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Abstract

A family of cointegrated vector autoregressive models with adjusted short-run dynamics is introduced.

These models can describe evolving short-run dynamics in a more flexible way than standard vector

autoregressions, and yet likelihood analysis is based on reduced rank regression using conventional

asymptotic tables. The family of dynamics-adjusted vector autoregressions consists of three models: a

model subject to short-run parameter changes, a model with partial short-run dynamics and a model

with short-run explanatory variables. An empirical illustration using US gasoline prices is presented,

together with some simulation experiments.
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1 Introduction

A family of cointegrated vector autoregressive models with adjusted short-run dynamics

is introduced. These models can describe evolving short-run dynamics in a more flex-

ible way than standard vector autoregressions, and yet likelihood analysis is based on

reduced rank regression as in Johansen (1988, 1996) using the same asymptotic tables.

The family of dynamics-adjusted vector autoregressions consists of three models: a

model subject to short-run parameter changes, a model with partial short-run dynamics

and a model with short-run explanatory variables.

The new family of models are designed for situations where residuals of conven-

tional vector autoregressions show signs of autocorrelation or autoregressive conditional

heteroscedasticity (ARCH). If such model mis-specification is associated with known

structural-break dates or certain types of stationary regressors, the proposed methods

can work without altering the conventional asymptotic arguments. Compared with the

use of modestly mis-specified vector autoregressions in empirical work, the proposed

models are advantageous in terms of the flexibility in describing short-run dynamics.

The results of cointegration rank tests are broadly the same, since usual cointegra-

tion rank tests are somewhat robust to model mis-specification. The new family of

models can be combined further with cointegrated vector autoregressions allowing for

deterministic shifts, developed by Johansen, Mosconi and Nielsen (2000).

To describe this new class of models, consider a vector autoregression of order k and

dimension p for a time series, X−k+1, ..., X0,X1, ...,XT , given by the equation

4Xt = ΠXt−1 +
k−1X
i=1

Γi4Xt−i + εt, for t = 1, ..., T, (1)

where the innovations εt are independent N(0,Ω)-distributed. Cointegration arises when

Π has reduced rank r and can be written as Π = αβ0 for some (p×r) matrices α and β.

Following Johansen (1992a) and Juselius (2006, Section 4.2), the autoregressive model

can be reparameterised as

42Xt = ΠXt−1 − Γ4Xt−1 +
k−2X
i=1

Ψi42 Xt−i + εt, (2)

where Γ = I −
Pk−1

i=2 Γi and Ψi = −
Pk−1

j=i+1 Γj. Note that the models (1) and (2) are

equivalent. There is a one-one mapping between the parameters of the two models,

and the likelihood functions are equivalent since the innovation εt is not affected by the
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reparameterisation.

According to the Granger-Johansen representation theorem (see Johansen, 1996,

Theorem 4.2), the cointegrated relation β0Xt−1 determines the long-run dynamics of the

model. In this paper we refer to α and Γ as the parameters for medium-run dynamics

as they describe how the process adjusts to changes in β0Xt−1 and 4Xt−1, respectively.

We define Ψ1, ...Ψk−2 as the parameters for the short-run dynamics of the model in that

they are irrelevant to the evolution of the common stochastic trends. The short-run

dynamics often correspond to acceleration rates of variables in a dynamic economic

system. Some acceleration rates, such as inflation acceleration, can play an important

role in an econometric model as determinants of agents’ behaviour (see Galí and Gertler,

1999, for instance). Thus, equation (2) shows how acceleration rates react to long-run

and medium-run dynamics, suggesting that the interpretation of42Xt as mere surprise

is only reasonable when Π and Γ turn out to be zero.

As shown below, changes in the medium and long term parameters, α, Γ and β, are

reflected in the impact parameter of the common stochastic trends, thereby affecting

the asymptotic distributions of cointegration rank tests. Also, if the innovation variance

Ω is non-constant, the likelihood cannot be maximized using reduced rank regression.

In other words, if the medium and long term parameters or the innovation variance are

time-varying, cointegration analysis can neither be based on the reduced rank regression

nor the conventional limiting distributions of rank tests, but is somewhat more involved,

see Andrade, Bruneau, and Gregoir (2005), Cavaliere and Taylor (2006), and Hansen

(2000, 2003).

A feature of changes or modifications of the short-run parameters, Ψ1, ...Ψk−2, is that

they do not have any effect on the impact parameter for the stochastic trends. As a con-

sequence, the standard procedures for determining cointegration rank and hypothesis

testing can be used. The class of dynamics-adjusted models therefore provides a more

flexible framework for modelling the dynamics of the data than the usual cointegration

models, while allowing the use of the standard cointegration tables and interpretations.

This paper is organised as follows. Section 2 presents a family of cointegrated vector

autoregressive models with adjusted short-run dynamics, and Section 3 considers the

statistical properties of the models centering on the Granger-Johansen representations

and reduced rank regression. Section 4 provides the asymptotic analysis of a cointe-

gration rank test in the family of the dynamics-adjusted vector autoregressive models,

and it is shown that the asymptotic results are identical to those in Johansen (1996,

ch. 10, 11). Section 5 gives several model extensions and a survey of the related litera-

ture. Section 6 presents an empirical illustration, while Section 7 conducts simulation
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experiments for one of the dynamics-adjusted vector autoregressive model. An overall

summary and conclusion are provided in Section 8.

This paper uses the following notational conventions. For a certain matrix a with

full column rank, a = a(a0a)−1 and so a0a = I. An orthogonal complement a⊥ is defined

such that a0⊥a = 0 with the matrix (a, a⊥) being of full rank. The symbols
w→ and

p→
are used to signify weak convergence and convergence in probability, respectively.

2 Models with Adjusted Short-Run Dynamics

A general expression of dynamics-adjusted vector autoregressive (DAVAR) models is

presented first, before turning to a class of three sub-models.

Let us consider a class of vector autoregressive models with adjusted short-run

dynamics based on equation (2):

42Xt = (Π,Πl)

µ
Xt−1

t

¶
− Γ4Xt−1 + μ+ ΦVt + εt, (3)

where Vt ∈ Rq is a set of short-run dynamics, which will differ according to the model

specifications considered below. Deterministic terms, t and μ, are also included in

equation (3). The linear trend t is restricted in a possible cointegration space so as to

avoid the generation of a quadratic trend (see Johansen, 1996, Ch.5). The innovations

ε1, ..., εT have independent and identical normal N(0,Ω) distributions, and the starting

values X−k+1, ...,X0 are conditioned upon. The parameters Π, Γ, Ω ∈ Rp×p, Πl, μ ∈
Rp and Φ ∈ Rp×q vary freely and Ω is positive definite. The hypothesis of reduced

cointegration rank is given by

H(r) : rank (Π,Πl) ≤ r or (Π,Πl) = α(β0, γ0),

where α, β ∈ Rp×r and γ0 ∈ Rr. For future reference we define X∗
t−1 =

¡
X 0

t−1, t
¢0
and

β∗ = (β0, γ0)
0. Specifying the general short-run dynamics ΦVt in equation (3) generates

three dynamics-adjusted models, which are presented in the following sub-sections.

2.1 Model Subject to Short-Run Parameter Changes

The first sub-model is a cointegrated vector autoregressive model subject to short-run

parameter changes, where the idea is to allow different short-term dynamics in two or

more separate regimes. Without loss of generality, the number of regimes is chosen to
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be two throughout the paper. The lengths of the first and second sub-samples are T1
and T2, respectively. The total sample is therefore given by T = T1+T2, and we define

T0 = 0. Thus, the series are given by X1, ..., XT1 and XT1+1, ...,XT , and the parameters

of the lagged second-order differences 42Xt−i are considered to be different between

the two periods. Therefore, the adjusted short-run dynamics term ΦVt is defined as

ΦVt =
k−2X
i=1

Ψ
(1)
i

©
42Xt−i1(0<t≤T1)

ª
+

k−2X
i=1

Ψ
(2)
i

©
42Xt−i1(T1<t≤T )

ª
, (4)

where Ψ
(1)
i , Ψ

(2)
i ∈ Rp×p, and 1(·) is an indicator function. Note that the long and

medium term parameters α, β∗, Γ, μ, Ω are common for the two periods, while the

parameters for the short-term dynamics change from Ψ
(1)
1 , ...,Ψ

(1)
k−2 to Ψ

(2)
1 , ...,Ψ

(2)
k−2. A

review of other cointegration models with parameter shifts is given in Section 5. This

includes models allowing shifts in deterministic terms, along the lines of Johansen,

Mosconi and Nielsen (2000). An empirical illustration using US gasoline price data is

presented in Section 6.

