η) = (2π)1−Tσ2−Tζ σ−Tη exp{−1
2
(σ−2ζ ξ0QQ0ξ + σ−2η η0η)}. (33)

The maximum-likelihood estimate x of the trend component ξ is found by minimis-

ing the following criterion function, which is derived from the quadratic exponent of
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the density function by setting η = y − ξ:

S(ξ) = σ−2ζ ξ0QQ0ξ + σ−2η (y − ξ)0(y − ξ). (34)

The minimising value of ξ is

x = σ−2η (σ
−2
ζ QQ0−2

η I)−1y. (35)

According to the matrix inversion lemma, there is

(σ−2ζ QQ0−2
η I)−1 = σ2η

©
I −Q(Q02

ζ /σ
2
η]I)

−1Q0ª . (36)

Using this in (35) and writing σ2ζ/σ
2
η = λ−1, we get

x = y −Q(Q0−1I)−1Q0y. (37)

This is the appropriate finite-sample version of the lowpass H—P trend estimation filter.

We should make two observations in respect of this equation. First, if y were to

follow a linear trend, then the equation would deliver x = y since, in that case, Q0y = 0.

Secondly, as λ → ∞, the equation will tend to that of the least-squares estimator of
a linear trend, which is represented by (26). We note that λ, which is conventionally

described as the smoothing parameter, is also a noise/signal variance ratio. When the

noise is strong relative to the signal, the Hodrick—Prescott filter is also liable to deliver

a trend that is approximately linear within wide neighbourhoods.

We should note that the filter is also appropriate to the case where there is drift

in the signal process. To see this, let y = ξ + φ + η, where φ is a quadratic function.

An analysis of equation (37) shows that φ will be fully incorporated in x, which is the

estimate of the trend component. Whereas it will remain intact within x, it will be

virtually nullified by the high pass operator Q(Q0−1I)−1Q0.

The H—P filter has been used as a lowpass smoothing filter in numerous macro-

economic investigations (see, for example, Hartley, Hoover, and Salyer, 1998), where

it has been customary to set the smoothing parameter to certain conventional values.

Thus, for example, the econometric computer package Eviews 4.0 (2000) imposes the
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following default values:

λ =

⎧⎪⎨⎪⎩
100 for annual data

1,600 for quarterly data

14,400 for monthly data

⎫⎪⎬⎪⎭ . (38)

An alternative to specifying the smoothing parameter λ is to specify a frequency

value ωc such that ψ(ωc) = 0.5. This frequency corresponds to the midpoint in the

transition of the gain of the lowpass H—P filter from the value unity, which is attained

when ω = 0, to the value of zero, which is attained when ω = π. The closer is ωc to

0, the higher is the value of λ. One might be tempted to describe ωc as the nominal

cut-off point of the filter, but, in view of the gradual transition of the gain of the H—P

filter from unity to zero, this could be regarded as a misnomer.

The correspondence between ωc and λ is as follows:

(i) λ = 1/4{1− cos(ωc)}2, (ii) ωc = cos
−1(1− 1/

√
4λ). (39)

Instead of specifying ωc directly, it may be easier to specify the duration of the cycles

of this frequency. For a duration of τ years, the frequency is ωc = 2π/(τs), where s is

the number of observations per year.

It has become customary to define the business cycle, in the manner of Burns and

Mitchell (1946), as a composite of sinusoidal motions of durations not exceeding 8

years and not less than one-and-a-half years. (For examples, see Baxter and King,

1999, and Christiano and Fitzgerald, 2003.) The corresponding frequency band has

been superimposed upon the periodogram of Figure 3. When the nominal value of the

limiting duration is set at 8 years, the frequency response of the lowpass H—P filter,

which is designed to capture the trend, has considerable leakage across the boundary,

with the effect that large proportions of some of the business-cycle components of

lesser durations are removed from the residue. Therefore, in order to achieve a good

representation of the business cycle, the smoothing parameter of the H—P filter should

greatly exceed the value that corresponds to a duration of 8 years.
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4 The Issue of Spurious Cycles

4.1 The Gain of the Hodrick—Prescott Filter

The H—P filter has been subject to an oft-repeated aspersion that it is liable to induce

spurious cycles in the detrended data. The argument has been made, for example,

by Cogley and Nason (1995) and it has been supported by Harvey and Jaeger (1993),

amongst others. Contrary opinions have been offered by Pollock (1997, 2000) by Peder-

sen (2001) and by Valle e Azevedo (2002). There is a semantic issue at the root of these

differences of opinion, but there is also evidence of a widespread misunderstanding.

