
Limitations on Transformations from

Composite-Order to Prime-Order Groups:

The Case of Round-Optimal Blind Signatures

Sarah Meiklejohn
UC San Diego

smeiklej@cs.ucsd.edu

Hovav Shacham
UC San Diego

hovav@cs.ucsd.edu

Full version of an extended abstract published in Proceedings of Asiacrypt 2010, Springer-Verlag,
2010.

Abstract

Beginning with the work of Groth and Sahai, there has been much interest in transforming
pairing-based schemes in composite-order groups to equivalent ones in prime-order groups. A
method for achieving such transformations has recently been proposed by Freeman, who iden-
tified two properties of pairings using composite-order groups — cancelling and projecting — on
which many schemes rely, and showed how either of these properties could be obtained using
prime-order groups.

In this paper, we show that there are limits to such transformations. Specifically, we show
that Freeman’s properties, cancelling and projecting, cannot simultaneously be obtained using
prime-order groups when subgroup hiding is provided by the Decisional Linear assumption in a
natural way. We present a natural cryptosystem whose proof of security makes use of a pairing
that is both cancelling and projecting, as evidence that these properties can be helpful together
as well as individually.

Our example cryptosystem is a simple round-optimal blind signature scheme that is secure
in the common reference string model, without random oracles, and based on mild assumptions;
it is of independent interest.

1 Introduction

Composite-order groups were introduced for pairing-based cryptography in 2005, in the work of
Boneh, Goh, and Nissim [12], and have since been used to realize a large number of cryptographic
systems (see, e.g., the schemes surveyed by Freeman [25]). At the same time, the limited number of
elliptic curve families on which composite-order groups can be instantiated and the larger parameter
sizes associated with composite-order groups (cf. [24, 13]) has motivated research on translating
these schemes to or obtaining similar ones in the prime-order setting.

In one of the first papers to unify the composite- and prime-order settings, Groth and Sa-
hai [32] developed non-interactive zero-knowledge schemes that not only can be instantiated either
in composite- or prime-order groups, but are in fact described identically in either instantiation.
What facilitates this is a new abstraction for pairing-based crypto in terms of modules over finite
commutative rings with an associated bilinear map; this abstraction allows for the simultaneous
treatment of three different cryptographic assumptions: the Subgroup Hiding (SGH) assumption of
Boneh, Goh, and Nissim [12], in composite-order groups; the Decisional Linear (DLIN) assumption
of Boneh, Boyen, and Shacham [10] or its k-Linear family of generalizations [47, 34],1 in prime-

1A family of progressively strictly weaker decisional assumptions, where 1-Linear is DDH and 2-Linear is DLIN.

1

smeiklej@cs.ucsd.edu
hovav@cs.ucsd.edu

order groups; and the so-called Symmetric External Diffie-Hellman assumption, also in prime-order
groups.

More recently, Freeman [25] and Garg, Sahai, and Waters [28] have proposed methods for
transforming schemes secure in the composite-order setting into ones secure (under different but
analogous assumptions) in the prime-order setting. Freeman, in particular, identifies two properties
of pairings on composite-order groups, projecting and cancelling, and shows how either can be ob-
tained in prime-order groups. He then demonstrates how to tranform several known cryptosystems
that rely on one of these properties from composite- to prime-order groups.

Our contribution: limits on transformations from composite to prime order. In this
paper, we show limits to the feasibility of composite-to-prime transforms such as those mentioned
above, suggesting that some schemes inherently require composite-order groups and cannot be
transformed mechanically from one setting to the other. In our main theorem, Theorem 6.5, we
show that no pairing over prime-order groups can, in Freeman’s terminology, be both projecting and
cancelling when subgroup indistinguishability relies in a natural way on k-Linear, where “natural”
means that, for k-Linear, B consists of k + 1 copies of G and not some larger number of copies.

If no cryptosystem required a pairing that is both projecting and cancelling, however, our
Theorem 6.5 would not be particularly interesting. As such, we present a new cryptosystem — a
natural pairing-based blind signature scheme that is of independent interest, and discussed below —
whose proof of security calls for a pairing that is both projecting and cancelling.2

Blind signatures were introduced by Chaum in 1982 [18]. In a blind signature scheme, a user
interacts in a protocol with a signer to obtain a signature on a message of the user’s choice. When
the protocol execution ends, the user obtains the signature but the signer learns nothing about
the message that was signed. Blind signatures have been used as a building block in a variety of
applications, including electronic cash [21] and electronic voting [20].

One useful feature of a blind signature scheme is concurrency. For example, if a blind signature
used to build an electronic cash system does not retain its security even when the signer engages in
multiple protocol executions concurrently, it leaves the issuing bank susceptible to denial-of-service
attacks. Concurrency turns out to be as difficult to achieve for blind signatures as it is for other
cryptographic protocols. Many blind signature schemes have proofs of security only for sequential
executions of the protocol, but the problem is not just with proofs. In one example, Martinet,
Poupard, and Sola [40] show that signatures in a partially blind signature due to Cao, Lin and
Xue [17] are forgeable if the signer interacts with two users concurrently.

Our contribution: a round-optimal blind signature scheme. In a second contribution,
as mentioned above, we present a new pairing-based blind signature scheme. Our blind signing
protocol is round-optimal: it consists of only two moves (a request and a response); this means that
it is secure even in the presence of concurrent signing protocol executions. Our scheme is practical,
has a proof of security (without random oracles) in the common reference string model, and relies
for its security on falsifiable and non-interactive assumptions: computational Diffie-Hellman and
Subgroup Hiding.

The assumptions we rely on are milder than those used in any previous practical concurrently
secure blind signature, including those in the random oracle model. (“Practical” means not relying

2We emphasize that it is the security proof, not the statement of the scheme, that uses the two pairing properties.
We thus do not rule out the possibility that a different proof strategy will show our scheme secure in prime-order
groups.

2

on general NIZKs for NP as a building block.) Our scheme extends in a natural way to give a
partially blind signature scheme [3] with the same properties.

Our blind signatures combine the Waters signature [48] with non-interactive witness-indistin-
guishable proofs developed in a line of papers by Groth, Ostrovsky, and Sahai [31, 30, 32]. In
this our scheme is related to the group signature scheme of Boyen and Waters [15]. The primary
disadvantage of our scheme, as with the Boyen-Waters group signature, is its bit-at-a-time nature,
which makes the user’s blind signing request large: some 40 kilobytes at the 1024-bit security level;
the signer’s response and the resulting signatures, however, are short.

Related work. The blind signature literature is extensive and varied. Below, we briefly survey
the most closely related schemes with concurrent security; see [5, 4] for more complete recent
treatments.

In the random oracle model, there exist elegant round-optimal blind signatures, due to Chaum [19]
and Boldyreva [9], that feature short public keys, short signatures, and an efficient blind signing
protocol. Unfortunately the security proofs for these schemes rely on strong interactive assump-
tions: the RSA known-target inversion assumption [8] and the chosen-target CDH assumption (by
contrast, the underlying ordinary signatures can be shown secure using RSA and CDH, respec-
tively).

In the common reference string model, several practical concurrently secure blind signature
schemes have been proposed. Unlike our scheme, these schemes rely on assumptions that are inter-
active or whose statement size grows with the number of queries in the reduction (i.e., “q-type”).
Kiayias and Zhou [36] give four-move blind and partially-blind signature schemes secure under the
(interactive) LRSW assumption [39], the Paillier assumption [43], and DLIN. Okamoto [41] gives
four-move blind and partially blind signature schemes based on the (q-type) Two-Variable Strong
Diffie-Hellman assumption and Paillier. Fuchsbauer [26] gives two-move blind signature schemes
based on the (q-type) Asymmetric Double Hidden Strong Diffie-Hellman assumption, the Asym-
metric Weak Flexible CDH assumption, and DLIN. And Abe, Haralambiev, and Ohkubo [4] give
two-move blind signature schemes based on the (q-type) Simultaneous Flexible Pairing assumption
and DLIN. (The last two papers appeared together as [2].)

