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Abstract: Let (X, T) be a topological dynamical system and its enveloping semigroup
E(X,T) the closure of {T":n € Z,} in X*. Anu & E(X,T) withu® = uis called an
idempotent. The systems with enveloping semigroup containing finitely many idem-
potents are studied in this paper. It is shown that they are semi-distal. And compa-
ring it with other dynamical properties we try to point out that the property we de-
fined is not complex. Examples are given in the final section.
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0 Introduction

We use Z to denote the integers, Z; the non-negative integers, Z_ the non-positive in-
tegers and N the natural numbers. A topological dynamical system is a pair (X, T), where
X is a compact metric space with a metric d and T is a surjective continuous map from X to

itself. A pair (x,y) € X X X is said to be proximal if lim infd(T"x,T"y) = 0 and the one

n—too

such that lim d(T"x,T"y) = 0 1is said to be asymptotic. If in addition x 7= y, then the pair
n —>+too

(x,y) is said to be proper. The sets of proximal pairs and asymptotic pairs of (X,T) are
denoted by prox(X,T) and asym(X,T) respectively. x € X is a recurrent point if there is
{n;} C N such that T2 — 2, when n; >+co. A pair (x,y) € X* which is not proximal is
said to be distal. A pair is said to be a Li-Yorke pair if it is proximal but not asymptotic. A
pair (x,y) € X* \Ayx is said to be a strong Li-Yorke pair if it is proximal and is a recurrent
point of X*. It is easy to check that a strong Li-Yorke pair is a Li-Yorke pair. A system

without proper proximal pairs (Li-Yorke pairs,strong Li-Yorke pairs) is called distal (al-
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most distal, semi-distal respectively). Following the definitions a distal system is almost
distal and an almost distal system is semi-distal. (X, T) is equicontinuous if for anye >0,
there is § >0 such that d(x, y) <8 implies d(T"x , T"y) <e, for everyn € Z.. An equicon-
tinuous system is distal.

A factor map : (X, T) —> (Y,S) is a continuous onto map from X to Y such that
S e x =m0 T; in this situation (X, T) is said to be an extension of (Y,S) and (Y,S) the
factor of (X, 7). Un:(X,T) — (Y, T) is an extension,then set R, = { (x1,x;) € X?:mx,
=1y} = (zXm) TAY C X X X. An extensionz: (X, T) — (Y, T) is called asymptotic if
R, C Asmp(X,T). Similarly we define proximal,distal, equicontinuous extensions. = is al-
most one to one if there exists a dense G; set Y, C Y such thatz ' (y) is a singleton for any
vy E Y.

Let TransT = {x:w(T,2) = X}, where w(T,x) is w limit set of x. Say (X,T) is tran-
sitive if TransT = 0. In fact TransT is a dense G; set when it is not empty. Say (X, T) is
minimal if TransT = X and x € X is minimal point if it belongs to some minimal subsystem
of X. I (X X X, T X T) is transitive then (X, T) is said to be weakly mixing.

In order to study the asymptotic behavior of a topological system (X, T) Ellis intro-
duced in 1960 the enveloping semigroup E(X,T) which has been proved to be a very pow-
erful tool in the theory of topological dynamical system''*). It is defined as the closure of
the set {T":n € Z. } in XX (with its compact, usually non-metrizable, pointwise convergence
topology). Ellis pointed out that for any system the idempotents in E(X,T) always exist.
He also showed that a system (X, T) is equicontinuous iff E(X,T) is a group of homeo-
morphism and (X, T) is distal iff E(X,T) is a group. Hence in some sense a system whose
enveloping semigroup containing only one idempotent is not complex. It is well known that
in the minimal case a PI system is relatively simple. et (X, T) be a minimal dynamical sys-
tem. (X,T) is said to be strictly proximal isometric or strictly PI if it can be obtained from
the trivial system by a(countable) transfinite succession of proximal and equicontinuous
extensions. And (X, T) is said to be proximal isometric or PI if it is the factor of a strictly
PI system by a proximal extension. It is well known that X is PI if and only if it satisfies
the following property: whenever W is a closed invariant subset of X X X which is topologi-
cally transitive and has a dense subset of minimal points,then W is minimal™. On the other
hand,if (X,T) is not a PI system then for every x € X and every minimal left ideal I in
E(X,T),Id (I x is uncountable, where Id (I) is the set of idempotents of I **), And (X, T)
is a minimal weakly mixing system iff for any x € X the set Id (E(X,T))x is dense in
X" Hence it seems that as the cardinal of the set of idempotents of the enveloping sem-
igroup becomes bigger the systems become more complex. So we focus our attention on the
simpler case:the systems whose enveloping semigroup containing only finitely many idem-
potents (we call them FID systems for short). Glasner showed that a minimal system