2.2 Model with Partially Reduced Short-Run Dynamics

The second sub-model is a cointegrated vector autoregressive model with partially reduced

short-run dynamics, where the idea is to allow different lag lengths for the components

of the second-order differenced terms. Decompose Xt =
¡
X 0
1,t, X

0
2,t

¢0
and define ΦVt as

ΦVt =
l−2X
i=1

Ψi42 Xt−i +
k−2X

s=l+m−1
Ψ(block)
s 42 Xt−s, for 0 ≤ m, (5)

whereΨ(block)s represents a matrix with zero elements in the block columns corresponding

to X2,t, that is,

Ψ(block)
s =

Ã
Ψs,1 0

Ψs,2 0

!
. (6)

Note that42Xt−l−m+1 does not have to be consecutive to42Xt−l+2. Also note that (6)

can be defined such that zero elements in the block columns correspond to X1,t rather

than X2,t. The adjusted short-run dynamics term (5) allows us to analyse models with

complicated lag structure; for instance, a model for time series subject to multiplicative

seasonal effects.
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2.3 Model Augmented with Short-Run Explanatory Variables

The final specification is a partially cointegrated vector autoregressive model augmented

with short-run explanatory variables, where ΦVt is specified as

ΦVt =
k−2X
i=1

Ψi42 Xt−i +
n−2X
s=0

Λs42 Zt−s, (7)

where Zt−s is a set of v-dimensional explanatory variables with a parameter Λs ∈ Rp×v.

The process Zt is assumed to be I(1) or of smaller order and also independent of εt, so

that Zt is strongly exogenous. Formal conditions that Zt needs to satisfy are given in

the next sub-section. This model is mentioned by Rahbek and Mosconi (1999), although

they focus on the case where 4Zt, in our notation, is I(1). Empirical examples of Zt

are oil prices used in Rahbek and Mosconi (1999).

Note that the model with equation (4) is a parameter-changing DAVAR model,

while the models specified by equations (5) and (7) are parameter-constant DAVAR

models.

3 Statistical Analysis of Cointegration

This section presents a statistical analysis of the three DAVAR models specified by

equations (4), (5) and (7). The Granger-Johansen representation of each sub-model is

investigated, followed by a discussion of the maximum likelihood analysis.

3.1 Granger-Johansen Representations

The Granger-Johansen representations of the three DAVAR models are closely related

to those of Johansen (1996, Theorem 4.2) and Johansen, Mosconi and Nielsen (2000). A

set of conditions required for the representation varies slightly according to the model

specification, because the models have different characteristic polynomials. For the

general form (3), it is assumed that the following conditions hold.

Assumption 1

1. The matrices α and β have full column rank r.

2. The matrix α0⊥Γβ⊥ has full rank p− r.
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The first condition implies that there are at least p − r common stochastic trends

and cointegration arises when r ≥ 1. The second condition prevents the process from
being I(2) or of higher order. Note that these two conditions only involve medium and

long term parameters. A combination of these conditions ensures that the number of

common stochastic trends is exactly p− r. A further condition is needed to ensure all

the characteristic roots, but the the p− r unit roots are stationary. That condition will

depend on the choice of Vt and will be discussed below.

Under Assumption 1 and a suitable assumption on the characteristic roots, the

Granger-Johansen representation will have the appearance

Xt = C
tX

s=1

εs + yt + τ c + τ lt+At, (8)

where C = β⊥(α
0
⊥Γβ⊥)

−1α0⊥ is the impact parameter of the common stochastic trends,

and the process yt has zero mean and satisfies a Law of Large Numbers. The parameters

τ c and τ l satisfy

β0τ c = α0 (ΓC − I)μ+ α0 (ΓCΓ− Γ)βγ0 − γ0, (9)

τ l = Cμ+ (CΓ− I)βγ0, (10)

and At depends on the initial values such that β
0At = 0. The expression for β0⊥τ c is

more lengthy (see Hansen, 2005). In particular, β0Xt + γ0t and 4Xt can also be given

stationary initial distributions. In the representation (8), yt and At vary according to

the specifications (4), (5) and (7) due to the fact that the characteristic polynomials are

different between the models. Therefore each of the sub-models is considered in turn.

3.1.1 Representation for theModel Subject to Short-Run Parameter Changes

Consider the vector autoregression with shifts in short-run parameters as given by equa-

tion (4). In addition to Assumption 1, an assumption on the characteristic polynomial

is needed.

Assumption 2 The characteristic polynomial for the model (3), in which the short-run
dynamics ΦVt satisfies equation (4), is given by

A(j)(z) = (1− z)2 Ip − αβ0z + Γ (1− z) z −
k−2X
i=1

Ψ
(j)
i zi (1− z)2 ,
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for sub-samples j = 1, 2. For each sub-sample, the characteristic roots solving the

equation det{A(j)(z)} = 0 satisfy |z| > 1 or z = 1.

Assumption 2 ensures that the process is neither explosive nor seasonally coin-

tegrated. It follows immediately from Johansen (1996, Theorem 4.2) that, for each

sub-sample XTj−1+1, ...,XTj , the initial values XTj−1−k+1, ..., XTj−1 can be given a distri-

bution so that the representation (8) holds where y(j)t are stationary processes described

as infinite series of past innovations. This result is refined in the following theorem,

which gives a solution with two additional features as in Nielsen (2001, Lemma A1).

First, it holds throughout the full sample as a function of the two sets of initial values,

thereby generalising the work of Hansen (2005) to a situation with two sub-samples.

Secondly, the processes y(j)t are expressed in terms of the observed regressors in the

reduced rank regression equation (3). This property is convenient in that it helps inter-

preting estimators and test statistics, and in that it also holds without the stationarity

in Assumption 2. The proof of the next theorem is based on Nielsen (2001) and is given

in the Appendix.

Theorem 1 Consider the model (3) satisfying equation (4). Suppose that Assumption
1 holds. Then the model equation has the solution (8) with yt and At given by

yt =
2X

j=1

y
(j)
t 1(Tj−1<t≤Tj) and At = A(1) +A(2)1(t>T1),

where, for j = 1, 2,

y
(j)
t = (I − CΓ)ββ0Xt + C (Γ− I)4Xt +

k−2X
i=1

CΨ
(j)
i 4Xt−i,

A(1) = C

(
ΓX0 − (Γ− I)4X0 −

k−2X
i=1

Ψ
(1)
i 4X−i

)
,

A(2) = C
k−2X
i=1

n
Ψ
(1)
i −Ψ

(2)
i

o
4XT1−i.

If in addition Assumption 2 holds, the initial values XTj−1−k+1, ...,XTj−1 for each sub-

sample can then be given a distribution so that the process y(j)Tj−1+1
, ..., y

(j)
Tj
is stationary.

Note that, in the representation (8), the stationary part y(j)t is affected by the change

in the short-term parameters Ψ(j)
i , whereas both the impact matrix C and the linear

trend parameter τ l remain unchanged throughout the whole period. This isolation of
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the common trends from the parameter change plays a crucial role in the asymptotic

analysis developed in Section 4 below.

3.1.2 Representation for the Case of Partially Reduced Short-Run Dynam-
ics

Consider now the model with partially reduced short-run dynamics. As for the model

with short-run parameter shifts, an assumption on the characteristic polynomial is

required.

Assumption 3 The characteristic polynomial for model (3) satisfying equation (5) is

A∗(z) = (1− z)2 Ip−αβ0z+Γ (1− z) z−
l−2X
i=1

Ψiz
i (1− z)2 −

k−2X
s=l+m−1

Ψ(block)
s zs (1− z)2 .

