JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2005)06-0754-05

2005年12月

Relation *→* * on Completely Archimedean Semigroups *

ZHANG Jian-gang^{1,2}, LIU Guo-xin^{1,3}

(1. Dept. of Math., University of Science and Technology of China, He fei 230026, China;

2. Dept. of Math., Shanghai Normal University, Shanghai 200234, China;

3. Dept. of Math., Southwest University, Chongqing 400715, China)

Abstract: Relation \mathcal{A}^* on a completely archimedean semigroup is investigated, and some equivalent conditions for \mathcal{A}^* to be a congruence are given.

Key words: completely archimedean semigroup; π -group; relation \mathcal{A}^* ; congruence

CLC number: O152. 7 Document code: A

AMS Subject Classification (2000): 20M10

1 Introduction and preliminaries

Bogdannovic defined a kind of generalized Green's relations \mathcal{L}^* , \mathcal{R}^* , \mathcal{H}^* and \mathcal{J}^* on the π -regular semigroups^[1]. It is well known that relation \mathcal{H} is a congruence on a completely simple semigroup. However, it is not necessary that relation \mathcal{H}^* is a congruence on a completely archimedean semigroup. It is natural to ask what is the case relation \mathcal{H}^* is a congruence. The aim of this paper is to give an answer to this question.

An element a of semigroup S is called π -regular if there exists a positive integer n such that $a^n \in a^nSa^n$. A semigroup S is called π -regular if all of its elements are π -regular. A semigroup S is a completely archimedean semigroup if it is a nil-extension of a completely simple semigroup, i. e., S is a π -regular semigroup and all of its idempotents are primitive. A completely regular semigroup S is cryptic if \mathcal{A} is a congruence on S, further, if S/\mathcal{A} is a regular band, cryptogroup S is called a regular cryptogroup.

Throughout this paper, denote the set of all idempotents of the semigroup S by E(S) and the set of all regular elements of S by Reg S. If a is an element of π -regular semigroup S, we denote $\min\{n \in N \mid a^n \in \text{Reg } S\}$ by r(a). A partial multiplicative set Q is called partial semigroup if a(bc) = (ab)c whenever a(bc) or (ab)c in Q for any $a,b,c \in Q$. Moreover, call partial semigroup Q a power partial semigroup if for each $a \in Q$, there exists a natural

Received date: 2003-12-01; Revised date: 2005-06-03
 Biography: ZHANG Jian-gang, male, born in 1977, PhD. Research field: algebric semigroup theory.

number n such that $a^n \notin Q$ (see ref. [2] for details). Also, we use the symbol $\langle \varphi \rangle$ to denote the value of a constant maping φ .

Generalized Green's equivalences on π -regular semigroup S were defined by ref. [1] as follows:

$$a \mathcal{L}^* b \iff S a^{r(a)} = S b^{r(b)} \quad a \mathcal{R}^* b \iff a^{r(a)} S = b^{r(b)} S,$$

 $\mathcal{A}^* = \mathcal{L}^* \cap \mathcal{R}^*, \quad a \mathcal{J}^* b \iff S a^{r(a)} S = S b^{r(b)} S.$

Denote the \mathcal{K}^* -class containing e by K_e^* , where $\mathcal{K}^* \in \{ \mathcal{L}^*, \mathcal{R}^*, \mathcal{H}^* \}$. Other notations and terminologies not given here can be found in the texts of ref. [3] and ref. [1].

In ref. [1], Bogdannovic gave a construction of a semigroup S which has a completely simple ideal with Rees matrix semigroup $\mathcal{M}(I,G,\Lambda;P)$ and a partial semigroup Q.