Also in the common reference string model, blind signatures that use general NIZKs for NP
(and are therefore not practical) were given by Juels, Luby, and Ostrovsky [35], Fischlin [23], and
Abe and Ohkubo [5]. The Fischlin and Abe-Ohkubo schemes are round-optimal.

Okamoto [41] first observed that the Waters signature can be combined with witness-indis-
tinguishable proofs for a simple NP language to yield blind and partially blind signatures. Our
scheme could be viewed as an instantiation of Okamoto’s framework (though we blind the message
differently) where we take advantage of Groth-Ostrovsky-Sahai proofs to eliminate a round of
interaction.

Until recently, no concurrently-secure blind signature schemes were known in the plain public-
key model. The first such scheme was given by Hazay et al. [33]; it relies on general NIZKs, and
its round complexity is poly-logarithmic in the number of concurrent executions for which security
must be guaranteed.

Applications and extensions. Finally, as an application of our techniques, we show (in Ap-
pendix E) how our blind signatures may be used within the Waters IBE system [48] to yield a blind
IBE scheme, as introduced by Green and Hohenberger [29]. Compared to Green and Hohenberger’s
blind extraction protocol, our protocol achieves concurrent security but adds a common reference

3

string and a reliance on the SGH assumption.3 Furthermore, the Waters signature naturally ex-
tends into a hierarchical identity-based signature (cf. [44]); applying our construction at level 2
of the resulting signature gives an identity-based blind signature [49] concurrently secure in the
common reference string model.4 Or, using the Boyen-Waters group signature [15] at level 1 of the
hierarchy and our blind signature at level 2 gives a group blind signature [38] concurrently secure
in the common reference string model.

2 Mathematical Background

In this paper, we work with bilinear groups: cyclic groups G of some finite order that admit a
bilinear map e : G × G → GT . Because we generalize the concept of a group and work with
modules, we are able to describe our scheme without relying on any particular properties of the
underlying group (with the caveat, as mentioned above, that the scheme is provably secure only
for composite-order groups).

2.1 Modules

First, we recall the definition of a module; this serves as the foundation for our blind signature
scheme, and more specifically for the Groth-Sahai commitments used in our scheme.

Definition 2.1. Let (R,+, ·, 0, 1) be a finite commutative ring. An R-module A is an abelian
group (A,+, 0) such that there exists an operator (namely scalar multiplication) R× A → A such
that (r, x) 7→ rx for r ∈ R and x, rx ∈ A. In addition, the following four properties are satisfied
for all r, s ∈ R and x, y ∈ A:

• (r + s)x = rx+ sx.

• r(x+ y) = rx+ ry.

• r(sx) = (rs)x.

• 1x = x.

This definition can also be written in more familiar multiplicative notation, where our operator
becomes exponentiation rather than multiplication and the requirements are written as xr+s =
xr · xs, (xy)r = xryr, (xr)s = xrs, and x1 = x for all r, s ∈ R and x, y ∈ A.

In cryptography, we are most used to working with Z/nZ- and Fp-modules; for example, any
finite group of prime order p can be viewed as a Fp-module. In addition, the concept of a module
generalizes the concept of an abelian group, as any abelian group can be viewed as a Z-module.

2.2 Groth-Sahai commitments

Groth and Sahai support two kinds of commitments: commitments to elements in an R-module A,
and commitments to exponents in the ring R. For our purposes, we will need only commitments
to bits; we can simplify things even further by always setting A = G for our bilinear group G.

3 Note that the efficient range proofs due to Boudot [14] rely on the Strong RSA assumption (due to Baric and
Pfitzmann [7]) and require a common reference string. If the scheme of Green and Hohenberger is instantiated
with these range proofs then its assumptions and setup model are comparable to those of our scheme, but without
providing concurrent security.

4One could also obtain an identity-based blind signature through generic composition of our blind signature and
an ordinary signature [27].

4

To form commitment to the module elements, Groth and Sahai define two homomorphisms
τ : A → B and ρ : B → A.5 These maps are defined such that, for some elements h1, . . . , hm in
B, ρ(hi) = 1 for all i and ρ is non-trivial for all x that are not contained in B1 = 〈h1, . . . , hm〉. A
commitment to x ∈ A is then defined as c(x) = τ(x)

∏m
i=1 h

ri
i for random values r1, . . . , rm ← R.

This means that the hi elements act as keys for the commitment scheme, and that the CRS is
(R, A,B, τ, ρ, h1, . . . , hm). There are two possible cases:

• Hiding keys: in this case, the hi elements generate the whole module B; in other words
B1 = 〈h1, . . . , hm〉 = B. This implies that τ(A) ⊆ B1, which means that c(x) will be
perfectly hiding (as each commitment will just be a random element of B).

• Binding keys: in this case, B1 6= B and ρ(c) = ρ(τ(x)hr) = ρ ◦ τ(x) for some restricted space
of x. To determine what this restricted space is, we see that c will generally reveal the coset
of B1 where τ(x) lives. So, in order for the commitment to be perfectly binding we must
restrict the space of x to be the inverse image of B2 ' B/B1; because we know that B1 6= B,
both B2 and τ−1(B2) are non-trivial and so this domain restriction is actually meaningful.
One final thing to note is that in order for the quotient module to be well-defined B1 must
be a normal submodule of B; because modules are by definition abelian every submodule is
normal, and so the quotient module is always well-defined.

It is clear from these definitions that a set of keys cannot be both hiding and binding, as the
settings require very different properties of the commitment keys h1, . . . , hm. To get any meaningful
blindness properties, however, we need these two settings to be indistinguishable. We therefore
require an assumption that implies this; the choice of assumption depends on the instantiation
being used.

3 Security Notions for Blind and Partially Blind Signatures

In what follows, we will define a blind signature scheme in the common reference string model as a
collection of four protocols: a Setup(1k) algorithm which outputs the CRS σCRS , a KeyGen(σCRS)
algorithm which outputs the signing keypair (pk, sk), a BlindSign protocol, which consists of an
interaction of the form User(σCRS , pk,M)↔ Signer(σCRS , sk) (in which the signer outputs success
if the protocol is successful, and the user outputs success and the unblinded signature σ), and finally
a Verify(σCRS , pk,M, σ) algorithm which outputs accept if the signature is valid and fail if not.

In general, there are two properties that blind and partially blind signatures must satisfy:
blindness and one-more unforgeability. Informally, the blindess requirement says that in the process
of signing a user’s message, the signer does not learn anything abut the message he is signing. The
one-more unforgeability requirement says that if the user interacts with the signer ` times, then he
should be able to produce ` signatures and no more (so in particular, he cannot produce ` + 1).
We will give more formal definitions of these properties later.

3.1 Blind signatures

Formal definitions of blind signatures were introduced by Juels, Luby, and Ostrovsky [35], although
both properties were considered informally in Chaum’s original paper on the subject [18], and one-
more unforgeability was considered formally in Pointcheval and Stern’s work on security arguments
for signatures [45].

5Our notation is a bit different from the original Groth-Sahai notation, but the ideas are the same.

5

In the Juels-Luby-Ostrovsky formalization, the blindness property is defined as follows: the
adversary is given a public-private keypair and outputs two messages M0 and M1. He then engages
in two signing protocols with honest users: the first user requests a signature on message Mb and
the second on message M1−b, where b is a random bit unknown to the adversary. The adversary
is then given the resulting signatures σ0 and σ1, but only if both interactions are successful, and
his goal is to guess the bit b (given the messages, the corresponding signatures, and the signing
protocol transcripts).