The characteristic roots solving the equation det{A∗(z)} = 0 satisfy |z| > 1 or z = 1.

We can now turn to the representation theorem. Just as for the model with short-

run parameter changes, this shows that the specification of the short-run dynamics has

no bearing on the common trends.

Theorem 2 Consider model (3) satisfying equation (5). Suppose that Assumption 1
holds. Then the model equation has the solution (8) with yt and At given by

yt = (I − CΓ)ββ0Xt + C (Γ− I)4Xt +
l−2X
i=1

CΨi4Xt−i +
k−2X

s=l+m−1
CΨ(block)

s 4Xt−s,

(11)

At = A = C

(
ΓX0 − (Γ− I)4X0 −

l−2X
i=1

Ψi4X−i −
k−2X

s=l+m−1
Ψ(block)
s 4X−s

)
. (12)

If in addition Assumption 3 holds, then the initial values X−k+1, ...,X0 can be given a

distribution so that the process y1, ..., yT is stationary.

Proof. See the Appendix.

3.1.3 Representation for the Model with Short-Run Explanatory Variables

Consider finally the model with short-run explanatory variables. Once again an as-

sumption on the characteristic polynomial is required for the representation theorem.
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Assumption 4 The characteristic polynomial for the model (3) satisfying equation (7)
is

A∗∗(z) = (1− z)2 Ip − αβ0z + Γ (1− z) z −
k−2X
i=1

Ψiz
i (1− z)2 .

The characteristic roots solving the equation det{A∗∗(z)} = 0 satisfy |z| > 1 or z = 1.

Since a set of additional regressors Zt is now incorporated in the model, an additional

condition on Zt needs to be introduced. Following Rahbek and Mosconi (1999), the

regressor Zt is assumed to be a strongly exogenous linear process (see Phillips and Solo,

1992, for details of linear processes). This is presented as follows.

Assumption 5 The first-order difference of the process Zt satisfies

4Zt = B (L) ηt, for t = 1, ..., T,

where η1, · · · , ηT are independently N(0,Σ)-distributed conditional on the initial value
Z0, and the process Zt is independent of εt. The polynomial B (z) =

P∞
i=0Biz

i is

convergent for |z| < 1 + δ for some δ > 0.

Note that det{B (1)} 6= 0 is not assumed so Zt can be either I(1) or of smaller order.

In Assumption 5 the normal distribution is adopted for the sake of simplicity, and the

asymptotic results given below hold for a broader class of stationary processes. See

Hansen (1992a) for details of such processes. These settings lead to the representation

theorem, which once again shows that the short-term dynamics have no impact on the

common trends.

Theorem 3 Consider the model (3) satisfying equation (7). Suppose that Assumption
1 holds. Then the model equation has the solution (8) with yt and At given by

yt = (I − CΓ)ββ0Xt + C (Γ− I)4Xt +
k−2X
i=1

CΨi4Xt−i +
n−2X
s=1

CΛs4 Zt−s, (13)

At = A = C

"
ΓX0 − (Γ− I)4X0 −

k−2X
i=1

Ψi4X−i −
n−2X
s=0

Λs4 Z−s

#
. (14)

If in addition Assumptions 4 and 5 hold, then the initial values X−k+1, ...,X0 can be

given a distribution so that the process y1, ..., yT is stationary.

Proof. See the Appendix.
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3.2 Reduced Rank Regression

The maximum likelihood analysis of cointegration rank in model (1) is based on the

reduced rank regression of ∆Xt and X∗
t−1 corrected for ∆Xt−1 and all the other regres-

sors. The correction for ∆Xt−1 implies that this is equivalent to analysing model (2)

by the reduced rank regression of ∆2Xt and X∗
t−1 corrected for all the other regressors.

This equivalence also enables us to apply the standard reduced rank regression to the

general form of DAVAR models given by equation (3).

Following Johansen (1996, ch. 6) it is convenient to start by introducing the nota-

tion:

Z0t = ∆2Xt, Z1t = X∗
t−1 =

Ã
Xt−1

t

!
, Z2t =

Ã
∆Xt−1

1

!
, Z3t = Vt.

The likelihood function is then maximized by regressing Z0t on Z2t and Z3t to obtain

residuals R0t, and also regressing Z1t on Z2t and Z3t to get residuals R1t. The sample

product moment matrix for the residuals is defined asÃ
S00 S01

S10 S11

!
=
1

T

TX
t=1

Ã
R0t

R1t

!Ã
R0t

R1t

!0
. (15)

The log-likelihood ratio for the hypothesis of at most r cointegrating relations, H(r),

against H(p) is given by

LR {H(r)|H(p)} = −T
pX

i=r+1

log(1− bλi), (16)

where 1 ≥ bλ1 ≥ · · · ≥ bλp ≥ 0 are solutions to the following generalised eigenvalue

problem:

det
¡
λS11 − S10S

−1
00 S01

¢
= 0. (17)

The problem (17) can be solved in a numerically stable way using singular value de-

compositions (see Doornik and O’Brien, 2002). The asymptotic analysis of the rank

test statistic and the maximum likelihood estimators is discussed in the next section.
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4 Asymptotic Analysis of Cointegration

It is first demonstrated for each of the three DAVAR models that the asymptotic distri-

butions of the rank test statistics correspond to that of the conventional cointegration

rank test. Subsequently it is argued that the asymptotic properties of estimators are

also the same as those in the standard cointegrated vector autoregressive model.

Consider the general form (3) with Assumption 1 satisfied. It can be shown that,

as T →∞, the logLR test statistic (16) has an asymptotic distribution given by

LR {H(r)|H(p)} w→ tr

(Z 1

0

dB (u)F 0
µZ 1

0

FF 0du

¶−1 Z 1

0

FdB (u)0
)
, (18)

where B (u) is a (p− r) dimensional standard Brownian motion and F is a (p− r + 1)

dimensional process consisting of

F =

(
B(u)−

R 1
0
B(u)du,

u− 1
2
,

for u ∈ [0, 1]. The limiting distribution (18) is the same as that in Johansen (1996, ch.
6). This result holds irrespective of the three model specifications, (4), (5) and (7). In

other words, adjusted short-run dynamics have no impact on the asymptotic distribu-

tion of the cointegration rank test. Therefore, the tables in Johansen (1996, ch.15), also

see Doornik (1998), can be utilised. As a consequence, one can also make conventional

χ2-based asymptotic inferences for tests on the adjustment and cointegration spaces, as

in Johansen (1996, ch.13).

All the proofs in this section follow Johansen (1996, ch. 10, 11), although some

modifications are required for the model with equation (4) in order to take account of

changes in the short-run parameters.

4.1 Rank Test in the Parameter-Changing DAVAR Model

As described above, the asymptotic distribution of the rank test statistic (16) for the

parameter-changing DAVARmodel given by equation (4) is given by equation (18). This

result, together with the required conditions, are presented as the following theorem:

Theorem 4 Consider the model (3) satisfying equation (4). Suppose (i) Tj/T = a(j)

is fixed while T → ∞ and (ii) Assumptions 1 and 2 are satisfied. Then, as T → ∞,
the asymptotic distribution of the rank test statistic (16) is given by equation (18).
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Proof. Follow the proof of Theorem 11.1 in Johansen (1996) using Lemmas 5 and

6 given below instead of Lemmas 10.1 and 10.3 in Johansen (1996).

The asymptotic properties of the product moment matrices, S00, S01β∗, β∗0S11β∗,

need to be investigated in order to adapt Lemmas 10.1 and 10.3 of Johansen (1996)

to the present model. As a prerequisite, define the variance-covariance matrix of the

stationary processes for each sub-sample

dV ar
⎛⎜⎝ 42Xt

β∗0X∗
t−1

4Xt−1

¯̄̄̄
¯̄̄42 Xt−1, . . . ,42Xt−k+2

⎞⎟⎠ p→

⎛⎜⎝ Σ
(j)
00.3 Σ

(j)
0β.3 Σ

(j)
02.3

Σ
(j)
β0.3 Σ

(j)
ββ.3 Σ

(j)
β2.3

Σ
(j)
20.3 Σ

(j)
2β.3 Σ

(j)
22.3

⎞⎟⎠ .