whose enveloping semigroup contains only finitely many minimal left ideals is PI''*, Obvi-
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ously the enveloping semigroup of an FID system has only finitely many minimal ideals.
Hence an FID minimal system is PI. This is another reason invoking us to study FID sys-
tems.

Recently Akin studied distality concepts for Ellis actions ). He defined a system
without strong Li-Yorke pairs to be semi-distal,i. e. every (x,y) € (X X X, T X T) which
is proximal and recurrent is in the diagonal. Akin gave an elegant characterization to the
semi-distal system in viewpoint of the enveloping semigroup. Let the adherence semigroup
H(X,T) belimsup{T"} =N {T" | n=Fk,k+1,-+} C E(X,T). He pointed out that a
system is semi-distal iff every idempotent in (X, T) is minimal. We show that any FID

system is semi-distal but the converse does not hold. Hence we also have that a transitive
FID system is minimal.

Chaos is a complex dynamical behavior'™. There are lots of definitions on chaos. A-
mong them chaos in the sense of Li-Yorke is a basic onel™. A set S C X is called a scram-
bled set if any pair of distinct points (x,y) € SX Sis a Li-Yorke pair. (X,T) is called cha-
os in the sense of Li-Yorke if it admits an uncountable scrambled set. Also we are interest-
ed in the system whose scrambled set is finite because it is simple in the viewpoint of cha-
0s. We show that the transitive FID systems are this kind of systems. But the converse is
not true. An example will be given to show this. F. Blandchard etc. call a system without
Li-Yorke pairs almost distal™. They pointed out that a system (X, T) is almost distal iff
(H(X,T),T) is a minimal system iff the only minimal left ideal of (X, T) is itself. We
conjecture that every transitive FID system is almost distal.

The paper is organized as follows. In section 1 we discuss the properties of the systems
with finitely many idempotents. In the last section we give the examples to show that for
any n € N we have a system with max{ # (C) :Cis the scrambled set of X} = n, where £C
is the cardinal of set C. And for anyn € N, we give the systems whose cardinal of idempo-
tents of H#(X,T) isn. We also show that some substitution minimal systems are semi-dis-

tal and some are not.

1 FID systems

First we introduce some concepts on semigroup.

Definition 1 A set E is an Ellis semigroup if it satisfies the following three condi-
tions:

i ) Eis a semigroup.

i ) E has a compact Hausdorff topology.

i > The left translation map R,: E —> E,q ——>qp is continuous for every p € E.

It is easy to see that for a system (X,T) the enveloping semigroup E(X,T) and the
adherence semigroup </(X,T) are Ellis semigroups. Ellis-Namakura Theorem says that for

any Ellis semigroup E the set Id (E) , the set of idempotents of E, is not empty. We can in-
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troduce a quasi-order (a reflexive, transitive relation) <z on the set Id (E) by defining
v<gu iffuv =v. f v<zu and u <zv we say that u and v are equivalent and write u ~gv.
Similarly we define <7; and ~;.

An idempotent u € Id (E) is maximal if v € Id (E) and u <z v implies v<pu. And the
minimal idempotent is defined similarly. A non-empty subset I C E is a left ideal if it is
closed and EI C I. A minimal left ideal is left ideal that does not contain any proper left i-
deal of E. Obviously every left ideal is semigroup and every left ideal contains some mini-
mal ideal. By the theory of semitopological semigroup every idempotent in the minimal left
ideal is minimal and an idempotent is minimal iff it is contained in some minimal left ide-
alt1ed,

The following theorem is a basic result in the theory of semitopological semigroup.
For completeness we give a prooft-1:16J,

Theorem 1 Let E be Ellis semigroup and ¢ € Id (E). Then there are minimal and
maximal idempotents u and v respectively,such that u < ¢ <z v.