Specifically, if Q is a power partial semigroup, we can easily get

Lemma 1.1 A semigroup S is a completely archimedean semigroup if and only if it is isomorphic to some $\Sigma = \mathcal{M}(I,G,\Lambda;P) \bigcup Q$ with a multiplication defined as follows:

- (1) $(i,a,\lambda)(j,b,\mu) = (i,ap_{\lambda j}b,\mu);$ (2) $p(i,a,\lambda) = (i\xi_p,\varphi(p,i)a,\lambda);$
- (3) $(i,a,\lambda)p = (i,a\psi(p,\lambda),\lambda\eta_p)$; (4) $pq = r \in Q \Rightarrow pq = r \in \Sigma$;
- $(5) pq \notin Q \Rightarrow pq = (i\xi_q\xi_p, \varphi(p, i\xi_p)\varphi(q, i)p_{\lambda\eta_p\eta_q, i}^{-1}, \lambda\eta_p\eta_q).$

for all $p,q \in Q, a,b \in G$, $i,j \in I$, $\lambda, \mu \in \Lambda$, where $\xi: p \mapsto \xi_p(\eta: p \mapsto \eta_p)$ is a mapping from

Q into the semigroup $T(I)(T(\Lambda))$ of all the mappings of $I(\Lambda)$ into itself.

2 Main results

For a completely archimedean semigroup S, the next lemma is obvious:

Lemma 2.1 Let $S = Q \bigcup T$ be a completely archimedean semigroup, where T is the completely simple kernel of S and $Q = S \setminus T$. Then

$$(1) \ \mathcal{L}^S = \mathcal{L}^T \ \bigcup \ \mathbf{1}_Q; \ (2) \ \mathcal{R}^S = \mathcal{R}^T \ \bigcup \ \mathbf{1}_Q; \ (3) \ \mathcal{H}^S = \mathcal{H}^T \ \bigcup \ \mathbf{1}_Q;$$

(4)
$$\mathfrak{D}^s = \mathcal{J}^s$$
 and $\mathfrak{D}^s = (T \times T) \bigcup 1_Q$.

Lemma 2.2 Let S be a completely archimedean semigroup. Denote

$$P(e) = \{x \in S: ex = xe \in G_e \text{ for some } e \in E(S)\}$$

in which G_e is the maximal subgroup of S containing e as its identity. Then we have $P(e) = H_e^*$ and

(1) P(e) is a π -group; (2) $P(e) \cap P(f) = \emptyset$ if $e, f \in E(S)$, and $e \neq f$;

(3)
$$S = \bigcup_{e \in E(S)} P(e)$$
.

Proof Let $e = (i, p_{\lambda i}^{-1}, \lambda) \in E(S)$ and $x \in S$. Suppose that $ex = xe \in G_e$. Then by Lemma 1. $1 xe = x(i, p_{\lambda i}^{-1}, \lambda) = (i\xi_x, *, \lambda)$, and $ex = (i, p_{\lambda i}^{-1}, \lambda)x = (i, *, \lambda\eta_x)$. So we have $i\xi_x = i, \lambda\eta_x = \lambda$. Further $x^{r(x)}e = xx^{r(x)-1}(i, p_{\lambda i}^{-1}, \lambda) = (i, *, \lambda)$, $ex^{r(x)} = (i, p_{\lambda i}^{-1}, \lambda)x^{r(x)-1}x$ $= (i, *, \lambda)$. It means that $x^{r(x)} \not\to e$, i. e., $x \in H_e^*$. On the other hand, if $x \not\to e$ for some $x \in S$ and $e \in E(S)$, we have $x^{r(x)} \in G_e$. By Theorem I. 4. 3 of ref. [1], we know that $ex = xe \in G_e$.

 $xe \in G_e$. The remainder is obvious.

The above statement is not true for the nil-extension of general completely regular semigroups. For example, suppose that $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a nil-extension of a completely regular semigroup and $\alpha, \beta \in Y$ with $\alpha > \beta$, where S_{α} is a completely archimedean semigroup for any $\alpha \in Y$ (see Theorem X. 1. 1 of ref. [1] for details). For any $e \in E(S_{\alpha})$, $f \in E(S_{\beta})$, then $e(efe)^0 = (efe)^0 e = (efe)^0 \in G_{(efe)^0} \subseteq S_{\beta}$, but $e \notin S_{\beta}$.

At the same time it is not necessary that \mathcal{A}^* is a congruence on a completely archimedean semigroup S, i. e., it is not necessary that S is a band of π -groups. The reader can find an example in ref. [3].

In the following, we give some equivalent conditions for \mathcal{A}^* to be a congruence on completely archimedean semigroup S.

Lemma 2.3 Let S be a completely archimedean semigroup. Then \mathcal{H}^* is a congruence on S if and only if $xyz\mathcal{H}^*xy'z$, for any $x,y,y',z\in S$.