Furthermore, define

Σlm.3 =
2X

j=1

a(j)Σ
(j)
lm.3, for l,m = 0, 2, β, (19)

Σlm = Σlm.3 − Σl2.3Σ
−1
22.3Σ2m.3, for l,m = 0, β. (20)

The asymptotic properties of the sample product moment matrices can then be stated.

Lemma 5 Suppose the assumptions in Theorem 4 are satisfied. Then,Ã
S00 S01β

∗

β∗0S10 β∗0S11β
∗

!
p→
Ã

Σ00 Σ0β

Σβ0 Σββ

!
, (21)

where

Σ00 = αΣβ0 + Ω, Σ0β = αΣββ, Σ00 = αΣββα
0 + Ω. (22)

Proof. See the Appendix.

The derived results (21) and (22) match those in Johansen (1996, Lemmas 10.1 and

10.3), although the required proofs are more involved. As shown in the Appendix, this

is because the sample product moments in each sub-sample converge to their population

values, thereby their linear combinations using a(j) can also be defined accordingly. As

shown above, Lemma 5 is required in the proof of Theorem 4.
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Next, we investigate the asymptotic properties of non-stationary components with

a view to adjusting Lemma 10.3 of Johansen (1996) to the present model. Let

B0
TX

∗
t−1 =

Ã
α0⊥Γ −α0⊥Γτ l
0 T−1/2

!Ã
Xt−1

t

!

=

⎡⎣ α0⊥Γ

½
C

t−1P
s=1

εs + Y
(j)
t−1 + τ c − τ l +A(1) +A(2)1(t−1>T1)

¾
T−1/2t

⎤⎦ , (23)

which isolates the deterministic trend in the final row of the vector. Then, we prove

the following lemma:

Lemma 6 Suppose the assumptions in Theorem 4 are satisfied. Then, as T →∞,

T−1/2
int(Tu)X
s=1

εs
w→W (u) and T−1/2B0

TX
∗
int(Tu)

w→
Ã

α0⊥W (u)

u

!
,

where W (u) is a Brownian motion in p − r dimensions with variance matrix Ω. The

asymptotic distributions of the non-stationary product moments are

B0
TS11β

∗ ∈ Op(1), T−1B0
TS11BT

w→
Z 1

0

GG0du, B0
T (S10−S11β∗α0)

w→
Z 1

0

G(dW (u))0,

where

G =

"
α0⊥

n
W (u)−

R 1
0
W (u)du

o
u− 1

2

#
.

Proof. The stationary processes Y (j)
t−1 and the terms τ c, τ l, A

(1), A(2)1(t−1>T1) ap-

pearing in equation (23) are all of order Op(1) uniformly in t. Therefore,

B0
TX

∗
t−1 =

⎛⎝ α0⊥ΓC
t−1P
s=1

εs +Op(1)

T−1/2t

⎞⎠ . (24)

The desired results follow as in the proofs for Lemmas 10.2 and 10.3 in Johansen (1996)

since the random walk term is of order T 1/2 and thus dominates other terms of order

Op(1).

The limiting distributions in Lemma 6 are identical to those in Johansen (1996,

Lemma 10.3). This is because all the stationary processes are irrelevant asymptotically

and the parameter change has no impact on C as shown in Theorem 1.
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4.2 Rank Test in the Parameter-Constant DAVAR Models

We now turn to the parameter-constant models specified by equations (5) and (7). Once

again the asymptotic distribution of the rank test statistic (16) is given by equation

(18). The proofs given in Johansen (1996) are now more directly adaptable, since no

parameter shifts are involved.

Theorem 7 Consider the two parameter-constant DAVAR models with Assumption 1
satisfied. Suppose that either of the following two cases holds:

1. Vt is specified by equation (5) with Assumption 3 fulfilled,

2. Vt is specified by equation (7) with Assumptions 4 and 5 fulfilled.

Then, as T →∞, the asymptotic distribution of the rank test statistic (16) is given by
equation (18).

Proof. Since there is no parameter shift in either model, the following variance-
covariance matrix of the stationary processes can be defined:

dV arÃ 42Xt

β∗0X∗
t−1

¯̄̄̄
¯4Xt−1, Vt

!
p→
Ã

Σ00 Σ0β

Σβ0 Σββ

!
,

to which Lemma 10.1 in Johansen (1996) is applicable. As in the proof of Lemma 6,

the stationary processes Yt and the terms τ c and At in the representation (8) are all of

order Op(1) uniformly in t, so equation (24) holds. Lemmas 10.2 and 10.3 in Johansen

(1996) also hold, since the random walk term is of order T 1/2 and thus dominates other

terms of order Op(1). Finally, the proof of Theorem 11.1 in Johansen (1996) can be

used so as to reach the asymptotic distribution given by equation (18).

4.3 Properties of the Estimators

Finally, let us consider the asymptotic properties of the estimators, bα and bβ, for the
adjustment vectors and for the cointegrating relations. In the standard cointegrated

vector autoregression, the results in Lemmas 10.1 and 10.3 in Johansen (1996) provide

the basis for the limiting properties of the estimators. Based on these two lemmas,

Johansen (1996, ch. 13) shows that the estimators bα and bβ have asymptotic normal
and mixed normal distributions, respectively.

For the parameter changing DAVAR model given by equation (4), Lemmas 10.1

and 10.3 in Johansen (1996) were replaced by Lemmas 5 and 6 in Section 4.1. These

lemmas have the same appearance. It can then be shown that Lemmas 13.1 and 13.2 in
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Johansen (1996) hold based on these new lemmas instead of Lemmas 10.1 and 10.3 in

Johansen (1996). Thus bα and bβ have limiting normal and mixed normal distributions
respectively, so conventional χ2-based asymptotic inferences for bα and bβ apply.
For the parameter constant DAVAR models given by equation (5) or (7), Lemmas

10.1 and 10.3 in Johansen (1996) apply as argued in the proof of Theorem 7. This again

leads to conventional χ2-based asymptotic inferences for bα and bβ.
5 Model Extensions and Related Issues

This section considers several extensions of the vector autoregressive model with short-

run parameter changes, and also presents a survey of the literature related to parameter

shifts in cointegrated processes.

Johansen, Mosconi and Nielsen (2000) investigate shifts in deterministic terms (a

linear trend and constant) in cointegrated vector autoregressive models. Thus, the

combination of the analysis in this paper and Johansen, Mosconi and Nielsen (2000)

enables us to extend the model with equation (4) to

42Xt = α

Ã
β

γ(j)

!0µ
Xt−1

t

¶
− Γ4Xt−1 + μ(j) +

k−2X
i=1

Ψ
(j)
i 42 Xt−i + εt, (25)

where structural breaks occur in the deterministic trend and constant as well as in the

short-term dynamics. The same type of asymptotic results as developed above also

apply to a model with a restricted constant:

42Xt = α

Ã
β

μ(j)

!0µ
Xt−1

1

¶
− Γ4Xt−1 +

k−2X
i=1

Ψ
(j)
i 42 Xt−i + εt, (26)

in which broken constant levels are allowed in addition to the changes in the short-run

parameters. Economies which have experienced relatively large regime changes could

be described by these models. An empirical illustration using model (26) is presented in

Section 6. We should note that parameter break points in the deterministic terms and

short-run parameters do not need to coincide, as shown in the empirical illustration.

In order to perform rank tests in equations (25) and (26) one needs to use the

response surfaces in Johansen, Mosconi and Nielsen (2000), which are conducted for

the cases of deterministic shifts embodied in γ(j) and μ(j). Using the same argument

as above, it can be argued that the changing short-term dynamics do not affect the

asymptotic properties of the rank test statistics, so we are also able to use estimated
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response surfaces given in Johansen, Mosconi and Nielsen (2000) for the analysis of the

extended models (25) and (26). In practice, additional indicator variables need to be

incorporated in the models for the likelihood function to be conditional on the initial

values of each sub-sample; see Johansen, Mosconi and Nielsen (2000) and the empirical

illustration given below for details.