In this paper, we use a stronger version of the blindness property which allows the adversary
to generate the signing keypair himself, possibly in a malicious manner. This strengthening was
proposed independently in several recent papers [1, 42, 36].

The one-more unforgeability property can be defined as follows: the adversary is given a public
key and engages in multiple executions of the blind signing protocol with a signer; the adversary is
able to choose how to interleave the executions. At the end, the adversary is considered successful
if he is able to output `+ 1 distinct message-signature pairs (M1, σ1), . . . , (M`+1, σ`+1), where ` is
the number of executions in which the signer output success.

In this definition, two message-signatures pairs (Mi, σi) and (Mj , σj) are considered distinct
even if Mi = Mj (so if σi and σj are just two different signatures on the same message) for i 6= j.
Unfortunately, this means that any signature scheme in which signatures can be re-randomized
(like our signature scheme, as we will see in Section 4) will automatically be unable to satisfy one-
more unforgeability. We therefore weaken the property by requiring that the adversary be unable
to output ` + 1 message-signature pairs in which the messages are all distinct.6 This modified
definition was also considered recently by Okamoto [42].

Putting all this information together, we give a formal definition of our security definition for
blind signature schemes in Appendix A.

3.2 Partially blind signatures

The properties for blind signatures can also be extended to partially blind signatures; these formal-
izations are due to Abe and Okamoto [6]. For partially blind signatures, the adversary outputs two
info strings info(0) and info(1) in addition to its messages M0 and M1. It then interacts with two
separate users in the same manner as before, except this time the first user requests a signature on
Mb using info(0) and the second requests a signature on M1−b with info info(1). The adversary is
given the resulting signatures σ0 and σ1 if both interactions were successful and if info(0) = info(1).
As before, his goal is to guess the bit b.

The one-more unforgeability property is also quite similar to the property for blind signatures;
here, the adversary is allowed to choose the info string for each interaction with the signer. The
goal is then for the adversary to output an info string info∗ as well as ` + 1 message-signature
pairs (M1, σ1), . . . , (M`+1, σ`+1), where ` represents the number of interactions in which the signer
output success while using the info string info∗.

In our security definitions, we extend the modifications from blind signatures to partially blind
signatures as well; this means we strengthen the blindness game to allow the adversary to generate
the signing keys, and we weaken the one-more unforgeability game to require that the messages
Mi must all be distinct. These modifications can be extended in a natural way and so we omit the
formal definition.

6We observe that blind signatures satisfying this weakened unforgeability property are still sufficient for e-cash
and other standard constructions based on blind signatures.

6

4 Underlying Signature Scheme

As our underlying signature scheme, we make only a slight modification to the Waters signature
scheme. Essentially, we just need to generalize the Waters signature scheme by bringing it into
the language of modules so that we can use it in combination with GS commitments to create our
blind signature scheme.

4.1 CRS setup

For the Waters signature, the required elements for the CRS are a bilinear group G, the target
group GT and the bilinear map e : G×G→ GT , as well as generators g, u′, u1, . . . , uk for G, where
k denotes the length of the messages we will be signing. We now add in the elements discussed
in Section 2.2: we start with a ring R such that G can be interpreted as an R-module. We then
add in an R-module B, a map τ : G→ B, a map ρ : B → G, and a bilinear map E : B ×B → BT ,
which also requires us to specify the target module BT and the resulting τT and ρT maps. This
means that the CRS will be σsig = (R, G,GT , B,BT , e, E, τ, τT , ρ, ρT , g, u′, u1, . . . , uk); the relations
between all these maps can be summarized in the following figure:

Figure 1: Commutative diagram for our modules.

4.2 Signing protocol

In our generalized Waters signature, the size of the message space will be {0, 1}k for some value
k (for example, if we use hash-and-sign with SHA-1 as the hash function, we would use k = 160).
As noted above, the CRS will contain k + 1 random generators of G, and the CRS will be shared
between the user and the issuer.

• Setup(1k) : Output a tuple σsig that has been computed as described in the previous section.

• KeyGen(σsig): Pick a random value α ← R and set A = E(τ(g), τ(g))α. The public key will
be pk = A and the secret key will be sk = α (actually, τ(g)α will suffice).

• Sign(σsig , sk,M): Write the message out bitwise as M = b1 . . . bk, and write sk = τ(g)α. Pick
a random r ← R and compute

S1 = τ(g)α
(
τ(u′)

k∏
i=1

τ(ui)bi
)r

and S2 = τ(g)−r.

Output the signature σ = (S1, S2).

• Verify(σsig , pk,M, σ): Again, write the message out bitwise as M = b1 . . . bk; also write the
signature as σ = (S1, S2) and the public key as pk = A. Check that these values satisfy the

7

following equation:

E(S1, τ(g)) · E
(
S2, τ(u′)

k∏
i=1

τ(ui)bi
)

= A. (1)

If they do, output accept; else, output fail.

One nice property of the Waters signature (and our extended Waters signature) is that anyone
can re-randomize a signature by choosing s ← R and computing S′1 = S1 ·

(
τ(u′)

∏
i τ(ui)bi

)s and
S′2 = S2 · τ(g)−s. Since this results in S′1 = τ(g)α

(
τ(u′)

∏
i τ(ui)bi

)r+s and S′2 = τ(g)−(r+s), the
re-randomization process really does give us a valid signature. In particular, the randomness in
the resulting signature (S′1, S

′
2) will be information-theoretically independent from the randomness

r chosen by the signer in the signature (S1, S2).
We recall the computational Diffie-Hellman (CDH) assumption used for the Waters signature:

Assumption 4.1. Assuming there exists a generation algorithm G that outputs a tuple (q,G, g),
where G is of order q (not necessarily prime) with a generator g, it is computationally infeasible to
compute the value gab given the tuple (g, ga, gb). More formally, for all PPT adversaries A there
exists a negligible function ν(·) and a security parameter k0 such that the following holds for all
k > k0:

Pr
[
(q,G, g)← G(1k); a, b← Zq; c← gab : A(g, ga, gb) = c

]
= ν(k).

The Waters signature scheme is existentially unforgeable if the CDH assumption holds on G; in
our extended version, the signature scheme will be existentially unforgeable if the CDH assumption
holds on B. As the proof is just a trivial extension of the proof from Waters, we will not include
it here.

5 Our Blind Signature

In this section, we describe our blind signature scheme. Although we describe only the partially
blind setting, our description also encapsulates the fully blind setting (as it just corresponds to the
case where we set k0 = 0).

5.1 CRS setup

In our CRS, we must include all the necessary elements for GS commitments, as well as values in
the σsig in the previous section. This means the CRS here will be σCRS = (σsig , h1, . . . , hm), where
the hi elements are binding keys for Groth-Sahai commitments (under the given instantiation).

5.2 The partially blind protocol

In the following protocol, the user and signer both have access to an info string info. At the end
of the protocol, the user obtains a signature on info||M for a message M , while the signer learns
nothing beyond the fact that the message M followed the guidelines laid out in info. In addition,
the user and the signer will have agreed upon the length of the info string; call it k0 for 0 ≤ k0 ≤ k.
Setting k0 = 0 corresponds to a fully blind signature, while setting k0 = k corresponds to an
ordinary run of the signature scheme described in the previous section.

• Setup(1k): Output σCRS as described in the previous section (Section 5.1).

• KeyGen(σCRS): Same as KeyGen from Section 4.2.

