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Abstract: The free group F, (1 <Z 5y <C ) has a highly transitive representation in
the rational line Q. Let T be any countable dense subset of the irrational, it can be
arranged that T be an orbit of Fv and that every e Zw € F,7 move every point in T.
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0 Introduction and main results

Let T be a totally ordered set, A(T) be the group of order-preserving permutations on
T. Haof <aganda(f V g) = maxiaf.ag}.a(f A g) = min{af,ag} fora € T where f,
g € AT, then ACT) is a I-group. Let G be a [-group if f is an injective from G into
A(CT), then G has a faithful representation in T. Holland’s main result is that every [-
group is [-isomorphic to an /[-subgroup of the /-group of order-preserving permutation of
some totally ordered set"”). An ordered group is highly transitive if it is n-transitive for
every natural number n. A group G of order-preserving permutation of a totally ordered set
T is n-transitive if for every a1 <Zay <+ <@, and B <, < ++» <, in T, there exists
g € Gsuch thata;,g = .1 = 1,2,,n.

The free /-group on a countable infinite set of generators was shown to be isomorphic
to a doubly transitive sublattice subgroup of the -permutation group A(Q). Kopytov?
and McCleary"* proved independently that the free lattice-ordered group on at least two

generators possesses doubly transitive representation (on the rational line if the number of
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generators is finite or countable). Glass and McCleary'" has showed that the free -group
F,(1 << 5<C ¥3¢) has a pathologically (faithful) 2-transitive representation on Q.

The main results of this paper are

Theorem 1  The free group F, (2 << << ;) can be faithfully represented as a highly
order-transitive group I, of order-preserving permutations of the rational line Q.

Theorem 2 The free group F,(1 << 5y << $3,) has a (faithful) highly transitive
representation as a group Frz of order-preserving permutations of the rational line Q.
Furthermore, for every e # w € F,. there exists ¢, € @ such that @ moves all irrationals
above q,.

Theorem 3 Let T be any countable dense subset of the irrationals, it can be arranged

that T be an orbit of F,] and that every e £ w € Fv move every point in T.

1 Farther conclusions of free groups

We know that F, can be made into a totally ordered group which is dense in
itselft8-Chavter V- Theorem 8] A5, every chain which is countable, dense in itself, and lacks end
points is order-isomorphic to the rational line Q.

Let X be a fixed set of free generators for F,. Our fundamental tool will be the notion
of a diagram for a reduced group word w = xﬁl 767‘,1 (x{) e X).

The points of the diagram are the initial subwords z;' 2" (0 <"k <<n)(n € N) of w.
For each ordered pair (a,f3) of points that axfl = [, the diagram includes an X ~arrow,
from o to Bif the exponent x;, is +1, otherwise from f3 to a. The remaining aspect of the
diagram is a total order on the set A of points which is consistent with the arrows in that if
there are x-arrows {froma; to 8 and a; to 8 (same x for both), thena; <a: I g <<B. (An
z-arrow from « to 8 may alternately be described as an a~'-arrow from 3 to a. ) The empty
initial subword (£ = 0) is called the base point of diagram.

By a diagram on Q we mean a diagram which arises from a substitution in A(Q).

Lemma 1 Letw € F,. If w#e, there exists a diagram on Q showing this (by making
0w # 0). Moreover, given any diagram for w drawn on Q, there is for each x € X an
order-preserving permutation & of Q which acts in accordance with all the x-arrows.

Proof For the first claim, make F, into a totally ordered group isomorphic as a chain
to Q, and use its right regular representation. For the second, the constraints imposed by
the collection of x-arrows can be simultaneously satisfied by some & € A(Q) because all
open rational intervals are isomorphic as chains. []

Proof of Theorem 1 For each x € X, the action on Q of its image & will be specified at
enough points to guarantee the desired results. Each specification will amount to an
x-arrow. The proof splits into three distinct phases:

(1) Specifications ( essentially within Q", the positive rationales) to achieve

faithfulness and to link Q" with Q~ by arranging that every n-type in Q can be sent to an
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n-type in Q .