The highpass H—P filter ψ(L) has a frequency response function for which the gain

never exceeds unity. (An example of the squared gain of the filter is given by the

curve labelled B in Figure 4.) This means that its effect is either to preserve or to

attenuate the sinusoidal elements of which a data sequence is composed. The filter

never amplifies any sinusoidal elements and it never introduces any. If a sinusoid is

present in the processed data, then it must also be present to no lesser extent in the

original data. Therefore, such cyclical components cannot be induced or accentuated

by the filter.

The proposal of Cogley and Nason (1995) that the H—P filter can generate business

cycle dynamics is based upon an analysis of the frequency response of a filter that

results from conflating the highpass H—P filter with the unit-root summation operator

belonging to the model of a random walk. The random walk y(t) is modelled by the

equation (1−L)y(t) = ε(t), where ε(t) = {εt; t = 0,±1,±2, . . .} stands for a white-noise
process. The filtered sequence is

h(t) = y(t)− x(t) = {ψ(L)/(1− L)}ε(t). (40)

Cogley and Nason (1995) attribute to the H—P filter the gain of the filter ψ(L)/(1−L),

instead of the gain of ψ(L), which is the true gain of the H—P filter.

An example of the squared gain of the filter ψ(L)/(1 − L) is given by the curve

labelled C in Figure 4. This curve also represents the spectrum of the filtered sequence

h(t). It certainly manifests a strong spectral peak which indicates the presence of

cyclical motions within h(t). However, such motions are attenuated versions of those

that are present in the data process y(t); and they are not induced by the filter.

Notwithstanding the nature of its Fourier decomposition, which comprises sinusoidal

motions at all frequencies, there is some justification for the assertion that a true random

walk contains no genuine cycles. The process is the product of an accumulation of
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statistically independent increments; and it has no inherent central tendency.

On the other hand, genuine cyclical motions are commonly regarded as the products

of centralising forces that increase in proportion to the distance of an object from the

point to which it is tethered. It is on this basis that the cycles that are generated by

filtering a random walk might be regarded as illusory artefacts.

Economic trends are often modelled as random-walk processes. Nevertheless, such

models need not be interpreted in a literal manner. Whereas a random walk evolves

in an unbridled manner, economic trends are subject to evident constraints. They are

driven by the buoyant forces of entrepreneurial endeavour and consumer aspirations,

and they are constrained by the more-or-less pliable limits of productive capacity and re-

source availability. In a thriving economy, they alternately press against the constraints

and rebound from them in a manner that is undeniably cyclical.

The econometric practice of modelling aggregate economic activity as a cumulation

of stochastic increments is in marked contrast to the emphasis that has been given to

centripetal mechanisms, such as the error-correction mechanism that is at the heart of

co-integration analysis.

4.2 Finite and Infinite Random Walks

There may be doubts about the applicability to economic circumstances of an analysis,

such as the one that underlies Figure 4, that postulates a random walk defined over

a doubly infinite sequence of integers. Such a process is unbounded in mean, and it

does not have a finite variance. It is expected, at any point in time, to be infinitely

remote from the origin. By contrast, the random walks that are postulated in applied

econometrics are defined over a finite interval, and they have starting values at a finite

distance from the origin.

A measure of the difficulties in interpreting an infinite random walk is provided by

the limiting case of the infinite-sample Hodrick—Prescott filter, where λ →∞. (When
λ→∞, the finite-sample lowpass filter delivers a linear trend.) In the limit, the infinite-
sample highpass filter has a frequency response function with a unit gain everywhere

except at zero frequency, where the gain is zero. Therefore, it is virtually an allpass

filter; which suggests that the character of an infinite random walk should be unaffected

by a process of linear detrending.