8

• User(σCRS , pk, info,M): First write the info string out bitwise, so as info = b1 . . . bk0 , and
similarly write the message out as M = bk0+1 . . . bk. Now, for each i such that k0 < i ≤ k,
pick random values ti1, . . . , tim ← R and compute

ci = τ(ui)bi ·
m∏
j=1

h
tij
j and πij =

(
τ(ui)2bi−1 ·

m∏
j=1

h
tij
j

)tij
,

where ci acts as a GS commitment to the bit bi and ~πi = {πij}mj=1 acts as a proof that the
value contained in ci is in fact a 0 or a 1. Send the tuple req = (ck0+1, ~πk0+1, . . . , ck, ~πk) as a
request to the issuer (and save some state information state).

• Signer(σCRS , sk, info, req): First, write info = b1 . . . bk0 and sk = τ(g)α. Upon receiving the
request, check that each ci is indeed a commitment to a 0 or 1 by checking that

E
(
ci, τ(ui)−1ci

)
=

m∏
j=1

E(hj , πij) (2)

for each k0 < i ≤ k. If this equation fails to hold for any value of i, abort the protocol and
output ⊥. Otherwise, compute the value

c = τ(u′)
(k0∏
i=1

τ(ui)bi
)(k∏

i=k0+1

ci

)
.

Finally, pick a random value r ← R and compute

K1 = τ(g)α · cr, K2 = τ(g)−r, and K3j = h−rj for 1 ≤ j ≤ m.

Denote ~K3 = {K3j}mj=1, send the tuple (K1,K2, ~K3) back to the user, and output success and
info.

• User(state, (K1,K2, ~K3)): First, check that K2 and ~K3 were formed properly by checking
satisfiability of

E
(
K3j , τ(g)

)
= E(K2, hj) (3)

for each 1 ≤ j ≤ m. If this equation does not verify for some j, abort and output ⊥.
Otherwise, unblind the signature by computing

S1 = K1

k∏
i=k0+1

m∏
j=1

K
tij

3j and S2 = K2. (4)

Now, verify that this is a valid signature on info||M by running Verify(σCRS , pk, info||M, (S1, S2)).
If this outputs fail, abort the protocol and output ⊥. If it outputs accept, however, re-
randomize the signature by choosing a random value s← R and computing

S′1 = S1

(
τ(u′)

k∏
i=1

τ(ui)bi
)s

and S′2 = S2 · τ(g)−s.

The final signature will then be σ = (S′1, S
′
2); output σ, as well as info and success.

• Verify(σCRS , pk,M, σ): Same as Verify from Section 4.2.

9

We give a proof of the following theorem in Appendix B:

Theorem 5.1. The blind signature scheme outlined above is correct and partially blind, under the
assumption that the hi values in the hiding and binding settings are indistinguishable.

This theorem demonstrates correctness and (partial) blindness, but it does not show one-more
unforgeability. In order to prove this, we need to first define two properties of pairings, adapted
from Freeman [25] for our purposes:

Definition 5.2. A pairing E : B×B → BT is cancelling if there exists a decomposition B = B1×B2

such that E(b1, b2) = 1 for all b1 ∈ B1, b2 ∈ B2.

Definition 5.3. A pairing E : B × B → BT is projecting if there exists a decomposition B =
B1 ×B2, a submodule B′T ⊂ BT , and maps π : B → B and πT : BT → BT , such that B1 ⊆ ker(π),
π(x) = x for x ∈ B2, B′T ⊆ ker(πT), and πT (E(x, y)) = E(π(x), π(y)) for all x, y ∈ B.

Observe that because π leaves values in B2 unchanged, neither π nor πT can be the trivial map
(i.e., the map that is uniformly 1). As we will see in the next section, these properties are both
trivially provided in the instantiation under the SGH assumption. Because SGH also provides the
necessary indistinguishability properties, we can prove the following theorem, a proof of which can
be found in Appendix C:

Theorem 5.4. The blind signature scheme outlined above is one-more unforgeable under the SGH
assumption and the assumption that the modified Waters signature scheme in Section 4 is existen-
tially unforgeable on the submodule B2 ⊆ B.

5.2.1 Instantiation under the SGH assumption

We first recall the Subgroup Hiding (SGH) assumption:

Assumption 5.5 (Boneh-Goh-Nissim [12]). Assuming a generation algorithm G that outputs a
tuple (p, q,G,GT , e) such that e : G × G → GT and G and GT are both groups of order n = pq, it
is computationally infeasible to distinguish between an element of G and an element of Gq. More
formally, we have that for all PPT adversaries A there exists a negligible function ν(·) and a
security parameter k0 such that the following holds for all k > k0:∣∣∣Pr

[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, x) = 0

]
− Pr

[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, xp) = 0

]∣∣∣ < ν(k),

where A will output 1 if it believes x is in Gq and 0 otherwise.

To instantiate the scheme under this assumption, we will work with a group G of order n = pq
for p, q prime. We then define B = G and τ such that τ(x) = x (so τ is just the identity); this
means that we can use E = e. We need only one hi element, namely an h1 such that h1 generates
Gq in the binding setting and h1 generates the whole group G in the hiding setting. The SGH
assumption tells us that these choices of h1 are indistinguishable. We can also describe our ρ map
as ρ(ci) = cqi = (uqi)

bi since h1 has order q. Because the ui are all generators for G and therefore
uqi 6= 1, we can see that the ρ map will indeed reveal the bit bi.

Because h1 will generate either G or Gq, we have B = Gp × Gq. To see that the pairing
e is cancelling, note that every element of Gp can be written as a = gαq for some α ∈ Fp and
every element of Gq can be written as as b = gβp for some β ∈ Fq. Then e(a, b) = e(gαq, gβp) =

10

e(gαβpq, g) = e
(
(gn)αβ, g

)
= 1 because G has order n. Furthermore, e is projecting. To see this,

note that there exists a value λ such that λ ≡ 1 mod p and λ ≡ 0 mod q, and that furthermore
this value is efficiently computable (given the factorization of n) using the Chinese Remainder
Theorem. By computing xλ for some x ∈ B, we cancel out the Gq component of x, while leaving
the Gp component unchanged. This allows us to define π(z) = πT (z) = zλ, which can be easily
seen to satisfy the projecting property.

Finally, to actually compute the value h1, we can set h1 = g in the hiding setting and h1 = gp

in the binding setting. This means that, as with the map ρ, the factorization of n will be required
as a trapdoor to compute h1.

The obvious downside of using our scheme under the SGH assumption is the use of a composite-
order group, which necessitates a common reference string generated by a trusted third party.7 The
upside, on the other hand, is that the scheme is as efficient as possible under this assumption, as
each part of the signature involves only one group element.8

6 Converting to a Prime-Order Setting

In this section, we would like to argue why our scheme, with its current set of security require-
ments, cannot be instantiated under an assumption for prime-order groups, in particular for the
k-Linear family of assumptions. While any scheme based on Groth-Sahai proofs requires the pro-
jecting property from Definition 5.3 and the indistinguishability of elements in B1 and B (i.e.,
the indistinguishability of hiding and binding commitment keys), our scheme requires the extra
cancelling property from Definition 5.2 and thus cannot be instantiated under the k-Linear family
of assumptions. In the following series of lemmas, we will actually prove a stronger statement,
namely that any scheme that requires these three properties (projecting, cancelling, and key in-
distinguishability) cannot be instantiated under a natural use of the k-Linear assumption for any
k.

Lemma 6.1. If B is a finitely-generated R-module, the order of B divides the order of R` for some
` ≥ 1.

Proof. Because B is finitely generated, there exists a natural embedding ψ : B → R`, which also
means there exists a surjective homomorphism φ : R` → B. This immediately implies that the
order of B divides the order of R`.

Lemma 6.2. If the order of G is a prime p, then B = Gk = G×G× . . .×G for some k ≥ 1.