(2) Specifications within @~ to achieve high order-transitivity.

(3) Synthesis, in which for each x € X we choose an order-preserving permutation &
of @Q which meets the specifications for z.

( I )Faithfulness and linkage

F, is countable, and we enumerate its nonidentity elements as wjp,wi,+-+. In the
rational interval [0,1], we lay out a copy of diagram for w, = z;'+*-x;' showing e 7 wy ,

with the smallest point A, of the diagram taken to be 0, and the largest point p, taken to be

+1

;' be sent by i‘il to

1. We specify about the #’s that the point (corresponding to) x; 'z
the point (corresponding to) x;'++*z;"' x;'. Similarly, in each interval [ 2n, 2n+1], we lay
out such a diagram for w, and make such specifications. This is already enough to give
faithfulness.

For the sake of the linkage, we want to ensure that all the points in the various
diagrams lie in the same orbit of Fv’ and this orbit extends down into Q. Then because
the diagram points are cofinal in Q and all permutations in F,y will preserve order, we will
have the desired linkage.

To make all diagram points lie in one orbit, it suffices to arrange that for eachn = 0,
1,:++, the points 2n+1 and 2(n+1) lie in the same orbit. For this we construct appropriate
“bridges”.

We begin with the interval [1,2]. In the original for wy.p,(«<>1) must have been

moved by at least one free generator, say z, 3 and in the diagram for wy ,2; («<>2) must

have been moved by some free generator z; . We declare that

(a)) 1z, = % if oy was moved up by z, ; (a,) 1z,' = % if oy was moved down by z, ;
(b)) 22, = 2if 4, was moved up b by) 227" = 2if A, was moved down b
1 ?IM = Z 11 A; was moved up Y Ty, ;3 (by 31*1 = Z 11 A; was moved down Y Xy, -
X
or
=i e 88
N NN\ — 0
T < L) v Y T T
0 1 4 3 2 3
v _J 3 3 . )
Diagram for w, Diagram for w,

Fig. 1 The diagram of specifications within Q" to achieve faithfulness

4 5 4 5. o 4
To connect 3 and e we further declare that iy =3 if (a;) obtains (or that gxpol =
% if (a;) obtains); except that this may conflict with (by) or (b)) if z, = a3, » so in that

case we pick any other x € X(>>1) and decree that 1 = % We build similar bridges in

? .
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the other intervals [2n+1,2n+ 2], n = 1,2,

Replacing z;, by z;/

if necessary, we may assume &;, moves some positive point to 0.
We denote x;, by z. Thus the figure contains a leftward z-arrow with head at 0. We specify
thatat = o« — 1 for all @ << 0. Now the orbit of F,y containing the diagram points extends
down into Q@ ,and we have linkage.

(I )High order-transitivity

We fixb € X withb~¢, and specify that 00 = 0. Let S, be the set of pairs (a1 s***sa,) »

(Bi+++s,) of strictly negative rationales with a1 <C *** <@, and 8, < **+ <Z ,. Enumerate

s=Js.

n=1

For the first pair (q;,°** sy )5 (Brsees B, ). we specify that a6 = Bii=1,,m); See
figure 2. Next, we pick an integer m; < min{a; . } » and specify that mb = m,. For the
next pair (e s+ s, ) s (w1 +++5v,, ) » we specify that (g —m)b = v, —mi (i = 1,++,m),
which entails no conflict with any previous specification, thus arranging that 2™ bt ™ =
vi(i = 1,+-+.n;). Next, we pick an integer m, < min{y — m; v —m; }, and specify that

m>b = m,. For the third pair (o1, 20, )5 (1000007, ) s We specify that (¢; — my)b = ;. —

my(i = 1,+,n5), and we pick an integer m; < min{o; — m3,z; — my} and specify that
7’}’13/;:7’}’13.
i i t . t t
7 N b R
(AN N SN
VNN . i 0
o —Y Y
4 F S -3 RFSFS P F1 PR 2 £ O
O LD S ¥
m, my

Fig.2 The diagram of specifications within Q" to achieve high order-transitivity

Continuing in this manner, we arrange that every negative n-type can be sent to every
other negative n-type (same n) by some 1”bt .