Proof Suppose that S is a completely archimedean semigroup and satisfies $xyz \not\to^* xy'z$, for any $x,y,y',z\in S$. By Lemma 2. 2, $S=\bigcup_{e\in E(S)}H_e^*$, in which $H_e^*=\{x\in S: ex=xe\in G_e \text{ for some } e\in E(S)\}$ and H_e^* is a π -group. We will claim that $H_e^*H_f^*\subseteq H_{ef}^*$. Let $a\in H_e^*$, $b\in H_f^*$. Then

$$(ab)(ef) = a(be)f \mathcal{A}^* a(eb)f = (ae)(bf) \in G_eG_f \subseteq G_{(ef)^0} \subseteq H_{ef}^*$$
$$(ef)(ab) = e(fa)b \mathcal{A}^* e(af)b = (ea)(fb) \in G_eG_f \subseteq G_{(ef)^0} \subseteq H_{ef}^*.$$

By Lemma 1. 1 and the proof of lemma 2. 2, we know that $ab \in H_{ef}^*$ and $H_e^* H_f^* \subseteq H_{ef}^*$, which means that \mathcal{H}^* is a congruence. And hence S/\mathcal{H}^* is a band. Further, $H_e^* H_f^* H_g^* = H_e^* H_f^* H_g^*$ for any $e, f, f', g \in E(S)$. Let f' = e. Then $H_e^* H_f^* H_g^* = H_e^* H_g^*$. So, S/\mathcal{H}^* is a rectangular band.

Conversely, if S is a completely archimedean semigroup and relation \mathcal{A}^* is a congruence, then S is a rectangular band of π -groups. For any $x, y, y', z \in S$, suppose that $x \in H_e^*$, $y \in H_f^*$, $y' \in H_f^*$, $z \in H_g^*$, we have $xyz \in H_e^*H_f^*H_g^* = H_e^*H_g^* = H_g^*$, $xy'z \in H_e^*H_f^*H_g^* = H_e^*H_g^* = H_g^*$. So, $xyz\mathcal{A}^*xy'z$, for any $x, y, y', z \in S$.

Lemma 2.4 Let S be a nil-extension of a cryptogroup. Then \mathcal{A}^* is a congruence on S if and only if $(xy)^{r(xy)} \mathcal{A}^* x^{r(x)} y^{r(y)}$ for any $x, y \in S$.

Proof By the definition of \mathcal{A}^* , for any $x,y \in S, x\mathcal{A}^* x^{r(x)}$, $y\mathcal{A}^* y^{r(y)}$ and $xy\mathcal{A}^* (xy)^{r(xy)}$, since \mathcal{A}^* is a congruence, $(xy)^{r(xy)}\mathcal{A}^* x^{r(x)}y^{r(y)}$. Conversely, let $x,y \in S$ and $x\mathcal{A}^* y$. Then $xz\mathcal{A}^* (xz)^{r(xz)}\mathcal{A}^* x^{r(x)}z^{r(z)}$, $yz\mathcal{A}^* (yz)^{r(yz)}\mathcal{A}^* y^{r(y)}z^{r(z)}$ for any $z \in S$. Because S is a nil-extension of a cryptogroup, we have $x^{r(x)}z^{r(z)}\mathcal{A}^* y^{r(y)}z^{r(z)}$. And hence $xz\mathcal{A}^* yz$. Similarly, $zx\mathcal{A}^* zy$.

Lemma 2.5 Let S be a nil-extension of a regular cryptogroup. Then \mathcal{A}^* is a congruence on S if and only if \mathcal{L}^* and \mathcal{R}^* are congruences on S.

Proof Let S be a nil-extension of a regular cryptogroup and \mathcal{A}^* a congruence on S.

Suppose that $a,b \in S$ and $a^{\ell^*}b$. For any $c \in S$, by the regular cryptic of Reg S and Lemma 2.4, we have

$$ac \mathcal{L}^* (ac)^{r(ac)} \mathcal{L}^* a^{r(a)} c^{r(c)} \mathcal{L}^* b^{r(b)} c^{r(c)} \mathcal{L}^* (bc)^{r(bc)} \mathcal{L}^* bc,$$
 $ca \mathcal{L}^* (ca)^{r(ca)} \mathcal{L}^* c^{r(c)} a^{r(a)} \mathcal{L}^* c^{r(c)} b^{r(b)} \mathcal{L}^* (cb)^{r(cb)} \mathcal{L}^* cb.$

So \mathcal{L}^* is a congruence. Similarly, \mathcal{R}^* can be proved to be a congruence. The other part is obvious.