Proof Let I be any minimal left ideal of E. Then Ic is also a minimal left ideal and by
Ellis-Namakura theorem let w be an idempotent of Ic. Let w = kc withk € I. Set u = cw
= ckc € Ic. Then

u* = (ckc) (cke) = ckcke = c(ke) (ke) = coww = cw = u.
Hence u € Id(E) and cu = ccw = cww = u. Asu € Ic and Ic is minimal left ideal, « is mini-
mal.

Now show the existence of a maximal idempotent v. Let {c;} be a totally ordered fami-
ly in Id (E) with ¢ <g ¢;. Regard {c¢;} as a net,and let (a subnet of) ¢;, > € E. Then for
fixed i, if ¢; <gcjscic; =c;» sorc; =c;. Let H={q €& E:qc; = ¢;, forall¢;}. Then His a
nonempty closed semigroup,and hence by Ellis-Namakura theorem, H contains an idempo-
tent s, Clearly ¢ <z ¢; <{gs. Thus by Zorn’s Lemma there is a maximal idempotent v such
that ¢ <g v.

Now we begin to show that any FID system (X, T) is semi-distal,i. e. every idempo-
tent of 24(X,T) is minimal.

Proposition 1 Let (X, T) be a system. Then the following conditions are equivalent:

(1) every idempotent of H(X,T) is maximal.

(2) every idempotent of (X, T) is minimal.

(3) (X, ) is semi-distal.

Proof (1)=(2) We show that if every idempotent is maximal then any idempotent u
is minimal. By Theorem 1 there is a minimal idempotent v such that v <z u. Since every
idempotent is maximal, u <z v. But v is minimal, thus « is minimal,

(2)=(1) is similar to (1)=>(2).

(&) 1,

Following Proposition 5. 33. of [ 10] (also see [9]) we have:
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Theorem 2 For a system (X, T) the maximal idempotents in &4(X,T) are dense in
Id (24X, T)H).

Corollary 1 For system (X, T) if every minimal idempotent of /(X ,T) is an isolated
point in Id (2/(X,T)) then (X, T) is semi-distal.

Proof We show that every idempotent is minimal. For any u € Id(24(X,T)) by
Theorem 1 there is some minimal idempotent v € H(X,T) such that v<zxu. Asvis an iso-
lated point in Id (2/(X,T)), there is a neighborhood U of v in 24(X,T) such that U ()
Id(24(X,T)) = {v}. Since the set of maximal idempotents in &(X,T) are dense in
Id (24(X,T)), there is a maximal idempotent inU. As there is only one idempotent inU,
v is maximal. Thus as v<pu we have u <z w. Since vis minimal, by the definition u is mini-
mal too. So (X, T) is semi-distal.

Theorem 3 Let (X,T) be a TDS. Then

(1) An FID system is semi-distal.

(2) If (X,T) has a non-minimal idempotent,then Id (E(X,T)) is infinite.

(3) (X, T) is a transitive FID system, then it is minimal.

(4) Any transitive but not minimal system has infinitely many idempotents.

Proof By Corollary 1. we have (1). (1)&(2),(3)&(4) are obvious. So we only need
to show (3). Letx € TransT. Then by x € w(x,T) there is some p € E(X,T) such that
pxr = x. Thus {p € E(X,T):pxr = x} is a nonempty closed semigroup and contains some
idempotent u. As (X,T) is FID, u is minimal. So x = ux is minimal point. That is, (X, T)
is minimal.

Remark 1)In fact we can show that (1) ~ (4) are equivalent.

2) The Floyd-Auslander system is an example which is semi-distal with infinitely many
minimal idempotents(see, for example,[ 2]). So semi-distality does not imply FID. It is eas-
y to check that Floyd-Auslander system is also chaotic in the sense of Li-Yorke. Hence a
semi-distal system may also be complex in the viewpoint of chaos.

3)Two systems (X,T),(Y,S) are said to be disjoint if their product system (X XY,
T X S) is the only closed invariant set of X XY projecting onto both X and Y. As any mini-
mal semi-distal system is disjoint from all weakly mixing systems®',any minimal FID sys-
tem is also disjoint from all weakly mixing systems. Also from this we can see FID is not a
complex dynamical property.