This is in contrast to what we expect from the linear detrending of a finite random-

walk sequence. Fitting a straight line by least-squares regression to a finite segment of

a random walk will result in a residual sequence of mean zero that will inevitably show
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a reversion to the mean. From a global perspective, which views the sample as whole,

this central tendency will not be affected by a growing sample duration. There will be

the same number of crossings of the trend line on average, regardless of the length of

the sample; and the number of crossings will be few.

On the other hand, if we look myopically at the sampled sequence, then the effect

of increasing the sample size will be to reduce the rate of mean reversion, as measured

from one point to the next. Therefore, eventually, the residue of a linearly detrending

of a random walk will become a random walk itself. Thus, we are able to reconcile the

behaviour of the limiting case of the infinite-sample H—P filter with the behaviour of

the finite-sample filter.

We may consider the random walk to be the product of a regular process of sampling

applied to a continuous Wiener process. The Wiener process is self-similar in the sense

that short segments, viewed in detail, have the same appearance as longer segments,

viewed more distantly. Therefore, allowing for a change of scale, the effect of increasing

the size of the sample by allowing a growing number of points to accumulate with the

passage of time is no different from the effect of increasing their number by increasing

the rate at which a finite segment of the process is sampled. Indeed, it may be easier

to see these things in the small–such as when a Wiener process is defined on a unit

interval–than in the large.

The effect of fitting a linear trend by least-squares regression to a finite segment of

a random walk has been analysed by Chan, Hayya and Ord (1971). They have found

a formula for the autocovariances of the residuals. They have also provided a formula

for the expected value of the estimated autocovariances of the residuals. This has been

corrected by Nelson and Kang (1981), who have extended the analysis. The latter have

revealed that the spectral density function, derived from the expected values of the

sample autocovariances, has a peak at a frequency that corresponds to a cycle of a

duration that is 0.83 times the number of sample periods.

Nelson and Kang (1981) have emphasised the risk of finding spurious dynamics in

the residuals from the inappropriate detrending of a random walk. A myopic analysis

that looks only at the values of the parameters of an estimated autoregressive model

is clearly at risk of drawing false conclusions. However, an analysis that measures the

rate of mean reversion relative to the length of the sample can avoid the risk.

The frequencies of the fluctuations around their interpolated linear trends of the

sequences that we shall analyse are greater than the frequency that is characteristic

of a random walk. Therefore, the sequences appear to manifest a genuine cyclicality.

Figure 5 provides such evidence.
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Figure 5
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Notes: The logarithms of the aggregate incomes of six OECD countries for the period 1980Q1—
2003Q4 with interpolated quadratic trends.

5 The Empirical Results

In the empirical analysis of this section, we shall detrend the logarithmic data by

interpolating a quadratic function, and we shall also use the H—P filter. A quadratic

function is used instead of a linear function in order to accommodate cases where there
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is some indication of a gradual increase or decrease, over the sample period, in the rate

of the underlying growth of GDP; but we have found that, in most cases, the quadratic

function is virtually a linear function. We shall pursue the method of estimating the

trend via the H—P filter, mainly for comparative purposes; and we shall be interested

to see the effect of varying the smoothing parameter.

It is a notable circumstance when the data are amenable to a linear or a quadratic

detrending in several countries over the same protracted period, as is the case for each

of the six OECD countries throughout our sample period. Figure 5 shows the evidence

of this. In different eras and over longer periods, we would expect to resort, instead, to a

flexible method of trend estimation that employs the H—P filter and that accommodates

structural breaks via local variations in the smoothing parameter.

Some of the data sequences in Figure 5 contain seasonal fluctuations, whereas oth-

ers have been deseasonalised. These differences are of no account in the analysis of

business cycles, which comprise components that are of much lower frequencies than

the seasonal fluctuations. The later will be removed automatically in the process of

anti-alias filtering, which has the effect of deseasonalising the data.

5.1 The Method of Estimation

The results from fitting an AR(2) to the data of each of the six OECD countries, for

the period 1980Q1—2003Q4, are displayed in Table 1. These estimates are the outcome

of a multistep procedure.