For each x € X, the set of points which are heads of specified x-arrows is cofinal
(coinitial) in Q if and only if the same holds for tails. For each x other than ¢, the set of
points which are ends of specified x-arrows has no limit points in R, and for ¢ only the
non-positive real are limit points. Hence we can extend each # to an order-preserving
permutation of Q. []

Proof of Theorem 2 Faithfulness and linkage can be achieved directly by White” s
Theorem™ that the maps of = o+ 1 and ag = o® freely generate a copy F, of F, within
A(R), and that indeed every e % w € F, moves every transcendental number.

We have F';, <CA(A), where A denotes the real algebraic. Let f; =g ' fg', i=0,1,---.
Let £, = f:, but change %, to the left of 0 to make (£, ,%,) highly order-transitive. Now use
0<<i<Iy).

This gives Theorem 2 with “irrationals” changed to “transcendental” and of course

the copy of Fv freely generated by {£;

the chains A and Q are isomorphic. ]
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Proof of Theorem 3 This time we change the proof of Theorem 1 by changing the
first part, with an argument modeled after the proof of [ 7, Theorem 3].

For any T and T, satisfying our hypotheses, there is an order-preserving permutation
of Q sending T onto T, "™ 21) " Thus we may assume that T is a coset of Q in (R, +),
so that T is mapped onto itself by integer translations.

As before, letat = a — 1, specify that 0 = 0, and make specifications for b in Q@ to
arrange high order-transitivity. These specifications amount to a collection of b-arrows,
and more b-arrows, and more b-arrows will be added later. Let B Q be the set of points
that are ends of h-arrows. B has no limit points in R.

For faithfulness, we use a brute force argument quite different from that of Theorem
1. LetY be X with ¢ deleted. Let P be the set of pairs (a,2), wherea € QU T and z = y*!
for some y € Y. We proceed inductively through the enumeration, defining y-arrows (y €
Y) as we go. There are two cases: * = yand z = y™.

When we reach (a,y), we specify a y-arrows with tail at ¢ (unless there is already

such an arrow). Now we explain how to choose the head g of this arrow. Let A be the

¥ Y ¥
RN Vi . W
A p o
lﬁ_—a
Choose S here

Fig. 3 The diagram specify 3-arrows about faithfulness

largest point in Q |J T which is the head of an already existing y-arrow whose tail lies
below «; or if there aren’t any, letA =—oo, (Only finitely many y-arrows have been added
so far during the induction, and by the construction of b-arrows prior to the induction
there must be the largest such point, ever for y=5.) Let p be the smallest of the points
that are heads of already existing $-arrows whose tails lie above «; or if there aren’t any,
let p =+ co. We choose the head Sof the new y-arrows from (1,p) s and from the same set
Qor T asa.

If « € T, we impose one more constraint on 3, namely that g not differ by an integer
from « or from either end of any previously defined a-arrow (u € y). (The h-arrows
specified prior to the induction have their ends in Q, so there are only finitely many ends of
@-arrows in T.) The reason for the constraint is this; A loop is a path which starts at
somed € QU T and follows a sequence of arrows (z-arrows are included here) and
eventually returns to 8. (No arrow has its two ends the same, removing any ambiguity
from this definition. ) The constraint makes sure that no sequence of ¢-arrows leads from g3
to q or to any point which is either end of an already existing #-arrow (u € y). This in turn
guarantees that as we proceed through the induction, there can never arise for the first

time a loop involving a point T. And this guarantees that w 7 e does not fix any points in
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T. So faithfulness is obtained.

1

We treat the case y ' similarly. This time we define 3 '-arrow froma to . i. e. s a

y-arrow from ftoa.  '-arrow has no limit point in R, and for y only the non-positive real

number are limit points. Hence we can extend each £ to an order-automorphism of @ (onto

—1

Q because of the inclusion ¥ in the induction) which maps T onto itself. As before, we

can arrange the faithfulness of F7 on Q. ]
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