As for minimal system (X, T) it is weakly mixing iff its maximal equicontinuous fac-
tor is trivial and any equicontinuous system is FID. From these facts we can also have that
any minimal weakly mixing system is disjoint from all minmal FID systems.

Definition 2 (1) A system (X,T) is said to be a CID system if Id (E(X,T)) is a
countable set;to be a - ID system if the cardinal of Id (E(X,T)) is &

(2)A system (X, T) is said to be an FS system if s=max{ # C.C is the scrambled set
of X} is finite;to be a CS system if s is countable;to be a &S system if the cardinal of s is &
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Remark 1)Since Id (E(X,T)) =1d(H(X,T)) U {id}, whereid = T is the identity
map of X, we can replace E(X,T) by 24(X,T) in the definition. In the sequel we will show
that id is a very special idempotent.

2)Any almost distal system is F'S. When ¢ is uncountable,a &S system is Li-Yorke
chaotic.

Proposition 2 Any transitive FID system is F'S.

Proof Let (X,T) be a transitive FID system. By Theorem 3 it is minimal. Let S =
{x;:1 € I} be any scrambled set in X, where I is an index set. Now we show that # I is fi-
nite. Let x be a point of S. For any i € I, (x,x;) is proximal and hence there is a minimal
idempotent u; such that x; = w; x Y. i # j, thenu;, # u, by x; # x;. So £ S= £ [ <
#Ud(E(X,T))) <o, ie (X.T)is FS.

Remark (1)In fact the same proof shows that any minimal &ID system is &S sys-
tem.

(2) The converse of Proposition 2 does not hold. We will give an minimal system
which is F'S but not FID in the next section.

(3)For the general case an FID system need not be FS. In [ 12 ]Huang-Ye constructed
an example which is completely Li-Yorke chaotic,i. e. the whole space is a scrambled set.
This example is Li-Yorke chaotic but has only two idempotents in E(X,T) (see [ 12 Jfor
details).

Glasner showed that a minimal system whose enveloping semigroup contains finitely
many minimal left ideals is PI system *). In[ 18] McMahon showed that if X is a minimal
system whose E(X,T) has less than 2? minimal left ideals, where (2 is the first uncountable
order number,then X is PI. Moreover if a minimal system X is not PI, then for every x in X
and every minimal left ideal I in E(X,T) the set Id (I)x is uncountable. Hence in the mini-
mal case

Distality C FID C CID C PI C ¢ID,
where £ = 22, We also have
FID C semi-distality C PI.
We don't know whether a CID system is semi-distal?

Let7:(X,T) = (Y,S) be a factor map. Then there is a unique continuous semigroup
homomorphism ¢: E(X,T) —E(Y,S) such thatzx(pxr) =¢(p) n(x).x € X, p& E(X,T).
We can get ¢ as follows. Let ¢ {T":n€ Z, } >{S":n& Z.}, T" =S", where {T":n€ Z. },
{S":n € Z, } with the topology inherited from X* and Y*. Then ¢ is uniformly continuous,
and hence has a continuous extension, still called ¢, to a continuous map of E(X,T) to
E(Y,S). ¢ has the required properties.

Proposition 3 1) 7:(X,T) — (Y,S) is a homomorphism. If (X, T) is FID, then (Y, S)
is FID.

2) Any subsystem of an FID system is still FID.
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3) The product of finitely many FID systems is FID.

Proof (1) Let¢.E(X) — E(Y) be the corresponding semigroup homomorphism. For
any v € Id(E(Y)),$ ' (v) is the closed subsemigroup of E(X). Hence by Ellis-Namakura
theorem Id (¢ 1 (v)) £ 0. Let u € Id($ ' (v)), then ¢(u) = v. Thus ¢(Id (E(X))) =
Id (E(Y)). Especially,if (X,T) is FID, then (Y, S) is FID.

(2) Let (X, T) be a system and (Y, T) be its subsystem,i. e. Y C X be an invariant
closed subset and T |y = T'. We show that for any «’ € Id(E(Y,T")) there is some u &
Id(E(X,T)) such thatu |y = «’. Hence # Id(E(Y,T)) << # Id(E(X,T)). Especially,
if (X,T) is FID,then (Y, T") is FID too.