Lemma 2.6 Let S be a completely archimedean semigroup. Then \mathcal{A}^* is a congruence on S if and only if $\langle \xi_x \rangle = i, \langle \eta_x \rangle = \lambda$, where $(i, *, \lambda) = x^{r(x)}$.

Proof Suppose that S is a completely archimedean semigroup, and relation \mathcal{A}^* is a congruence on S. Let $x \in S$, and $x^{r(x)} = (i, *, \lambda)$. For any $y = (j, b, \mu) \in \text{Reg } S$, $xy\mathcal{A}^* x^{r(x)}y = (i, *, \lambda)(j, b, \mu) = (i, *, \mu)$. On the other hand $xy = (j\xi_x, *, \mu)$ by Lemma 1.1. So for any $j \in I$, $j\xi_x = i$ which means $\langle \xi_x \rangle = i$. Similarly, $\langle \eta_x \rangle = \lambda$.

Conversely, suppose that $x, y \in S$ and $x \mathcal{H}^* y$. Then $x^{r(x)} \mathcal{H} y^{r(y)}$. By hypotheses, $\langle \xi_x \rangle = \langle \xi_y \rangle$, $\langle \eta_x \rangle = \langle \eta_y \rangle$. Then for any $z \in S$, by Lemma 1.1.

Case 1: when $z \in \text{Reg } S$, by the hypotheses, it is obvious that $xz \not\dashv^* yz$.

Case 2: when $z \notin \text{Reg } S$,

- (1) and $x, y \in \text{Reg } S$, $xz \not\dashv^* yz$ holds obviously.
- (2) and $x, y \in S \setminus Reg S$, if $xz, yz \in S \setminus Reg S$, then $\langle \xi_{xz} \rangle = \langle \xi_z \rangle \langle \xi_x \rangle = \langle \xi_x \rangle$ and $\langle \xi_{yz} \rangle = \langle \xi_z \rangle \langle \xi_y \rangle = \langle \xi_y \rangle$ by Lemma 1.1, so $\langle \xi_{xz} \rangle = \langle \xi_{yz} \rangle$, and hence $xz \in \mathbb{R}^*$ yz holds. Similarly, we can prove that $xz \in \mathbb{R}^*$ yz. If $xz, yz \in Reg S$, suppose that $xz \in G_e$, $yz \in G_f$, then xz = xze = x(ze), yz = yzf = y(zf). By the hypotheses and $\langle \xi_x \rangle = \langle \xi_y \rangle$, we have $xz \in \mathbb{R}^*$ yz. Similarly $xz \in \mathbb{R}^*$ yz. If $xz \in G_e$ for some $e \in E(S)$ and $yz \in S \setminus Reg S$, then $\langle \xi_{yz} \rangle = \langle \xi_z \rangle \langle \xi_y \rangle = \langle \xi_y \rangle$, xz = x(ze). That $xz \in \mathbb{R}^*$ yz also follows from that $\langle \xi_x \rangle = \langle \xi_y \rangle$. Similarly, we can get $xz \in \mathbb{R}^*$ yz. In the same way, $zx \in \mathbb{R}^*$ zy. So \mathbb{R}^* is a congruence on S.

Theorem 2.7 Let S be a completely archimedean semigroup. Then the following conditions are equivalent:

(1) Relation \mathcal{A}^* is a congruence on S; (2) S is a rectangular band of π -groups; (3) $xyz\mathcal{A}^* xy'z$, for any $x, y, y', z \in S$; (4) $(xy)^{r(xy)} \mathcal{A}^* x^{r(x)} y^{r(y)}$ for any $x, y \in S$; (5) \mathcal{L}^* and \mathcal{R}^* are congruences on S; (6) $\langle \xi_x \rangle = i$, $\langle \eta_x \rangle = \lambda$, if $x^{r(x)} = (i, *, \lambda)$.