The cointegrated vector autoregressive model subject to short-run parameter shifts

belongs to a class of structural changes in cointegrated models, which have been ex-

tensively discussed in the literature. Hansen (1992b), Quintos and Phillips (1993), and

Campos, Ericsson and Hendry (1996) would be the earliest papers, although not nec-

essarily within a vector autoregressive framework. Parameter changes in cointegrated

vector autoregressions are studied in several papers such as Seo (1998), Hansen and

Johansen (1999), and Hansen (2000, 2003). The latter paper, in particular, considered

a number of possible patterns of parameter changes using generalised reduced rank re-

gression. However, the existing literature is limited in terms of testing cointegration

rank in the presence of parameter changes, i.e. the number of cointegrating vectors is

often assumed to be given. Exceptions are Inoue (1999), Johansen, Mosconi and Nielsen

(2000) and Andrade, Bruneau and Gregoir (2005). The first two papers address rank

tests with breaks in deterministic terms such as a linear trend, and the paper by Jo-

hansen, Mosconi and Nielsen (2000), as reviewed above, provides a general framework

for cointegration analysis in such cases.

While this paper considers cointegration analysis in the presence of short-run para-

meter changes, extensions could allow changes in the medium and long term parameters.

Changes in α and β are investigated in Andrade, Bruneau and Gregoir (2005). These

types of changes, however, affect the limiting distributions of the common stochastic

trends through the corresponding changes in the C matrix. Therefore, the asymptotic

arguments in such cases can be much more involved than those of changes in Ψi. An-

drade, Bruneau and Gregoir (2005) address these issues using principal components

analysis, but as a consequence the conventional reduced rank procedure is no longer

applicable. The other extension would be to allow the covariance matrix, Ω, to be

shifted. However, changes in Ω lead to multiple reduced rank conditions with the con-

sequence that the ordinary procedure can no longer be used. See Hansen (2000, 2003),

Cavaliere and Taylor (2006), for the cases where Ω is time-varying. From a viewpoint

of operational applied work, there would be room for further research on cointegration

rank tests in the presence of changes in other parameters than the short-run parameters.

It is worth noting that there are practical situations where the locations of parameter

shifts are unknown to researchers. The issue of unknown change points in cointegrated
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systems is discussed by Seo (1998), Hansen and Johansen (1999), Hansen (2000), and

Andrade, Bruneau and Gregoir (2005). The identification of change points with un-

known cointegration rank would be one of the most important issues to be further

addressed. Identifying parameter break points is also an issue for the DAVAR model

subject to short-run parameter shifts (4). This issue is discussed using a simulation

study in Section 7.

6 Empirical Illustration

This section provides an empirical illustration of the dynamics-adjusted model with

short-run parameter changes as defined by equations (3) and (4). The data set is

composed of two weekly gasoline prices observed at different locations in the United

States over the period 1987.24 to 1998.29. The number of observations is therefore 578.

These data were previously analysed by Hendry and Juselius (2001). While their paper

is mainly methodologically oriented, their discussion (p. 79) indicates that the data

have been used in a study of non-competitive behaviour. This is presumably the reason

why no more details are available about the origin of the data. Hunter and Burke (2007)

have recently followed up on the point that cointegration analysis can potentially reveal

non-competitive behaviour.

Three models are presented in this section. The first model is a second order vector

autoregression. This model does not quite capture the temporal dependence in the

data. The second and third models seek to describe the temporal dependence more

accurately. The secondmodel employs a fifth order vector autoregression with structural

shifts in the intercept as in equation (26). The second model is similar to that used by

Hendry and Juselius (2001). This model addresses the autocorrelation issue found in

the first model, but leaves some autoregressive conditional heteroscedasticity (ARCH)

unmodelled. The ARCH effects are addressed in the third model, which is a VARmodel

adjusted with short-run parameter changes. The latter two models give similar results

for the cointegration analysis, but they give a different way of addressing the short-

run temporal dependence, with the third model quite possibly giving a more accurate

data-description. This will matter in situations where the short-run dependence is of

interest in addition to the long-run analysis.
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6.1 A Standard Vector Autoregression

The logs of the prices (pa,t and pb,t) are displayed in Figure 1(a)-(b), and residuals (ua
and ub) from a simple unrestricted second order vector autoregression model with a

constant are presented with ±2 × standard error bands in Figure 1(c)-(d). Upsurges

in both of the series, together with corresponding outliers in the residuals, are evident

at the 31st week in 1990 corresponding to the start of the Gulf war.

The application of residual autocorrelation tests for the pre-Gulf war period (1987.26

- 1990.30) and for the post-war period (1990.33 - 1998.29), as reported in Table 1,

indicate unmodelled and changing temporal dependence. Section 7 reports a simulation

analysis of the properties of such residual autocorrelation tests for the sub-samples.

Figure 1
US Gasoline Prices and Residuals from the

Constant Parameter second order Vector Autoregression

Table 1: Tests for residual autocorrelation in two sub-samples.
pa,t pb,t

Pre-war Far(1,155) = 6.31[0.01] Far(1,155) = 10.16 [0.00]
Post-war Far(1,407) = 0.01 [0.93] Far(1,407) = 0.003 [0.96]

Notes: Far(k,·) is a test for kth order serial correlation reported as an F statistic (see Godfrey,
1978; Nielsen, 2007).
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6.2 A Model with Intercept Break

The temporal dependence found above is not adequately described by a standard vector

autoregression. Thus, Hendry and Juselius (2001) adjusted the vector autoregression

with a step dummy variable 1(t≥1990.31), as well as the impulse dummies

1(t=89.13), 1(t=89.39), 1(t=89.51), 1(t=90.31), 1(t=90.49), 1(t=91.03), 1(t=93.43),

and the blip dummy

∆1(t=98.11) = 1(t=98.11) − 1(t=98.12).

Following the suggestion of Johansen, Mosconi and Nielsen (2000), the sample is broken

up in two, t < 1990.31 and t ≥ 1990.31. For each of the two sub-samples the likelihood
is conditioned on the first five observations, which is equivalent to introducing a further

set of five dummies:

1(t=90.31), 1(t=90.32), · · · , 1(t=90.35),

of which the first is already included above so it is redundant. Both the constant and

the step dummy are to be restricted to the cointegrating space as described in equation

(26).

The inclusion of these 12 dummies appears to lead to a well-specified model. The

starting model is a 5-lag model so the sample period runs from 1987.29 to 1998.29.

F-type tests for lag-length reduction support a 2-lag model, as reported in Table 2. A

simulation study reported in Section 7 will shed more light on these lag reduction tests

in the context of the third model presented below.

Table 2: Lag-length reduction tests for vector
autoregression with broken intercept.

4 vs. 5: F = 2.03 [0.09] 3 vs. 4: F = 1.50 [0.19]
2 vs. 3: F = 2.14 [0.07] 2 vs. 4: F = 1.83 [0.07]

A 2-lag model has been selected, so that the likelihood is conditioned on the first

two observations of each sub-sample. Mis-specification analysis is then conducted as

reported in Table 3. Given the large number of observations and the multiple testing,

it would seem reasonable to adopt a significance level of 1% or even 0.5%. The issue

of temporal dependence discussed in Section 6.1 is not evident in the autocorrelation

tests, but still seems to appear in the ARCH tests. The normality tests also seem some-

what unsatisfactory, with some excess kurtosis present. This level of mis-specification

is tolerable in the context of a cointegration analysis according to the studies of Rah-
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bek, Hansen and Dennis (2002) for ARCH deviations and Cheung and Lai (1993) and

Gonzalo (1994) for non-normality. A cointegration analysis can therefore be carried

out, with critical values derived from the response surfaces in Johansen, Mosconi and

Nielsen (2000). The results are largely similar to those for the dynamics-adjusted model

presented in Section 6.3, and therefore omitted.

Table 3: Mis-specification tests for vector autoregression
with intercept break.