Letu € Id(E(Y,T)) andA= {p € E(X,T):p |y =u'}. Set {T"*} be a net with T'
—u'. Let (a subnet of) T*—> p. As(T |y)* =T, p |y =1u', i. e. Ais nonempty. Now we
show that A is a semigroup. Let p,g € A. Forany y € Y, pg(y) = p(g(3»)) = p(d'(y)) =
u () =u"?(y) =ud (). So(pg) |y =u'si.e. pg € A. Thus A is a nonempty closed
semigroup. By Ellis-Namakura Theorem there is anu € Id (A) C Id (E(X,T)). That is,
for any u” € Id (E(Y,T")) there is some u € Id (E(X,T)) such thatu |y = «’.

(3) Let {(X;,T))}", be topological dynamical systems. Then E(X; X X, X -+ X X,,,
T X Ty X XT,)CEX,,T)) XE(X,,T,) X+ XE(X,,T,). By this fact it is easy to
see that the product of finitely many FID systems is FID.

Remark Let 7;: (X,T) — (Y,S) be an extension and (Y,S) be FID. For most =,
(X, T) will be not FID. We will,in the next section, give an example to show that even if
is almost one to one (X, T) can not be FID.

Proposition 4 Let (X, T) be a topological dynamical system. Then the following con-
ditions are equivalent:

(1) id is a minimal idempotent of E(X,T);

(2) id is a minimal idempotent of 4(X,T);

(3) (X, is distal.

If in addition (X, T) is transitive then (1)~ (3) are equivalent to(4) # Id (24(X,T))
=1;

Proof (1) =(2) is clear.

(2) =(3) Letid be a minimal idempotent of (X, T) hence there is minimal left ideal
I such thatid € I. Then (X, T) = H(X,T) id C X, D) ICI,i.e. X, T)=1
is a minimal left ideal. For any (x,y) € Prox we have pr = py for some p € (X, T).
Hence A = {p € H(X.,T):pxr = py }is a left ideal. As H4(X.,T) itself is a minimal left i-
deal, A= 24(X,T). Especially id € A and we have x = y. Hence by definition of distality
(X, D) is distal.

(3)=>(1) by the fact that (X,T) is distal iff E(X,T) is a group.

Now assume that (X, T) is transitive, (3) =(4) is easy. (4) =(2) is similar to the
proof above. If Id (H(X,T)) = {u}, then (X, T) = uf(X,T) is a group. As (X, T) is
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transitive,let # € TransT. Then uxr = x and it is easy to see uy = y for any y € X. Hence
u=—1d.

Call a system (X, T) weakly rigid if for anyn € N (X", T) is pointwise recurrent,i. e.
every point of X" is recurrent. By the definition of the adherence semigroup we have that
(X, T) is weakly rigid iff id € H(X,T).

Corollary 2 If (X,T) is semi-distal but not distal,thenid & =4(X,T).

Corollary 3 Let (X,T) be semi-distal. Then (X,T) is distal iff (X,T) is weakly
rigid.

3 Examples

In this section we will give examples to show that for any n € N we have a system
with max{ # (C) :C is the scrambled set of X } = n. And for anyn € N, we give systems
whose cardinal of idempotents of H(X,T) is n. We show that some substitution minimal
systems are semi-distal and some are not.

First we introduce some basic concepts on the substitution. Let S be a finite alphabet
with m symbols, m = 2. We usually suppose that S = {0,1,+-,m—1}. Let (2 = S* be the

set of all bisequences x = ***x ;2 ***ya; € S, i € Z, with the product topology. A metric

compatible is given by d(x,y) = , where ,=min {| n|:2, 7% v.} 2.,y € Q. The shift

_1
144
map o:0 —> is defined by (o), = 2,1 for alln € Z. The pair (2,0) is called a shift dy-
namical system. The points of (2 are called bisequences. Similarly we can replace Z by Z. ,

and ¢ will not be a homeomorphism but a surjective map. The points of S% are called se-

quences. The elements of S"= | | S* are called blocks (over S). Fora € S denote the length
k=1

of aby N(a). fw € Qanda <bE Z, thenw| a,b ] will denote the (b—a-+1) — block occur-
ring in @ starting at place a and ending at place . That is,if w = (***w-1 wy wi ***)» then
wlasb] = wewer1 ***w,. Sometimes we also writew|a;b—a—+1] = w[a,b]. Similarly we de-
fine wla,b] when w is a sequence or a block.