Proof. If the order of G is p, then G can be interpreted as an Fp-module, and so B can also be
interpreted as an Fp-module. Similarly, because we assume that the hi elements are able to generate
all of B (in the hiding setting), we know that B is finitely generated. Then the previous lemma
tells us that B has order pk for some value k ∈ Z; combining this with the structure theorem for
finitely-generated modules over principal ideal domains (a generalization of the structure theorem
for finite abelian groups), we see that B can be decomposed into components of order p, which
implies that B = Gk = G×G× . . .×G.

7It is an open problem to replace the trusted third party with an efficient secure multiparty computation protocol
for computing the CRS.

8Of course, the number of bits taken to represent the group element is much larger than it would be for a prime-
order setting, in which moduli are about 160 bits vs. the 1024 required for composite moduli (at the 80-bit security
level).

11

Lemma 6.3. If the order of G is a prime p, then for a symmetric pairing e : G × G → GT the
order of GT is p as well.

Proof. If G has order p, we also know that it has exponent p, as the exponent must divide the
order of the group. This implies that GT has exponent p as well; to see this, note that e(x, y)p =
e(xp, y) = e(1, y) = 1 for any x, y ∈ G. Because GT has exponent p, its order must be a power of
p. To determine which power, we first observe that every element of GT can be written as e(x, y)
for x, y ∈ G, which implies that there are p2 possible elements in GT , as there are p choices for x
and p choices for y. Because the pairing is symmetric, however, e(x, y) = e(y, x) and thus the order
of GT must be at most p2/2; combining this with the fact that it has exponent p, we see that its
order must be p.

We would now like to show that, in the prime-order setting, our indistinguishability restrictions
on B and its submodules yield a pairing E that can be either projecting or cancelling, but not both
at the same time. Our approach is to construct a cancelling pairing and then show that it implies
that BT contains only one copy of GT ; as we will see, this implies that BT is too small to satisfy
the projecting property.

In general, there are two possible ways that we have observed being used to cancel elements. As
seen in Section 5.2.1, the cancelling in the composite setting is fairly straightforward; we essentially
just use the respective (and, importantly, relatively prime) orders of the Gp and Gq subgroups,
but in a prime-order setting this is not an option, as every component (i.e., G, GT , B, B1, B2,
BT) has exponent p. We therefore need to use certain linear combinations of exponents in order to
successfully cancel elements. As our next lemma will show, forming these linear combinations will
require us to combine elements in the pairing and thus shrink the size of the target module.

Lemma 6.4. If our commitment keys are indistinguishable under a natural use of the (k−1)-Linear
assumption and E is a cancelling pairing, then |BT | = p.

Because this proof is rather long and technical, it can be found in Appendix D. Putting all this
together, we can finally prove our main theorem:

Theorem 6.5. If our commitment keys are indistinguishable using the (k − 1)-Linear assumption
in a natural way, the pairing E : B ×B → BT cannot be both projecting and cancelling.

Proof. By Lemma 6.4, we know that if E is cancelling then |BT | = p. This means that BT is
cyclic, and thus its only submodules are itself and the trivial submodule {1}. If we look back at
our requirements for a projecting pairing in Definition 5.3, we see that we need a proper submodule
B′T such that B′T ⊆ ker(πT); this implies that we need B′T = {1}. Observe, however, that for
any x1 ∈ B1 we have πT (E(x1, y)) = E(π(x1), π(y)) = 1 for all y ∈ B (because B1 ⊆ ker(π) by
definition). Therefore, having B′T = {1} would imply that E(x1, y) = 1 for all x1 ∈ B1, y ∈ B; as
this would imply that our pairing was degenerate, however, it cannot be the case and so E cannot
be projecting.

7 Conclusions and Open Problems

In this paper, we have shown that there are limitations on transformations of pairing-based cryp-
tosystems from composite- to prime-order groups. In particular, we have shown that two properties
of composite-order pairings identified by Freeman — cancelling and projecting — cannot be simulta-
neously obtained in prime-order groups when subgroup hiding is provided by the Decisional Linear

12

assumption in a natural way: when the module B consists of 3 copies of the group G (or, more
generally, k + 1 copies of G for k-Linear).

As evidence that both properties are sometimes called for simultaneously, we have presented a
natural cryptographic scheme whose proof of security calls for a pairing that is both cancelling and
projecting. This scheme is a practical round-optimal blind (and partially blind) signature secure
in the common reference string model, under mild assumptions and without random oracles.

Many open questions remain. First, we would of course like to generalize our result about using
projecting and cancelling in prime-order groups so it does not rely on the “natural” use of Decisional
Linear, but would instead rely solely on the properties of prime-order groups. Similarly, it would
be interesting to see if there are other schemes (or even entire classes of functionality!) that can be
achieved in composite-order but not prime-order settings. Finally, in terms of our blind signature
scheme, it would be interesting to either find an attack demonstrating that an instantiation under
Decisional Linear was in fact insecure (as opposed to just not provably secure) or construct a
different, ad-hoc proof that would instead prove the scheme secure in some prime-order setting.

Acknowledgements

We are grateful to Melissa Chase and David Mandell Freeman for discussions about this work, and
to our anonymous reviewers for their helpful comments. This work was supported by by a MURI
grant administered by the Air Force Office of Scientific Research and by a graduate fellowship from
the Charles Lee Powell Foundation.

References

[1] M. Abdalla, C. Namprempre, and G. Neven. On the (im)possibility of blind message authen-
tication codes. In D. Pointcheval, editor, Proceedings of CT-RSA 2006, volume 3860 of LNCS,
pages 262–79. Springer-Verlag, Feb. 2006.

[2] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving
signatures and commitments to group elements. In T. Rabin, editor, Proceedings of Crypto
2010, volume 6223 of LNCS, pages 209–36. Springer-Verlag, Aug. 2010.

[3] M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Matsumoto, editors,
Proceedings of Asiacrypt 1996, volume 1163 of LNCS, pages 244–51. Springer-Verlag, Nov.
1996.

[4] M. Abe, K. Haralambiev, and M. Ohkubo. Signing on elements in bilinear groups for modular
protocol design. Cryptology ePrint Archive, Report 2010/133, 2010. http://eprint.iacr.
org/.

[5] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind
signatures. In M. Matsui, editor, Proceedings of Asiacrypt 2009, volume 5912 of LNCS, pages
435–50. Springer-Verlag, Dec. 2009.

[6] M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare, editor,
Proceedings of Crypto 2000, volume 1880 of LNCS, pages 271–86. Springer-Verlag, Aug. 2000.

[7] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 480–
494. Springer-Verlag, May 1997.

13

http://eprint.iacr.org/
http://eprint.iacr.org/

[8] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The power of RSA inversion
oracles and the security of Chaum’s RSA-based blind signature scheme. In P. Syverson, editor,
Proceedings of Financial Cryptography 2001, volume 2339 of LNCS, pages 319–38. Springer-
Verlag, 2002.

[9] A. Boldyreva. Threshold signature, multisignature and blind signature schemes based on the
gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, Proceedings of PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, Jan. 2003.

[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, Aug. 2004.

[11] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Com-
puting, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

[12] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian,
editor, Proceedings of TCC 2005, number 3378 in LNCS, pages 325–41. Springer-Verlag, Feb.
2005.

[13] D. Boneh, K. Rubin, and A. Silverberg. Finding composite order ordinary elliptic curves
using the Cocks-Pinch method. Cryptology ePrint Archive, Report 2009/533, 2009. http:
//eprint.iacr.org/2009/533.

[14] F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor,
Proceedings of Eurocrypt 2000, volume 1807 of LNCS, pages 431–44. Springer-Verlag, May
2000.

[15] X. Boyen and B. Waters. Compact group signatures without random oracles. In S. Vaudenay,
editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 427–44. Springer-Verlag,
May 2006.

[16] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 207–22. Springer-Verlag, May 2004.