Far(1,557) Far(4,554) Farch(1,556) Farch(4,550) χ2nd(2) Sk. Ku.
pa,t 2.09[0.15] 2.57[0.03] 9.72[0.002] 3.48[0.008] 19.92[0.00] -0.14 4.43
pb,t 0.21[0.65] 2.26[0.06] 6.75[0.010] 2.47[0.043] 18.41[0.00] -0.12 3.94

Far(4,1110) Far(16,1098) χ2nd(4)
System 0.64[0.63] 1.26[0.22] 56.03[0.00]

Notes: Farch(k,·) is a test for kth order ARCH (see Engle, 1982). χ2nd(·) is a test for residual
normality (see Doornik and Hansen, 1994[2008]), which is presented together with residual
skewness (Sk.) and kurtosis (Ku.).

6.3 A Model with Changing Short-Run Dynamics

The model with an intercept break did not capture the short-run dynamics adequately

as seen by the ARCH tests in Table 3. As an alternative, a new model with short-run

parameter changes defined by equations (3) and (4) is therefore applied. This DAVAR

model also allows for a break in intercept, so it is an empirical representation based on

equation (26).

Given the discussion above, it is natural to allow a break in the short-term dynamics

at the start of the war at 1990.31. In addition, Hendry and Juselius (2001) suggested

a shift in the residual variance in late 1992, which we have dated to 1992.31. On the

basis of the above reasoning, a 5-lag model of the following form is adopted:

42Xt =
¡
Π,Π(1)c ,Π(2)c

¢⎛⎜⎝ Xt−1

1(t<1990.31)

1(t≥1990.36)

⎞⎟⎠− Γ4Xt−1 +
3X

i=1

Ψ
(1)
i 1(t<1990.31)42 Xt−i

+
3X

i=1

Ψ
(2)
i 1(1990.31≤t<1992.31)42 Xt−i +

3X
i=1

Ψ
(3)
i 1(t≥1992.31)42 Xt−i + ΛDt + εt,

(27)

where Dt represents the set of dummy variables in Section 6.2.

A lag-reduction analysis was carried out as reported in Table 4. The reduction to
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4 lags appears least problematic, whereas the reductions to 3 or 2 are more marginal

when using the 1% level. A reduction from a 4 lag model with changing short-term

dynamics to a model with constant short-term dynamics in Section 6.2 is most clearly

rejected, which provides evidence against constant short-term dynamics. We settle for

a 4-lag model with changing short-term dynamics. Thus the likelihood is conditioned

on the first four observations of each sub-sample, and the dummy 1(t≥1990.36) allowing a

break in the intercept is replaced by 1(t≥1990.35). Mis-specification analysis is reported

in Table 5, in which the ARCH effect is now eliminated, although the non-normality

remains.

Table 4: Lag-length reduction tests for DAVAR
with changing short-term dynamics.

4 vs. 5: F = 1.65 [0.07] 3 vs. 4: F = 1.79 [0.04]
2 vs. 3: F = 1.83 [0.04] 4∗ vs. 4: F = 2.20 [0.004]

Notes: The model indicated by 4∗ is a model without changing short-term dynamics as
discussed in Section 6.2.

Table 5: Mis-specification tests for DAVAR(4) with 1 structural
break in intercept and 2 in short-term dynamics.

Far(1,543) Far(4,540) Farch(1,542) Farch(4,536) χ2nd(2) Sk. Ku.
pa,t 0.09[0.76] 1.90[0.11] 0.85[0.34] 0.57[0.68] 20.31[0.00] -0.23 4.46
pb,t 1.59[0.21] 1.28[0.28] 5.01[0.03] 2.96[0.02] 22.40[0.00] -0.13 4.02

Far(4,1082) Far(16,1070) χ2nd(4)
System 1.25[0.29] 1.44[0.11] 58.33[0.00]

The results of a cointegration analysis are reported in Table 6. The upper panel

gives rank tests, with critical values derived from the response surfaces in Johansen,

Mosconi and Nielsen (2000). It is clearly rejected that the rank could be zero, whereas

the hypothesis that the rank is at most one is not rejected at the 1% level. That decision

is marginal, although consistent with an interpretation that the price level moves in a

non-stationary way but coordinated across different locations. The lower panel of Table

6 gives an analysis of the cointegrating vector β and the adjustment vector α. A three

dimensional hypothesis is considered, consisting of price homogeneity, weak exogeneity

of pb,t (see Engle, Hendry and Richard, 1983; Johansen, 1992b) and a zero intercept

for the period prior to the war. The first two restrictions were also made by Hendry

and Juselius (2001), whereas the intercept restriction perhaps has a weaker substantive

interpretation. The hypothesis cannot be rejected. The weak exogeneity of pb,t indicates

a form of price leadership of pb,t over pa,t, as the former drives the latter in the long
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run. Thus the gasoline price data are judged to be a simple example of non-competitive

behaviour; see Hunter and Burke (2007) for details.

Table 6: Cointegration analysis.

LR (0|2) = 71.61 [0.00] (cRS99 (0) = 31.18)
LR (1|2) = 15.06 [0.02] (cRS99 (1) = 16.53)

pa,t pb,t μ(1) μ(2) pa,t pb,t χ2(df)
β 1 −1 0 −0.016

[0.007]
α −0.12

[0.02]
0 0.38[0.94](df=3)

Notes: Upper panel reports rank determination. Lower panel reports first α, β with restric-
tions for homogeneity and weak exogeneity, and then for zero level in the first period.

A parsimonious representation can now be pursued with the aim of reducing the

rather large number of parameters arising from the 4 lags and the changing short-term

dynamics. Although the finding of pb,t being weakly exogenous allows us to model a

single equation for pa,t given pb,t, we estimate a joint bivariate system with a view to

revealing time-varying structure of both variables. The series are mapped to I(0) space

by differencing and also using the restricted cointegrated relation, which leads to an

equilibrium correction term in the I(0) representation. PcGets, see Hendry and Krolzig

(2001), helps us to reduce the general I(0) model, which contains a number of short-run

dynamic terms. We select the following reduced equilibrium correction model:

42bpa,t = 0.68
(0.16)

42 pb,t − 0.53
(0.03)

4 pa,t−1 + 0.49
(0.08)

4 pb,t−1 − 0.12
(0.02)

ecmt−1

+ 0.16
(0.05)

42 pa,t−11(t<1990.31) − 0.10
(0.04)

42 pa,t−21(t≥1992.31) + bΛaDt (28)

42bpb,t = −0.46
(0.03)

4 pb,t−1 + 0.28
(0.08)

42 pb,t−11(t<1990.31) + bΛbDt,

where

ecmt = pa,t − pb,t − 0.016× 1(t≥1990.35).

The first equation represents a model for pa,t conditional on pb,t and the second cor-

responds to a marginal model for pb,t. No lagged values of pa,t are significant in the

marginal model, so pb,t is considered to be not only weakly exogenous but also strongly

exogenous (see Engle, Hendry and Richard, 1983, for strong exogeneity). Three short-

run dynamics are judged to be significant, two of them are in the first sub-period (the

pre-Gulf war period) and one of them is in the third period. Note that these are

highlighted in bold. Other short-term dynamic terms are insignificant and therefore

65

QASS, Vol. 3 (3), 2009, 43-77

© qass.org.uk



excluded from the model. It is also checked that the medium-run parameter Γ in the

preferred model is constant throughout the whole sample.

The preferred model (28) shows that the short-run dynamic terms in the pre-war

period, 42pa,t−11(t<1990.31) and 42pb,t−11(t<1990.31), are highly significant. These terms

indicate a possible impact of the Gulf war on the underlying data generating mecha-

nism, together with the level shift observed in the constant term. The other short-run

dynamics term in the first equation, 42pa,t−21(t≥1992.31), is a lagged value at t− 2 and
has a negative coefficient, in contrast to the term 42pa,t−11(t<1990.31) with a positive

coefficient. The changes in sign and lag also suggest that a fairly large shift seems to

have taken place in the short-run dynamics around the middle of the sample period.