A substitution @ is a map §:S —>S". 1f0:S—>S",n > 2, thenis called a substitu-
tion of constant length n. Let A or A(@) denote the map of S* into S* such that pg € S* im-
plies A(pg) = (ﬁp),zfl (0q)o, wheren,, is the length of 0(p), (ﬁp)npﬂ is the last symbol in
0 p and (0 q), is the first symbol in@q. Let L or L(§) denote the set of all pg € S* such that
there exists i € N withA'(pg) = pg. Let u be the period of A |1, that is, u is the leasti €
N such that pg € L implies A'(pg) = pq. Let pg € L and we define a sequence w,, as fol-
lows: wy[— N@*p) N(@*q) —1] = ¢*p 0"*q, fork = 1,2,---.

let L, or L, (@) denote the set of all pg € L such that for each » € Range (w,,) there ex-
ists i € N such that pq occurs in@ r. Let W or W(@) denote {w,, : pg € L} and W, or W, ()
denote {wy, : pg € Lo}. We have the following results: L, and so W is not empty; W, coin-
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cides with the set of all almost periodic points under ¢ in W. Let X, = Orb (w,, ,0) be the

closed ¢ — orbit of w,, in 2. We call (X;,0) a substitution minimal system({for details, see
[4D.

By Z(w), (n = 2) we denote the additive group of nadic integers: Z(n) = {z =

Ez,-n’ﬂz,- = 0,1,yn — 1 } A metric in Z(n) is given by p(z,z') =
i=0

1 . — ) i / . — /. i [
o Epp— s where z = ; wnl g = Z;z m' € Zn). (Z(n),p) is a compact

metric group. A map z:Z(n) —> Z(n) is defined by z(2) = 2+ 1. We call (Z(n),7) an
n-adic system. Clearly, 7 is an isometric homeomorphism, that is, {o(r(z)w(z/)) =

(o(z,z/). Every element z of the orbit of 0 in Z(n) is of the form z = 2 z;n', where either
=0

z; = 0 for all but finitely many i, or z; = n— 1 for all but finitely many ;. We shall regard
such elements both as ordinary integers and as elements of Z(n).

Definition 2 LetS = {0,1,:*-,m — 1} and @ be a substitution of length » over S. We
call 0 an admissible substitution if #is one to one, primitive and every point in W, is not peri-
odic. By primitivity we mean that there is # € Nsuch thata,b € Simplies a occurs in ¢ ().

Remark The reason why we assume 0 to be primitive is that if § is primitive then all
elements in W, generate the same flow, which we denote by (X;,5). And in this case we
have X, = Xy for any £ > 1, so that we may replace § by a power of § without changing the
flow.

In the sequel, § will denote a fixed admissible substitution of length r over S.

For a fixed substitution § of length , we use the term basic #* — block to denote any
one of the #* —blocks #(p)(p € S).

Theorem 4 There is a homomorphism 7: (X,,6) —> (Z(r),7). Moreover,if xr € X,

and z = E z:r' € Z(r), then n(x) = z iff 2[— %™ ;7" ] is a basic 7" — block for each
i=0

1
k, where z® = g 2.
=0

Proof Letw, € W,. We define a map : (X;,0) —> (Z(n),7) by n(w) = limc" (0)

[ 0o

where {&,} satisfies limg" (w,) = w. We can easily verify that z is well defined and has the

property as mentioned(see [ 3] for details).
Theorem 5 If z € Z(r), thenz '(2) consists of at most m” points.
Proof Let x be an arbitrary element in 7 ' (2). By the definition of 7 we can choose

{k;} such that lims" (w,) = x and lirpz*’ (0) = =

o0

Assume 2 = 2 zir'. fz € Zthen # 7' (2) = # x ' (0). By Theorem 47 (0) =W,

=0
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and # 7 1(2) = £ W, < # & =,
Now assume 2 & Z(n)\ Z. Then z® -+ ocoand* —z® —1 >+ co(k - 0). Let A,
={0"(@):a € S}, then # A, = m for each £ € N. Define f,:A,—> A, by fr(x) =

2l 2H —g® B kB T = a [ etz — 1] LetA = H Ay be the direct
k=1

product and P,:A —> A, the project map for each 4.