Table 1: The business-cycle parameters obtained
via quadratic detrending

α1 α2 ρ ω σx σ� b
SPAIN −0.6072 0.7592 0.8713 69.61 0.0204 0.0126 0.0272
FRANCE −0.5838 0.7178 0.8473 69.85 0.0152 0.0100 0.0204
U.K. −0.5270 0.6749 0.8215 71.29 0.0197 0.0138 0.0252

NORWAY −0.4899 0.5519 0.7429 70.75 0.0202 0.0179 0.0272
ITALY −0.3904 0.5504 0.7419 74.74 0.0122 0.0949 0.0252
U.S.A. −0.1318 0.2446 0.4946 82.34 0.0161 0.0176 0.0328

For a start, a quadratic trend–which serves as a benchmark against which the

cyclical activity of the national economies can be measured–has been fitted to the

logarithms of the data. The residuals from the extracted trend, which are liable to be

examined for their low-frequency content, contain seasonal and irregular components

at higher frequencies, which are not directly attributable to the business cycle.
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To remove these components, the detrended data from each country are subjected

to a process of lowpass filtering and subsampling, which serves to discard all except the

information that lies in the frequency interval [0, π/8] in the spectrum of the original

data. The filter is implemented in the frequency domain by selecting the appropriate

Fourier coefficients of the data. The filtered data is reconstructed via a Fourier synthesis.

The filtering is also effective in overcoming any aliasing that could arise from the

process of subsampling that selects every eighth data point. In the absence of an anti-

aliasing filter, subsampling by a factor of 8 would serve to map the information content

in the upper seven octaves of the frequency range into its lowest octave, wherafter the

latter would be expanded by a factor of 8 to occupy the interval [0, π]. With proper anti

aliasing, the effect of the subsampling is to map the unimpaired contents of the original

data in the frequency interval [0, π/8] onto the wider interval [0, π], which corresponds

to the full range of frequencies that is available to a sampled data sequence.

Pagan (1997) has remarked that AR(2) models that are fitted to detrended quarterly

logarithmic output data typically possess real roots, whereas they might be expected

to possess complex roots reflecting the dynamics of the business cycles. Within the

context of quarterly data, the business cycle is a low-frequency phenomenon; and it is

not surprising that the AR roots do not reflect its cyclicality.

Within the context of annual data, the business cycle has a considerably higher

frequency; and an AR(2) model fitted to such data would almost certainly capture

its cyclicality. Compared with quarterly data, annual data is liable to suffer from the

effects of aliasing and phase distortion. By applying the processes of anti aliasing and

subsampling to the quarterly data to produce biennial data, we are ensuring that the

information that is extracted is appropriate to the purpose of estimating the business

cycle.

The processes of filtering and subsampling the data are illustrated in Figures 6 and

7, which relate to the U.K. over an extended data period of 40 years running form

1964Q1 to 2003Q4. Figure 6 shows the the putative business cycle, which has been

synthesised from the spectral ordinates of the detrended data that lie in the interval

[0, π/8]. Figure 7 displays the peridodogram of the filtered and subsampled the data.

This is the periodogram of the business cycle; and it corresponds to the segment of the

peridogram of Figure 3 that is supported on interval [0, π/8].

Figure 8 is an Argand diagram that indicates the location in the complex plane of the

roots of the autoregressive operator of the estimated AR(2)model. The estimates have

been derived by maximising the likelihood function of Whittle (1951), which entails

the assumption that the data are the product of a circular process. (It is equivalent to
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propose that the sample represents one cycle of a periodic function.)

To sustain this assumption, some attention has to be paid to the problem of the

disjunction that can occur at the points in the periodic extension of the data where the

end of the sample is joined to its beginning. Whereas the problem can be ignored if

the data sequence is a lengthy one, such as the extended U.K. sequence, it needs to be

addressed in the case of the shorter sequences from the six OECD countries.

We believe that an appropriate way of dealing with this matter is to extend the

sample at both ends by forecasting and backcasting the data. In particular, our proce-

dure uses the preliminary estimates of an AR(2) model to lengthen the sample by 25

per cent. Then, the extrapolated sample is subjected to a tapering operation based on

a split cosine bell. The latter is nothing but a cosine bell with an inserted stretch of

units.

Figure 6

Notes: The residual sequence from fitting a quadratic trend to the income data of Figure 2.
The interpolated line, which represents the business cycle, has been obtained from the Fourier
ordinates that generate the periodogram of Figure 7.