[17] T. Cao, D. Lin, and R. Xue. A randomized RSA-based partially blind signature scheme for
electronic cash. Computers and Security, 24(1):44–49, Feb. 2005.

[18] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest, and A. Sher-
man, editors, Proceedings of Crypto 1982, pages 199–204. Plenum Press, 1983.

[19] D. Chaum. Blind signature system (abstract). In D. Chaum, editor, Proceedings of Crypto
1983, page 153. Plenum Press, 1984.

[20] D. Chaum. Elections with unconditionally-secret ballots and disruption equivalent to breaking
RSA. In C. Günther, editor, Proceedings of Eurocrypt 1988, volume 330 of LNCS, pages 177–82.
Springer-Verlag, May 1988.

[21] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor,
Proceedings of Crypto 1988, volume 403 of LNCS, pages 319–27. Springer-Verlag, 1990.

[22] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986, volume 263 of
LNCS, pages 186–194. Springer-Verlag, Aug. 1986.

14

http://eprint.iacr.org/2009/533
http://eprint.iacr.org/2009/533

[23] M. Fischlin. Round-optimal composable blind signatures in the common reference string model.
In C. Dwork, editor, Proceedings of Crypto 2006, volume 4117 of LNCS, pages 60–77. Springer-
Verlag, Aug. 2006.

[24] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. J.
Cryptology, 23(2):224–80, Apr. 2010.

[25] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In H. Gilbert, editor, Proceedings of Eurocrypt 2010, LNCS, pages 44–61.
Springer-Verlag, May 2010.

[26] G. Fuchsbauer. Automorphic signatures in bilinear groups and an application to round-optimal
blind signatures. Cryptology ePrint Archive, Report 2009/320, 2009. http://eprint.iacr.
org/.

[27] D. Galindo, J. Herranz, and E. Kiltz. On the generic construction of identity-based signatures
with additional properties. In X. Lai and K. Chen, editors, Proceedings of Asiacrypt 2006,
volume 4284 of LNCS, pages 178–93. Springer-Verlag, Dec. 2006.

[28] S. Garg, A. Sahai, and B. Waters. Efficient fully collusion-resilient traitor tracing scheme.
Cryptology ePrint Archive, Report 2009/532, 2009. http://eprint.iacr.org/2009/532.

[29] M. Green and S. Hohenberger. Blind identity-based encryption and simulatable oblivious
transfer. In Proceedings of Asiacrypt 2007, volume 4833 of LNCS, pages 265–282. Springer-
Verlag, 2007.

[30] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for NIZK. In
C. Dwork, editor, Proceedings of Crypto 2006, volume 4117 of LNCS, pages 97–111. Springer-
Verlag, Aug. 2006.

[31] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In
S. Vaudenay, editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–58.
Springer-Verlag, May 2006.

[32] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Proceed-
ings of Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer-Verlag, 2008.

[33] C. Hazay, J. Katz, C.-Y. Koo, and Y. Lindell. Concurrently-secure blind signatures without
random oracles or setup assumptions. In S. Vadhan, editor, Proceedings of TCC 2007, volume
4392 of LNCS, pages 323–341. Springer-Verlag, 2007.

[34] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In
A. Menezes, editor, Proceedings of Crypto 2007, volume 4622 of LNCS, pages 553–71. Springer-
Verlag, Aug. 2007.

[35] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In B. Kaliski, Jr.,
editor, Proceedings of Crypto 1997, volume 1294 of LNCS, pages 150–64. Springer-Verlag, Aug.
1997.

[36] A. Kiayias and H.-S. Zhou. Concurrent blind signatures without random oracles. In M. Yung,
editor, Proceedings of SCN 2006, volume 4116 of LNCS, pages 49–62. Springer-Verlag, Sept.
2006.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2009/532

[37] H. Lipmaa. On Diophantine complexity and statistical zero-knowledge arguments. In Proc.
Asiacrypt ’03, volume 2894 of Lecture Notes in Computer Science, pages 398–415. Springer-
Verlag, 2003.

[38] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable solution to elec-
tronic cash. In R. Hirschfeld, editor, Proceedings of Financial Cryptography 1998, volume 1465
of LNCS, pages 184–97. Springer-Verlag, Feb. 1998.

[39] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys and
C. Adams, editors, Proceedings of SAC 1999, volume 1758 of LNCS, pages 184–99. Springer-
Verlag, Aug. 1999.

[40] G. Martinet, G. Poupard, and P. Sola. Cryptanalysis of a partially blind signature scheme,
or How to make $100 bills with $1 and $2 ones. In G. D. Crescenzo and A. Rubin, editors,
Proceedings of Financial Cryptography 2006, volume 4107 of LNCS, pages 171–76. Springer-
Verlag, 2006.

[41] T. Okamoto. Efficient blind and partially blind signatures without random oracles. Cryptology
ePrint Archive, Report 2006/102, 2006. http://eprint.iacr.org/.

[42] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In S. Halevi
and T. Rabin, editors, Proceedings of TCC 2006, volume 3876 of LNCS, pages 80–99. Springer-
Verlag, Mar. 2006.

[43] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages 223–38. Springer-Verlag,
May 1999.

[44] K. Paterson and J. Schuldt. Efficient identity-based signatures secure in the standard model.
In L. Batten and R. Safavi-Naini, editors, Proceedings of ACISP 2006, volume 4058 of LNCS,
pages 207–22. Springer-Verlag, July 2006.

[45] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
J. Cryptology, 13(3):361–96, 2000.

[46] C. Schnorr. Efficient signature generation for smart cards. J. Cryptology, 4(3):161–174, 1991.

[47] H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from
progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.
http://eprint.iacr.org/.

[48] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 114–27. Springer-Verlag, May
2005.

[49] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In Y. Zheng,
editor, Proceedings of Asiacrypt 2002, volume 2501 of LNCS, pages 533–47. Springer-Verlag,
Dec. 2002.

16

http://eprint.iacr.org/
http://eprint.iacr.org/

A Formal Security Definition for Blind Signatures

Definition A.1. A blind signature scheme is considered concurrently secure if for all PPT algo-
rithms A there exists a negligible function ν(·) and a security parameter k0 such that for all k > k0

the following three properties hold:

1. Correctness: For all σCRS ← Setup(1k) and (pk, sk) ← KeyGen(σCRS), if σ is the output of
User(σCRS , pk,m)↔ Signer(σCRS , sk) for an honest user and signer, then Verify(σCRS , pk,m, σ)
outputs accept with probability 1.

2. Blindness: Let b← {0, 1} be unknown to A. Define the following game:

• Step 1. σCRS ← Setup(1k).

• Step 2. (M0,M1, pk)← A(σCRS).

• Step 3. A engages in two arbitrarily interleaved signing protocols; one with User(σCRS , pk,Mb)
and one with User(σCRS , pk,M1−b) (where both users act honestly).

• Step 4. If the first user outputs σb and the second user outputs σ1−b (i.e., both users
succeed) then A is given σ0 and σ1.

• Step 5. In the end, A outputs a bit b′.

The signature scheme is considered blind if the probability (over the choices of b, the ran-
domness used in Setup, and the randomness used by the users and A) that b′ = b is at most
1/2 + ν(k).

3. One-more unforgeability: Define the following game for our adversary A:

• Step 1. σCRS ← Setup(1k).

• Step 2. (pk, sk)← KeyGen(σCRS).

• Step 3. A, on input σCRS and pk, engages in poly(k) arbitrarily interleaved executions
of the signing protocol with polynomially many copies of Signer(σCRS , sk) (on messages
of its choice). Let ` denote the number of executions in which the signer outputs success
at the end.

• Step 4. A outputs a collection of message-signature pairs {(Mi, σi)}mi=1 such that Mi 6=
Mj for all i 6= j, and Verify(σCRS , pk,Mi, σi) = success for all 1 ≤ i ≤ m.