SetT={x€ A:P.(2) = f, (P (), Yk =1 }. The map which mapsx € 7 ' (2)
to {ax[— 2%, —=z® — 1]}, € Tis an injective map. Thus # 7 ' (2) < # T < m.

Lemmal Letz:(X,T)— (Y,S) be a proximal extension and (Y,S) be a distal sys-
tem. Then for any proximal pair (x,2") of X, n(x) = ().

Proof Since (r(x),n(x")) is a proximal pair of Y and Y is distal, we have x(x) =
().

Theorem 6 Every scrambled set S contained in X, consists of at most m points.

Proof By Lemma 1 Sis contained in some fibre of 7, i. e, there is some 2 € Z () such
that S C 7 ' (2). From the proof of Theorem 5 it is easy to see £S < m.

Remark For substitution over two symbols,we can get the result above in a slightly
different manner™-',

The following example shows that for any m € N there is a system whose maximum
cardinal of scrambled set is m.

Example 1 Let S = {0,1,*>,m — 1} and §:S —> S*® with 0+—>001,1+—102,
2—>203,*sm—1 ——>(Gn—1) 00. ThenL,=L=S%,%# Lyo=m’and # 7 '(0) = #£L,
= m’.

For every wy »w, € S w,, and w, are Li-Yorke pairs iff ¢ 7 s. And in this example the
maximum cardinal of the scrambled set is m.

The following example shows that for anym € N there is a system (X, T) whose num-
ber of idempotents is m.

Example 2 LetS={0,1,*ym—1} and§:S —>S? with0 010,1 020,2
030,+++ym—1—>000. Then the number of idempotents of 4(X,,0) is m.

Proof Let : (X,.0) —> (Z(3).7) be the homomorphism above, Let =’ = > 37 =
=0

(v, 1,11, and E = { !2":k € Z }. We claim that Z()\E = {z € Z(3) .7 ' (2) is a
single point } and when z € E£ (x 1(2)) = m.

As W, = {ww s #(r ' (2)) =1whenz € Z. Now supposez € Z(I)\E. fx € 7 1 (2),
then x[— =¥’ ;3* ] is a basic 3* — block. As 2 & E.,x, is uniquely determined. Since Z and E
are rinvariant, Z(3)\(Z U E) is also ¢ -invariant. And¢" x € 7 ' (" 2), 2, = (" 1), is-
uniquely determined for each n. Hence 7 ' (2) = {x} is a single point set.

Suppose next that € E. As E is r -invariant, we may assume 2 = ¢’ = E 3'. Bothz®
=0
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and 3* —z™® increase to infinity. By Theorem 4 there are points ¥ ,2® ,+++, 2" & X, such
that for each# € N,
{aP[—2W ;3 ], =1,2,+ym} = (@) :i € S}.

(@D} (2) yee G
b b

Hence 7 ' (2) = {2V ,x ,2} and 7 is an asymptotic extension.

Since X, is minimal and r is asymptotic,for anyi € {1.2,+=,m}, {p € E(X): pr ' (z))
= 2} is a nonempty semigroup and hence contains idempotents. For each ¢, we take an
idempotent u; from the above semigroup. We show Id(H(X)) = {u;:i = 1,2, ,m}.

For anyu € Id (4(X)), since (Z(3),7) is equicontinuous, u is identity of E(Z(3)).
Hence ur ' (') = {29} = wzx ' (2") for some i € {1,2,-+.m}. So for any n € Z,
ur (72" = ("2} = uzx ' (" 2"). Since for any = € Z(3)\Orb(z".7) s7 ' (2) is a single
point. And « | 1z \omve' 0y = idxo =u |z oo+ Thusur = wx for anyx € Xy, 1. e.
u = u;. Hence we have Id (Z(X)) = {w;:i = 1,2,+*+,m}.