Figure 7

Notes: The periodogram of the sub sampled anti-aliased data with the parametric spectrum
or an estimated AR(2) model superimposed.
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Figure 8

Notes: An Argand diagram indicating the location in the complex plane of the roots of the
autoregressive operator of the estimated AR(2)model.

5.2 The Dynamics of the Economies

Our first concern is to assess the degree of damping to which each economy has been

subject over the sample period. This is revealed by the estimated value of the damping

factor ρ, which, together with the angular velocity ω, is entailed in the expression for the

homogeneous second-order difference equation under (10) and in its analytic solution

under (11).

A question which arises is how the frequency value ω, or, equivalently, the length

of the cycle, that is implied by the estimated AR(2) equation is related to the degree

of damping. Table 1 shows a high degree of inverse correlation between the rankings of

the values of ρ and ω, which is the angular velocity or frequency measured in degrees

per biennium–the lower the damping, i.e. the closer ρ is to unity, the lower is ω and

the longer is the cycle.

Table 1 also indicates, via the values of σx, the relative amplitude of the economic

cycles for each of the six countries. This is measured as the standard deviation from

the interpolated trend line of the logarithmic income series. The values of σε represent

estimates of the magnitudes of the disturbances that drive the cycles.

The final column of the Table 1 gives the values of b which is the slope parameter

of a linear trend interpolated through the logarithmic series by least-squares regression.

These values represent the average rates of growth of the countries for the period in

question.

The parameters ρ and ω provide a complete characterisation of the dynamic prop-

erties of a second-order system. However, it is also insightful to characterise the system
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in terms of the fundamental structural parameters c and h, which are, respectively, the

coefficients of friction and of stiffness. These are displayed in Table 2, which also gives

the ratio σx/σε. The relationship of the two sets of parameters is via the following

equations,

(i) γ = ln(ρ), (ii) c = −2γ and (iii) h = γ2 + ω2. (41)

To make matters more intelligible, we display, in Table 3, the rankings of the various

measures.

Table 2: The structural
business-cycle parameters

c h σx/σε
SPAIN 0.2755 1.4948 1.6202
FRANCE 0.3315 1.5136 1.5166
U.K. 0.3932 1.5868 1.4327

NORWAY 0.5944 1.6130 1.1319
ITALY 0.5972 1.7909 1.2909
U.S.A. 1.4081 2.5610 0.9158

Table 3: The rankings in the parameters of Tables 1 and 2
ρ c ω h σx σε σx/σε b

SPAIN 1(6) 6(1) 6(1) 6(1) 1(6) 5(2) 1(6) 2(4)
FRANCE 2(5) 5(2) 5(2) 5(2) 5(2) 6(1) 2(5) 6(1)
U.K. 3(4) 4(3) 3(4) 4(3) 3(4) 4(3) 3(4) 4(2)

NORWAY 4(3) 3(4) 4(3) 3(4) 2(5) 2(5) 5(2) 2(4)
ITALY 5(2) 2(5) 2(5) 2(5) 6(1) 1(6) 4(3) 4(2)
U.S.A. 6(1) 1(6) 1(6) 1(6) 4(3) 3(4) 6(1) 1(6)

Notes: The rankings in the parameters of Tables 1 and 2 are in descending order of magnitude
and in ascending order - via the numbers in parentheses.

The coincidence of the ranking of ρ with the inverse ranking of c follows necessarily

from their analytic relationship, which is indicated by (i) and (ii) of (41). For the close

relationship of the ranking of ω and h, there is no such necessity, since γ is also present

in (iii). Given the coincidence of the rankings of ρ and c and the closeness of those of

ω and h, it follows that c and h display the same high degree of rank correlation as do

ρ and ω, albeit in the direct rather than the inverse sense.

There is also a close rank correlation between the damping factor ρ and the variance

ratio σx/σε. Both of these are readily expressed in terms of the parameters of the
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difference equation. Whereas ρ2 = α2, there is

σ2x
σ2ε
=

(1 + α2)

(1− α2)(1 + α2 + α1)(1 + α2 − α1)
. (42)

(See, for example, Pollock, 1999, p. 533.) This variance ratio increases as α2 = ρ2

increases towards unity. Also, within the range of variation of α1, in which 1+α2+α1 >

0, the variance ratio increases as α1 declines. In Table 1, there is a perfect inverse rank

correlation between α1 and α2. This gives rise to the almost perfect rank correlation

between ρ and σx/σε.