The signature scheme is considered one-more unforgeable if the probability (again, taken over
the randomness used in Setup, KeyGen, A, and Signer) that m > ` is at most ν(k).

B Proof of (Partial) Blindness

Here we provide a proof of Theorem 5.1 from Section 5.2, which asserts that our signature protocol
is partially blind under the assumption that keys are indistinguishable in the hiding and binding
settings.

Proof. First, we show correctness of the protocol. This argument is based on the observation (in-
spired by Groth, Ostrovsky, and Sahai [31]) that if b is equal to 0 or 1, then E(τ(ui)bi , τ(ui)bi−1) = 1.

17

Using this observation, we see that a correctly formed commitment ci will pass the test in Equa-
tion 2, as we have that

E(ci, τ(ui)−1ci) = E

τ(ui)bi ·
m∏
j=1

h
tij
j , τ(ui)bi−1

m∏
j=1

h
tij
j


= E

(
τ(ui)bi , τ(ui)bi−1

)
· E

 m∏
j=1

h
tij
j , τ(ui)bi−1

m∏
j=1

h
tij
j

 · E
τ(ui)bi ,

m∏
j=1

h
tij
j


= 1 ·

m∏
j=1

E
(
h
tij
j , τ(ui)−1ci

) m∏
j=1

E
(
τ(ui)bi , h

tij
j

)
=

m∏
j=1

E
(
hj , (ci/τ(ui))tij

)
· E
(
hj , τ(ui)bitij

)
=

m∏
j=1

E
(
hj , c

tij · τ(ui)−tij+bitij
)

=
m∏
j=1

E
(
hj , (τ(ui)bi−1 · ci)tij

)

=
m∏
j=1

E

hj , (τ(ui)2bi−1 ·
∏
j

h
tij
j)tij


=

m∏
j=1

E(hj , πij),

so that the two sides of the equation are equal and the check will pass. In addition, each of the
checks in Equation 3 will pass, as

E(K3j , τ(g)) = E(h−rj , τ(g)) = E(τ(g), h−rj) = E(τ(g)−r, hj) = E(K2, hj)

for 1 ≤ j ≤ m. We also know that
∏
i

∏
jK

tij
3j =

∏
i

∏
j(h
−r
j)tij = (

∏
i

∏
j h

tij
j)−r, so that S1 =

K1
∏
i

∏
jK

tij
3j = τ(g)α(τ(u′)

∏
i τ(ui)bi)r. Combining this with the fact that K2 = τ(g)−r, we see

that forming S1 and S2 as described in Equation 4 will give us a properly formed signature for our
signature scheme. Finally, by the argument at the end of Section 4.2, the re-randomization process
will not alter the validity of the signature, so the user really will end up with a valid signature.

Now, we need to argue that if the hi in the hiding setting are indistinguishable from the hi in the
binding setting, this protocol is partially blind. To start, we run a series of protocol interactions
in the hiding setting rather than the binding setting; note that our assumption about the keys
implies that an adversary A cannot perform more than negligibly differently in this setting than
in the actual protocol (in which the keys are binding). To argue this more explicitly, we see that,
if B represents an adversary trying to distinguish between the keys and we use AdvB to denote B’s

18

advantage over a random guess, we have that

AdvB = |Pr[A = 1|binding]− Pr[A = 1|hiding]|

=
1
2

∣∣∣(2Pr[A = 1|binding]− 1)− (2Pr[A = 1|hiding]− 1)
∣∣∣

=
1
2

∣∣∣(Pr[A = 1|binding]− 1
2

)− (Pr[A = 1|hiding]− 1
2

)
∣∣∣

=
1
2
|AdvA,binding − AdvA,hiding |,

where AdvA,binding denotes A’s advantage in the binding setting and AdvA,hiding denotes A’s ad-
vantage in the hiding setting. By assumption, B’s advantage must be negligible; this implies that
A’s advantage in the hiding setting must be negligibly different from its advantage in the binding
setting.

To try to find the ways in which A could attempt to learn information about the user’s message,
we remind ourselves of the game in Definition A.1: A picks two messages and two strings info(0)

and info(1), as well as a signing keypair; it then engages in one interaction with a user on message
Mb and info string info(b) and one interaction with a user on message M1−b and info string info(1−b)

(where b is a random bit unknown to A). Finally, if both users output success and info(0) = info(1),
A gets to see the corresponding unblinded signatures and in the end must output a bit b′ which
acts as its guess for b. In what follows, we argue that, in the hiding setting, A cannot do even
negligibly better than a random guess in this game. To do this, we discuss three potential sources
of information: 1) the protocol interaction, 2) whether or not the users accept, and 3) the output
signatures (if A is given them).

Protocol interaction. Because our blind signature scheme is two-move, the only opportunity A
has to learn any information about the underlying message is in the request req (which we assume
to be computed honestly). The first thing we can notice about req is that it does not depend at all
on the info string being used, so that any information A learns must be about the message itself.
Unfortunately for A, however, the hiding setting guarantees that each ci or πij value will just be
a random element of B (because the hi are chosen to generate all of B) and therefore will contain
no information about the message bits bi.

Whether users accept. It also turns out that A cannot learn any new information by observing
whether or not the users accept the blinded signatures (K1,K2, ~K3). Without loss of generality,
let’s assume A tries to learn information from the user working with Mb. Since the user is honest,
the request tuple is formed properly, so that in particular each commitment is of the form ci =
τ(ui)bi

∏
j h

tij
j for randomness tij ← R. This means that the value c formed by A will be

c = τ(u′)

(
k0∏
i=1

τ(ui)bi
) k∏

i=k0+1

ci

 =

(
τ(u′)

k∏
i=1

τ(ui)bi
) k∏

i=k0+1

m∏
j=1

h
tij
j

 .

We now observe that A can use this value to determine for itself whether or not the user will accept
the blinded signature formed (though not necessarily formed properly) using c and the unblinded
signature (S1, S2). To see this, we look at the set of checks the user performs upon receiving the
blinded signature. The first set, which is run in Equation 3 for all 1 ≤ j ≤ m, can clearly be run
by A. We ignore the re-randomization process (as we have already argued that it does not affect
the validity of the signature) and move on to the final check in Equation 1. We first note that if

19

the check in Equation 3 passed for all values of j, then we can multiply together the left-hand sides
and right-hand sides of each of these equations to see that

∏
j E(K3j , τ(g)) = E(K2,

∏
j hj). Using

this fact and rearranging terms on the left-hand side of the equation, we see that

LHS of (1) = E(S1, τ(g)) · E

(
S2, τ(u′)

k∏
i=1

τ(ui)bi
)

= E

K1

k∏
i=k0+1

m∏
j=1

K
tij
3j , τ(g)

 · E(K2, τ(u′)
k∏
i=1

τ(ui)bi
)

= E(K1, τ(g)) · E

(
K2, τ(u′)

k∏
i=1

τ(ui)bi
)
·

k∏
i=k0+1

m∏
j=1

E(K3j , τ(g))tij

= E(K1, τ(g)) · E

(
K2, τ(u′)

k∏
i=1

τ(ui)bi
)
·

k∏
i=k0+1

E

K2,
m∏
j=1

h
tij
j


= E(K1, τ(g)) · E(K2, c),

which are all values that A computed itself. Therefore, A can check Equation 3 and then check its
own verification equation E(K1, τ(g)) · F (K2, c) = A (where recall A is the public signing key) to
determine on its own whether or not the user will accept, thus learning no information from this
stage of the protocol either.

Resulting signatures. Finally, if both users accept and if info(0) = info(1), A will be given the
resulting signatures σ0 and σ1 on M0 and M1. Because these signatures have been re-randomized
by the user, they will both be uniformly distributed signatures (on info||M0 and info||M1 respec-
tively) and will therefore give A no information about the underlying message.