Now we show that for some substitutions they are semi-distal and some not. For con-
venience we study the substitution over two symbols,

Recall that there is a homomorphism 7: (X;.6) —> (Z(n) ,) mapping w,, to 0. Fur-

oo k—1 k1
thermore, if 7(w) = 2 zmn', then for each b > l,w[— 2 et ant — 2 zm' — 1] is either
=0 i=0

=0

G0 or (1), Set J, = {m:0<m<n*—1,0/(0) and #* (1) disagree at placem}, J.. =
{ Z; zmn' .z € J, for all i} , E= U {(Z#J:k€e ZyZ" =Z(n) —E. Then we have Z* =
{r'(2) is a single point }. If x € E, thenz ' (2) consists of exactly two points unless ¥ €
Z and a and b disagree at both endpoints. In this case, 7 ' (2) consists of four points(see
[14D.

Proposition 5 Let (X;,.0) be a substitution minimal flow, where @ is a substitution of
constant length n(;z == 3) on the symbols 0 and 1. Let §(0) = aya,***a,, and (1) =
boby b,

1) If there is some £ € {0,1,+-,n — 1} such that a, # b, and a; = b;.i 7 k, then
w: (Xy.0) —> (Z(n) ,7) is an asymptotic extension,and (X,,¢) is semi-distal.

2) Ha,y 7% b, and there arei,j € {0,1,+,n—2} witha; 7% b;,a; = b;, thenr: (X,,
o) —> (Z(n),7r) is a proximal but not an asymptotic extension,and (X;,s) is not semi-
distal.

Proof (1)As above J.. = { Zokn"} E= { Dkt € 2V, 20 =Z() —E. k=

i=0
Oorn—1, then E = Z. Suppose that x € E. We may assume that x = 0, Thenx '(2) =
{wsw 1 w(0) # w (0),w(i) = w (),i #0}. fk40,n—1, then ZC Z*. Suppose that

z € E. We may assume that 2 = E kn'. Thenz ' (2) = {w,w :w(0) £ @ (0) ,w() =

i=0
w (i) ,i # 0}. So we have that r: (X;,6) —> (Z(n) ,7) is an asymptotic extension.
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(2)We may assumea, ; = 0 and b,; = 1 (otherwise we use ¢ instead of 9 ). Let z: (X,
o) —> (Z(n),7) be the homomorphism above. Then there is 2 € Z(n) — Z such that
#(r ' (2) =2. Letr '(2) = {w,w'}. It is easy to verify that (w,w") is proximal and not

asymptotic. Now we are going to show that (w,w’) € R(T X T).

1
If = = E zn's let 2 denote the £ — th partial sum of 2z, that is, 2®¥ = Z zn'. As

=0 =0

2 € Z(n) —Z, both ¥ and n* — 2 increase with k. By the construction of x, we have for
eachk € N
{(w[—2® " —2® —1],w'[—2® 0 —2® — 17} 6‘&(0) g (1)}, (%)
We may assume that there are mfmltely many zeros in {w(n* —z® —1):k € N}, L. e. ,
there are b, <k, < - such that w(n* —z*’ —1) =0 for eachi € N. Sincea,; = 0 we have
w[— 2% 0t — 2% — 17 = 0% (0) for eachi € N. It follows by ( %) that w/'[— 2™ ,n" —
> —1] = ¢4%(1) for eachi € N,
Letj > i. Then
(w[— 2% ,nti — 2% — 1 D[k — b yn —1]= 05 (0) = w[— 2% ,nt — 2% — 1]
(W' [— 2% 0t — 2% — 1D [ —nti o —1]= 0 (1) = W' [— % 0t — 2% — 1]
Hence d((w,w’) ,¢% (w.w')) <<S; , wheret; = nli —z* —1—n* —z* —1) and S; =
1
&

min {2%’ .0t — % —1}°

Since lim S; = 0, (w,w’) is a recurrent point of (X, X X;,6 X o).

Remark Similar to Example 2, the number of idempotents of 2f(X,) of the system in
(1) is two. And by the fact an FID system is semi-distal, the system in (2) has infinitely
many idempotents. Also from this example we can see the almost one to one extension of
an FID system need not be FID.
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