To understand the implications of these various relationships, one should make ref-

erence to equation (8iii) which expresses ω in terms of the structural coefficients c and

h. The equation indicates that, within a given system with a fixed stiffness parameter

h, increasing the damping coefficient c will lead to a lengthening of the duration of the

cycle. On the other hand, for fixed c, increasing h will shorten the duration of the cycle.

Since c and h are free to vary independently across the economies, there should be

no firm expectation concerning the nature of their relationship. It transpires that h and

c tend to vary together with a positive correlation, which means that their variations

have offsetting effects. However, for the sample of 6 OECD countries, the effects of the

variations in h heavily outweigh the offsetting effects of the variations in c.

When these effects are discerned through the autoregressive parameters ρ and ω,

it is found that economies with greater damping tend to have shorter cycles. This is

the opposite of a relationship that would be observed in a single system governed by

second-order dynamics and subject to variable damping. In that case, increasing the

damping would lengthen the cycles.

There is a supposition that the lower the relative amplitude of the business cycle

the better are the prospects for the growth of the economy. This idea was famously

propounded in a pamphlet published in the U.K. by the National Economic Develop-

ment Council (1963) under the title of Conditions Favourable to Faster Growth.It was

proposed that the economic stop-go policies of the United Kingdom in the preceding

decade had created a series of booms and slumps that had inhibited the growth of the

economy.

Table 3 gives no clear indication of a negative relationship between the rates of

growth of the countries and the relative amplitude of their economic cycles. However,

the question remains of whether such a relationship could be found by observing the

same economy in different epochs.
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5.3 The Effects of the Hodrick—Prescott Filter

We now proceed to examine the effect of using the lowpass Hodrick—Prescott filter,

instead of a quadratic function, to remove the trend from the data, in the attempt

to reveal the business cycle. We shall attribute a range of alternative values to the

smoothing parameter λ. The higher the value of the smoothing parameter, the more

rigid is the estimated trend. The analysis of Section 3 has shown that, as λ increases,

the resulting trend tends to a linear function that is interpolated through the data by

a least-squares regression.

Intuition suggests that the more flexible is the interpolated trend the lower will be

the amplitudes of the fluctuations in the residual sequence and the shorter will be the

duration of its cycles. This intuition has been supported by an analysis in the frequency

domain of the effect of applying the H—P filter to a random walk. Figure 4 is relevant

to that analysis.

We begin by setting λ = 8000. This value corresponds, via equation (39ii), to the

nominal frequency value of ω = π/30 radians per quarter and to a duration of 15 years.

In fact, the resulting trends that are interpolated through the data are virtually linear.

When the AR(2) model is fitted to the detrended data, we obtain the parameter values

that are recorded in Table 4.

Table 4: Parameters for smoothing parameter equal to 8000
α1 α2 ρ ω Λ σx σε

SPAIN −0.40128 0.70107 0.83730 76.14 0.20 0.01516 0.01049
FRANCE −0.28380 0.64995 0.80620 79.86 0.22 0.01140 0.00836
UK −0.24384 0.65370 0.80852 81.33 0.21 0.01414 0.01049

NORWAY −0.25612 0.57652 0.75929 80.29 0.27 0.01414 0.01140
ITALY −0.10582 0.40901 0.63954 85.25 0.37 0.00894 0.00774
U.S.A. 0.07377 0.36670 0.60556 93.49 0.34 0.01265 0.01183

The next value to be assigned to the smoothing parameter is λ = 1600, which is the

value that is commonly used in extracting macroeconomic trends from quarterly data,

and it has been proposed by Hodrick and Prescott (1980, 1997). This value produces

a trend that strongly reflects the cyclical pattern of the original time series. For this

reason, it provides an attenuated version of the business cycle. It will be observed from

the comparison of Tables 4 and 5 that the relative amplitudes of the business cycles

measured by σx are considerably reduced and the duration of the cycles, as reflected

in the angular velocity ω, is systematically reduced. This is in accordance with our

presuppositions.
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Table 5: Parameters for smoothing parameter equal to 1600
α1 α2 ρ ω Λ σx σε