7 Simulation Experiments

The analysis of the model with changing short-run dynamics in Section 6.3 suggested

that a reduction to a 4-lag model with constant short-run dynamics as used in Section

6.2 is inappropriate. Yet, in the analysis of the model with constant short-run analysis

it was found that a 4-lag model could be reduced further to a 2-lag model. However,

the analysis of Section 6.1 tentatively suggested that residual autocorrelation could be

found in sub-samples. These findings are supported here by a small-scale simulation

experiment of recursive tests for residual autocorrelation.

The design for an artificial data generation process is based on the empirical analysis

of the US gasoline price data in Section 6. The data generating process for Xt =

(X1,t, X2,t)
0 is given by the following set of equations:

42X1,t = 0.742 X2,t − 0.54X1,t−1 + 0.54X2,t−1 − 0.1(X1,t−1 −X2,t−1 − 0.02)
+ 0.242 X1,t−11(t<1990.31) − 0.142 X1,t−21(t≥1992.31) + ε1,t,

42X2,t = −0.54X2,t−1 + 0.342 X2,t−11(t<1990.31) + ε2,t,

(ε1,t, ε2,t)
0 ∼ N(0, 0.022 × I), t = 6, · · · , T,

where the innovations (ε1,t, ε2,t)0 are replaced by pseudo-random independent drawings.

The parameters for the artificial processes for X1,t and X2,t are round-off equivalents to

the coefficients of the equations for pa,t and pb,t in model (28). A change in a constant

term is omitted from the data generation process, as the main interest lies in shifts in

the short-term dynamics. The following five initial values for both X1,t and X2,t are
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taken from the data set of the gasoline prices:Ã
X1,1, · · · ,X1,5

X2,1, · · · ,X2,5

!
=

Ã
−0.549 −0.530 −0.522 −0.508 −0.475
−0.527 −0.515 −0.505 −0.491 −0.466

!
.

The number of observations and the locations of the parameter shifts are the same as

those in the empirical study. That is, the effective simulation sample could be treated

as if it spanned from 1987.29 to 1998.29 and parameter changes took place in 1990.31

and 1992.31. This gives breaks at time 164 and 267 in the full sample length 578.

Figure 2
Recursive Rejection Frequencies of Residual Autocorrelation Tests

Figure 2 shows recursive graphics of the rejection frequencies of 1st-order serial

autocorrelation tests at the 5% level for two models: a well-specified 4-lag DAVAR with

changing short-term dynamics, denoted DAVAR(4), and a mis-specified 2-lag constant

parameter vector autoregression, denoted VAR(2). The sample size for the recursive

calculation starts at T = 50, and increases by 25 observations (T = 75, 100, 125, · · · )
until it reaches the final point T = 578. The number of replications at each sample size

is 10,000. In Figure 2 the rejection frequencies for both X1,T and X2,T in DAVAR(4)

uniformly correspond to the chosen 5% level. However, the rejection rates with respect

to VAR(2) are much larger than 5%. The rates for both X1,T and X2,T in VAR(2)
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reach their peaks (95% and 90% respectively) at the location which is the closest to

the first parameter break point (T = 164), but then reduces towards the nominal level.

Therefore, in the case of misleading model reduction being performed, testing residual

autocorrelation in several sub-samples could be useful in identifying potential shifts in

the short-run parameters, as used tentatively in Section 6.1.

Clements and Hendry (1999), and Hendry (2000) demonstrate that parameter shifts

are difficult to detect by the break-point Chow test for parameter constancy, except

for changes in equilibrium-mean. Thus, it is not always straightforward to identify

where the short-run parameters change. However, if misleading model reduction is

performed, the effect of the omitted parameter shifts is then reflected in the residuals

of the reduced model, inducing temporal correlation in the residuals. Thus recursive

residual autocorrelation tests seem to be informative in identifying the change points.

Finally, we investigate size properties of the rank test statistics estimated from the

VAR(2) and DAVAR(4) models. As indicated in the empirical illustration, the rank

test seems to be fairly robust to the omission of the short-run parameter changes.

However, it is expected from the existing simulation studies such as Gonzalo (1994)

that the mis-specified VAR(2) model shows larger size distortions than the well-specified

DAVAR(4) model. Using the same setting as the simulation experiment given above,

we recursively calculate the rank test statistics for the null of a single cointegrating

relation and their rejection frequencies at the 5% level. Figure 3 presents the rejection

frequencies with the corresponding confidence intervals. The figure also displays the

confidence interval for the 5% level. As expected, size distortions are rather obvious in

VAR(2) as compared with DAVAR(4). Furthermore, the estimated quantiles of the rank

test statistics using the full sample (T = 578) are plotted against the corresponding

simulated asymptotic quantiles in Figure 4. Using the methodology in Johansen (1996,

ch. 15), we tabulate the asymptotic quantiles using 1,000 observations with 10,000

replications. The horizontal axis corresponds to the asymptotic quantiles, while the

vertical axis to the estimated quantiles. The baseline asymptotic quantile-quantile

plots are represented by the straight line of 45 degree, while the quantile-quantile plots

for VAR(2) and DAVAR(4) are given by the dotted thick and thin lines, respectively.

Size distortions are again conspicuous in VAR(2), even though we use a fairly large

number of observations. Size control is usually treated as a fundamental requirement

in conventional statistical inferences. The simulation study thus indicates the potential

importance of correctly specifying the underlying dynamic structure of the data in

conducting inferences for the cointegrating rank.

68

QASS, Vol. 3 (3), 2009, 43-77

© qass.org.uk



Figure 3
Recursive Rejection Frequencies of Cointegrating Rank Tests

5

10

(%)

50 100 150 200 250 300 350 400 450 500 550

VAR(2) DAVAR(4) 

Figure 4
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8 Summary and Conclusion

This paper introduced a family of cointegrated vector autoregressive models with ad-

justed short-run dynamics. The family comprises three models: a model subject to

short-run parameter changes, a model with partial short-run dynamics and a model

with short-run explanatory variables. The statistical analysis of these three models was

presented, and it was demonstrated that the likelihood ratio test statistics for cointegra-

tion rank are based on reduced rank regression, as in the ordinary cointegrated vector

autoregressive model. The asymptotic analysis of the three models was then presented,

and it was proved that rank test statistics have the conventional limiting distribution.

Thus, ordinary asymptotic quantiles for cointegration rank can be applied to all the

three dynamics-adjusted models. The family of DAVAR models can give a congruent

representation of some economic data, as shown in the empirical illustration using US

gasoline prices. The simulation experiments shed some light on the issue of identify-

ing a location where short-run parameters shift and on size distortions stemming from

model mis-specifications. The issue of identifying parameter-changing points needs to

be further addressed.

Appendix

Proof of Theorem 1

Let us consider first the homogenous case where μ and γ are both zero. For each pe-

riod the usual Granger-Johansen representation theorem can be derived from Johansen

(1996, Theorem 4.2). Thus, we define

Zt = (X
0
tβ,4X 0

t, ...,4X 0
t−k+1)

0,

which implies that the processes
¡
ZTj−1+1, ..., ZTj−1+Tj

¢
for j = 1, 2 can be given mean-

zero stationary initial distributions under Assumptions 1 and 2.

It is therefore left to check that the individual representation for each period can

be combined as stated. The proof of Nielsen (2001) is generalised. In the model (3)

specified by equation (4) with the assumption of a homogenous equation, we replace

4Xt−1 by 4Xt−42Xt, rearrange it, multiply both sides by α0⊥ and then arrive at the
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following equation:

α0⊥Γ4Xt = α0⊥

(
εt + (Γ− I)42 Xt +

k−2X
i=1

Ψ
(j)
i 42 Xt−i

)
.