Proof Obviously, (1) and (2) are equivalent, and by Lemma 2. 3, Lemma 2. 4, Lemma 2. 5 and Lemma 2. 6, the proof is completed.

Corollary 2. 8 When relation \mathcal{A}^* is a congruence on completely archimedean semig-

roup S, it is the maximum idempotent-separating congruence. \Box Corollary 2. 9 Let S be a completely archimedean semigroup. Then the following

conditions are equivalent:

(1) Relation \mathcal{R}^* is a congruence on S; (2) $(xy)^{r(xy)} \mathcal{R}^* x^{r(x)} y^{r(y)}$ for any $x, y \in S$; (3) $\langle \xi_p \rangle = i$, for any $p \in S \backslash \text{Reg } S$, if $p^{r(p)} = (i, *, *)$.

Corollary 2. 10 Let S be a completely archimedean semigroup. Then the following

conditions are equivalent: (1) Relation \mathcal{L}^* is a congruence on S; (2) $(xy)^{r(xy)} \mathcal{L}^* x^{r(x)} y^{r(y)}$ for any $x, y \in S$; (3) $\langle \eta_p \rangle = \lambda$, for any $p \in S \backslash Reg S$, if $p^{r(p)} = (*, *, \lambda)$.

Corollary 2.11 Let S be a completely archimedean semigroup. Then relation \mathcal{R}^* (\mathcal{L}^*) is a congruence if and only if S is a left (right) zero band of a nil-extension of right (left) groups.

Corollary 2.12 Let S be a completely archimedean semigroup. If relation \mathcal{R}^* (\mathcal{L}^*) is a congruence, then S is the disjoint union of its some right (left) ideals R_e^* (L_e^*), in which $e \in E(S)$.

At last, we give a description of a nil-extension of a rectangular band with \mathcal{A}^* being a congruence.

Let $E = I \times J$ be a rectangular band and Q be a power partial semigroup, where I and λ are left and right zero band respectively, $\xi \colon p \mapsto \xi_p \ (\eta \colon p \mapsto \eta_p)$ be a maping from Q into the semigroup T(I)(T(J)) of all the transformations of I(J) into itself, and

- (1) for any $p \in Q, \xi_p = \mathrm{const}, \; \eta_p = \mathrm{const};$
- (2) for any $p,q \in Q, pq \in Q \Rightarrow \xi_{pq} = \xi_p, \ \eta_{pq} = \eta_q.$

Define a multiplication on $\Sigma = (I \times J) \cup Q$ as follows:

$$(\ |\)\ (i,j)(i',j')=(i,j') \ \text{for any} \ i,i'\in I,\ j,j'\in J;$$

$$(\parallel) p(i,j) = (\langle \xi_p \rangle, j), (i,j) p = (i, \langle \eta_p \rangle), \text{ for any } i \in I, j \in J, p \in Q;$$

$$(\, ||| \,) \, \, pq \, = \, \begin{cases} r & \text{if } p,q \in Q \text{ and } pq = r \in Q \\ (\langle \xi_p \rangle, \langle \eta_q \rangle) & \text{if } pq \notin Q \end{cases}$$

Theorem 2.13 Σ with the multiplication defined above is a semigroup. A semigroup S is a nil-extension of a rectangular band with \mathcal{H}^* being a congruence if and only if it is isomorphic to some Σ .

References

- [1] Bogdanovic S. Semigroups with a system of subsemigroup[D]. Novi Sad: Univ. of Novi Sad, 1985.
- [2] REN Xue-ming, GUO Yu-qi. E-rectangularity π-regular semigroup[J]. Acta Mathemati-
- ca Sinica, 1988, 31; (3), 396-403. (in Chinese)
- [3] Howie J M. An Introduction to Semigroup Theory[M]. London: Academic Press, 1976.

完全阿基米德半群上关系 母*

张建刚1,2,刘国新1,3

(1. 中国科学技术大学数学系,安徽合肥 230026;2. 上海师范大学数学系,上海 200234;3. 西南大学数学系,重庆 400715)

摘要:给出了完全阿基米德半群上关系 A* 是同余的若干等价条件.

关键词:完全阿基米德半群; π -群; \mathcal{A}^* 关系; 同余