SPAIN −0.07488 0.52742 0.72623 87.04 0.27 0.00894 0.00775
FRANCE 0.05076 0.57258 0.73669 91.92 0.21 0.00707 0.00632
UK 0.11612 0.54694 0.73956 94.50 0.21 0.00949 0.00775

NORWAY 0.15596 0.56620 0.74980 95.97 0.20 0.00894 0.00707
ITALY 0.27894 0.23539 0.50536 106.02 0.35 0.00548 0.00548
U.S.A. 0.50569 0.27336 0.52284 118.92 0.27 0.00894 0.00775

The final value to be investigated is λ = 677.13, which corresponds nominally to

an angular velocity of π/16 radians per quarter and to a duration of 8 years. These

values correspond to the upper limit of the business cycles duration according to the

definition of Baxter and King (1999). These authors have also attributed a minimum

duration of 1.5 years to the business cycles. (The resulting frequency band, which runs

from π/16 radians per period up to π/3 radians per period, has been imposed on the

periodogram of Figure 3.) Artis, Marcellino and Proietti (2004), have implemented the

definition of Baxter and King via a bandpass filter that comprises a lowpass H—P filter

with λ = 0.52 followed by a highpass filter with λ = 677.13. The initial lowpass filter

may have little effect upon deseasonalised data for the reasons that there is liable to be

very little spectral power within the corresponding stop band.

Table 6: Parameters for smoothing parameter equal to 677.13
α1 α2 ρ ω Λ σx σε

SPAIN 0.23331 0.31921 0.56499 101.92 0.33 0.00548 0.00548
FRANCE 0.30219 0.55054 0.74199 101.75 0.18 0.00548 0.01414
UK 0.41685 0.51692 0.71897 106.85 0.18 0.00707 0.00548

NORWAY 0.40081 0.58485 0.76475 105.19 0.16 0.00632 0.00548
ITALY 0.58644 0.26694 0.51666 124.58 0.26 0.01414 0.00316
U.S.A. 0.81471 0.36210 0.60175 132.61 0.18 0.00707 0.00548

The parameters derived by fitting an AR(2) to these data are given in Table 6. We

are disinclined to give much credence to these results for the reason that the 8-year limit

on the duration of the cycles is an artificial one that does not appear to correspond to

any evident feature in the spectral structure of the data.
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6 Conclusions

A schematic model has been proposed for the purpose of comparing the economic

cycles of six OECD countries. These countries have experienced similar socio-economic

conditions over the period 1980—2003. However, the intensity of the disturbances to

which they have been subject may have varied, and the manner in which these have

been propagated may have differed in consequence of the differences in the economic

structures of the countries and in their policies of economic regulation.

Second-order stochastic differential equations have been used to represent the struc-

tures that generate the cycles. Given a white-noise forcing function with a wide band-

width, these would correspond to discrete time ARMA(2,1) equations. However, the

business cycle components of the data are bounded by the frequency of π/8 radians per

quarter. On the assumption that the forcing function is a band-limited process sup-

ported the frequency interval [0, π/8], we are able to establish a direct correspondence

between the parameters of a second-order stochastic differential equations and those of

a second-order autoregressive AR(2) equation.

In order to represent business cycles via an estimated AR(2) model, it is necessary

to purge the data of all elements with frequencies in excess of π/8. These consists of

seasonal fluctuations and of minor elements of noise. Thereafter, the data must be

resampled by taking one observation in eight. By this process, the spectral structure

of the business cycle component can be mapped into the full discrete-time frequency

interval of [0, π].

The results of the empirical analysis are surprising. Contrary to what one might

expect, the length of the cycles experienced by the countries, measured by 2π/ω, is

inversely related to their degree of damping, measured by ρ. In a given system char-

acterised by a fixed stiffness parameter h (corresponding to the strength of an error-

correction mechanism), increasing the damping coefficient c would serve to increase the

duration of the cycle.

We draw similar conclusions regarding the dynamics when we use a more flexible

method of detrending the data. Fitting a more flexible trend will produce a residual

sequence in which the fluctuations have a lesser amplitude and a shorter duration.
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