Summing up α0⊥Γ4Xs over s = 1, ..., t yields

α0⊥Γ (Xt −X0) = α0⊥

(
tX

s=1

εs + (Γ− I) (4Xt −4X0) +
k−2X
i=1

Ψ
(1)
i (4Xt−i −4X−i)

)
,

for 0 < t ≤ T1,

α0⊥Γ (Xt −X0) = α0⊥

(
tX

s=1

εs + (Γ− I) (4Xt −4X0) +
k−2X
i=1

Ψ
(1)
i (4XT1−i −4X−i)

+
k−2X
i=1

Ψ
(2)
i (4Xt−i −4XT1−i)

)
, for T1 < t ≤ T. (29)

The term α0⊥ΓX0 is moved to the right-hand side. Regarding α0⊥ΓXt, α0⊥Γ is post-

multiplied by the orthogonal projection identity β⊥β
0
⊥ + ββ0 = I such that we can

obtain α0⊥Γ
³
β⊥β

0
⊥ + ββ0

´
Xt. Pre-multiplying equation (29) by β⊥(α

0
⊥Γβ⊥)

−1 noting

that α0⊥Γβ⊥ is invertible by Assumption 1, and then re-arranging (29), we reach the

following general formulation covering both of the above two cases:

β⊥β
0
⊥Xt = C

"
tX

s=1

εs − Γββ0Xt + (Γ− I)4Xt +
k−2X
i=1

Ψ
(j)
i 4Xt−i

+

(
ΓX0 − (Γ− I)4X0 −

k−2X
i=1

Ψ
(1)
i 4X−i +

k−2X
i=1

³
Ψ
(1)
i −Ψ

(2)
i

´
4XT1−i1(t>T1)

)#
.

Adding ββ0Xt on both sides and noting the orthogonal projection identity, we arrive at

the desired Granger-Johansen representation with τ c = τ l = 0 and

y
(j)
t = (I − CΓ)ββ0Xt + C (Γ− I)4Xt +

k−2X
i=1

CΨ
(j)
i 4Xt−i,

A(1) = C

(
ΓX0 − (Γ− I)4X0 −

k−2X
i=1

Ψ
(1)
i 4X−i

)
,

A(2) = C
k−2X
i=1

³
Ψ
(1)
i −Ψ

(2)
i

´
4XT1−i.
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Note that Y (j)
t is a function of Zt, showing that for each j the process (y

(j)
Tj−1+1

, ..., y
(j)
Tj−1+Tj

)

can be given mean-zero, stationary initial distributions.

Consider next the non-homogenous case where μ and γ can be different from zero,

and replace Xt by eXt + τ c + τ lt in the model (3) specified by equation (4). It is seen

that if

αβ0(τ c − τ l)− Γτ l + μ = 0 and β0τ l + γ0 = 0, (30)

then a homogenous equation for eXt arises and the result derived above can be used

for eXt. The equations in (30) do not depend on the period j and therefore have the

solutions (9) and (10) as found in Johansen, Mosconi and Nielsen (2000). ¥

Proof of Theorems 2 and 3

The same proof as that of Theorem 1 given above can be applied to Theorems 2 and

3 without introducing the regime change index j, as the model (3) specified by either

equation (5) or (7) is free from parameter shifts. ¥

Proof of Lemma 5

To give a proof of Lemma 5, we need to use sub-sample reduced rank regression as a

theoretical device. The regressor Z3t introduced in Section 3.2 is replaced by

Z3t =
³
Z
(1)0
3t , Z

(2)0
3t

´0
,

where

Z
(j)
3t =

¡
42X 0

t−1, . . . ,42X 0
t−k+2

¢0
1(Tj−1<t≤Tj), for j = 1, 2.

For each sub-sample period, Z0t, Z1t and Z2t are regressed on Z
(j)
3t to obtain sub-sample

residuals R(j)0.3,t, R
(j)
1.3,t and R

(j)
2.3,t. Secondly, for h = 0, 1, 2, concatenating the residuals

R
(1)
h.3,t and R

(2)
h.3,t leads to a connected series Rh.3,t. Thirdly, R0.3,t and R1.3,t are regressed

on R2.3,t to generate residuals R0t and R1t, which are used to calculate the sample

product moment matrix defined by equation (15).

For each sub-sample, the residuals satisfy the following equation:

R
(j)
0.3,t = αβ∗0R

(j)
1.3,t + ΓR

(j)
2.3,t +bεt. (31)

Under the satisfaction of Theorem 1, the initial values can be given stationary distri-

butions. Thus, each term in this equation is a stationary and ergodic process, leading
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to the following result by the law of large numbers:

1

Tj

Tj−1+TjX
t=Tj−1+1

⎛⎜⎝ R
(j)
0.3,t

β∗0R
(j)
1.3,t

R
(j)
2.3,t

⎞⎟⎠
⎛⎜⎝ R

(j)
0.3,t

β∗0R
(j)
1.3,t

R
(j)
2.3,t

⎞⎟⎠
0

=

⎛⎜⎝ S
(j)
00.3 S

(j)
0β.3 S

(j)
02.3

S
(j)
β0.3 S

(j)
ββ.3 S

(j)
β2.3

S
(j)
20.3 S

(j)
2β.3 S

(j)
22.3

⎞⎟⎠ p→

⎛⎜⎝ Σ
(j)
00.3 Σ

(j)
0β.3 Σ

(j)
02.3

Σ
(j)
β0.3 Σ

(j)
ββ.3 Σ

(j)
β2.3

Σ
(j)
20.3 Σ

(j)
2β.3 Σ

(j)
22.3

⎞⎟⎠ .

Next, we consider the asymptotic properties of the product moment matrices over the

whole sample. Define the moment matrix S00.3 as

S00.3 =
1

T

2X
j=1

Tj−1+TjX
t=Tj−1+1

³
R
(j)
0.3,t

´³
R
(j)
0.3,t

´0
.

Slutsky’s theorem yields

S00.3 =
2X

j=1

Tj
T

1

Tj

Tj−1+TjX
t=Tj−1+1

³
R
(j)
0.3,t

´³
R
(j)
0.3,t

´0 p→
2X

j=1

a(j)Σ
(j)
00.3

def
= Σ00.3,

where the final equality follows equation (19). The same argument is applied to the

remaining moment matrices, deriving the following asymptotic result:⎛⎜⎝ S00.3 S01.3β
∗ S02.3

β∗0S10.3 β∗0S11.3β β∗0S12.3

S20.3 S21.3β
∗ S22.3

⎞⎟⎠ p→

⎛⎜⎝ Σ00.3 Σ0β.3 Σ02.3

Σβ0.3 Σββ.3 Σβ2.3

Σ20.3 Σ2β.3 Σ22.3

⎞⎟⎠ . (32)

The final formulation of the sample product moment matrices is given byÃ
S00 S01β

∗

β∗0S10 β∗0S11β
∗

!
=

Ã
S00.3 S01.3β

∗

β∗0S10.3 β∗0S11.3β
∗

!
−
Ã

S02.3

β∗0S12.3

!
S−122.3

³
S20.3 S21.3β

∗
´
.

(33)

Applying equation (32) to (33) and using the definition given by equation (20) proves

equation (21). In order to prove (22), we introduce the Yule-Walker equations for each
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period corresponding to the residual equation (31):

Σ
(j)
00.3 = αΣ

(j)
β0.3 +ΨΣ

(j)
20.3 + Ω, (34)

Σ
(j)
0β.3 = αΣ

(j)
ββ.3 +ΨΣ

(j)
2β.3, (35)

Σ
(j)
02.3 = αΣ

(j)
β2.3 +ΨΣ

(j)
22.3. (36)

Inserting equations (35) and (36) into (34) gives us

Σ
(j)
00.3 = αΣ

(j)
ββ.3α

0 + αΣ
(j)
β2.3Ψ

0 +ΨΣ
(j)
2β.3α

0 +ΨΣ
(j)
22.3Ψ

0 + Ω. (37)

Then substituting equations (35)-(37) into equation (19) yields

Σ0β.3 = αΣββ.3 +ΨΣ2β.3,

Σ02.3 = αΣβ2.3 +ΨΣ22.3,

Σ00.3 = αΣββ.3α
0 + αΣβ2.3Ψ

0 +ΨΣ2β.3α
0 +ΨΣ22.3Ψ

0 + Ω.

Combining these with equation (20) proves equation (22). ¥
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