Thus, we have argued that there is no part of the blind signing protocol (run in the hiding setting)
in which A can learn any information about the messages being used by the honest users (even if A
has adversarially generated the signing keypair; in fact, even if A is computationally unbounded)
and therefore cannot do even negligibly better than a random guess for the bit b′. Combining
this with the discussion at the beginning of the proof that A cannot perform more than negligibly
differently in this setting than in the binding setting (i.e., the one used in the actual protocol)
means we are done.

C Proof of One-More Unforgeability

First, we prove a lemma that follows almost directly from Definition 5.2:

Lemma C.1. If E is cancelling, then E(q1h1, q2h2) = E(q1, q2) · E(h1, h2) for q1, q2 ∈ B2 and
h1, h2 ∈ B1.

Proof. This follows immediately from the properties of a cancelling pairing; namely we see that

E(q1h1, q2h2) = E(q1, q2h2) · E(h1, q2h2)
= E(q1, q2) · E(q1, h2) · E(h1, q2) · E(h1, h2)
= E(q1, q2) · 1 · 1 · E(h1, h2)
= E(q1, q2) · E(h1, h2).

20

We now prove the full theorem for one-more unforgeability, as stated in Theorem 5.4 in Sec-
tion 5.2.

Proof. To show this, we will take an adversary A that breaks the one-more unforgeability property
on B and use it construct an adversary B that breaks the existential unforgeability of our modified
Waters signature on B2. Our approach is to essentially use two maps φ : G→ B2 and ψ : G→ B1;
these maps serve to split up B into its separate components and allow B to manipulate values in
one submodule while leaving unchanged the values in the other submodule.

To start, our adversary B will receive as input a CRS computed as described in Section 4.1; i.e.,
one that specifies the group G, the module B, the ring R such that G and B can be interpreted
as R-modules, as well as all the other maps and generators, and in particular a map τ ′ such that
τ ′ : G→ B2. Note that some trapdoor will be required to compute τ ′, as it reveals the submodule
B1. The CRS also specifies elements g, u′, u1, . . . , uk which are all generators for G. We now
describe the behavior of B in terms of the following steps:

Setup: B will set the map φ = τ ′ and construct a map ψ : G→ B1 such that τ = φ · ψ for the τ
specified by the protocol. It will then give to A the same groups and modules it received, with the
exception that it will exchange its input map τ ′ for τ , so that τ now maps to the full module B.
It will then use its trapdoor to construct elements h1, . . . , hm that generate B1, and publish these
elements as well.

KeyGen: B was also given a public key A′ = E(τ ′(g), τ ′(g))α = E(φ(g), φ(g))α for some unknown
α ∈ R. To output its own set of keys, B will pick β ← R and compute A = A′ · E(ψ(g), ψ(g))β.
This value will be output to the forger A.

Signing: For each of the executions of the blind signing protocol, A will start by giving B the
req tuple. For each ci in req , B will compute ρ(ci) = ρ ◦ τ(ui)bi and thus recover the message
M = bk0+1 . . . bk.9 B will also perform the check in Equation 2 for each pair (ci, πi) and abort and
output ⊥ if any of these pairs fails to pass the check. Otherwise, B will then query its own signing
oracle on M and receive a signature of the form (S1, S2), where

S1 = φ(g)α
(
φ(u′)

k∏
i=1

φ(ui)bi
)r

and S2 = φ(g)−r

for a random r ← R. To transform this to a blind signature in the full module B, B will choose a
random s← R and compute

K1 = S1 · ψ(g)β
(
ψ(u′)

k∏
i=1

ψ(ui)bi
)s
·

 k∏
i=k0+1

ci
τ(ui)bi

s

, (5)

K2 = S2 · ψ(g)−s, and (6)
K3j = h−sj (7)

for 1 ≤ j ≤ m. B will then send the tuple (K1,K2, ~K3) back to A and output info and success.
9Again we remember that a trapdoor may be required to make the ρ map efficiently computable.

21

Output: Finally, A will output a tuple of the form ((M1, σ1), . . . , (M`, σ`), (M`+1, σ`+1)) such
that Verify(σCRS , pk,Mi, σi) = accept for all i, but B output success for only ` iterations of the
signing protocol. By the pigeonhole principle, then, there must be at least one message M∗ such
that A did not obtain a signature from B on message M∗. In particular, since A did not get
a signature from B on message M∗, we know that B also did not get a signature from its own
signing oracle on M∗. This means that B can use the message M∗ and its corresponding signature
(S∗1 , S

∗
2) to output its own forgery. To convert this signature in B into a signature in B2, B uses the

projecting maps π and πT (from Definition 5.3) to compute S1 = π(S∗1) and S2 = π(S∗2); because
B1 is in the kernel of π, this will map the signature to its B2 component. Finally, B will output
the pair (M∗, σ∗ = (S1, S2)).

Analysis: Now we need to analyze the behavior of B and argue that it is indistinguishable from
the behavior of an honest signer; in addition, we need to argue that the output pair really is a valid
forgery for the signature scheme on the submodule B2. We’ll start with the former, and work step
by step.

In the setup phase, the commitment keys h1, . . . , hm are computed honestly. In fact, the only
difference in what B gives A is that it constructs the map τ to hide the submodule B1. Because τ
was constructed to match exactly the τ expected by A, however, this will also look indistinguishable
to A, as it will in fact be identical to the output of the honest CRS algorithm.

In the key generation phase, we argue that the key A is a random element of BT and therefore
will be distributed identically to a properly formed public key. To show this, we remember that an
honestly formed key A will be of the form E(τ(g), τ(g))c for some random c← R. The key formed
by B, however, looks like E(φ(g), φ(g))a · E(ψ(g), ψ(g))b, again for random a, b ← R. Because we
are using SGH, we know that τ maps to the full module B and so E(τ(g), τ(g))c will represent
a random element of the full target module BT . Similarly, the only two submodules of BT are
the module generated by pairing elements in B1 and the modular generated by pairing elements
in B2; because φ(g) and ψ(g) generate B1 and B2 respectively, B is effectively just multiplying
together random elements of each of these submodules to generate a random element of the full
target module BT , meaning the two distributions are in fact identical.

We now come to the signing interactions with A. Although the blind signature that B sends
to A is not computed according to the Signer algorithm specifications, the SGH assumption again
guarantees that the values will be distributed identically to their honest counterparts. A bit more
formally, we recall that in the honest game, the elements K1 and K2 are both elements of the form
τ(g)t, where t is some random value. Here, however, K1 and K2 are both elements of the form
φ(g)t1ψ(g)t2 for random values t1, t2 ∈ R. Because τ(G) = B while ψ(G) = B1 and φ(G) = B2

(in other words, all three maps are surjective), in both these cases K1 and K2 will just be random
elements in B and so the distributions are again identical. In addition, we can argue that the values
sent will also pass the two checks performed by the user.

We start by examining the checks performed by A in Equations 3 and 1. In the first of these
checks, we look back at Equation 6 to remind ourselves that K2 = φ(g)−r · ψ(g)−s for r, s ← R.
Using this decomposition, we see that

E(K3j , τ(g)) = E(h−sj , φ(g)ψ(g)) = E(φ(g), h−sj) · E(ψ(g), hj)−s = 1 · E(ψ(g)−s, hj),

where this last equality follows from the cancelling property of E and the fact that φ(g) ∈ B2.
Similarly, we find that

E(K2, hj) = E(φ(g)−rψ(g)−s, hj) = E(φ(g), hj)−r · E(ψ(g)−s, hj) = 1 · E(ψ(g)−s, hj)

22

so that the two sides of Equation 3 are equal for all 1 ≤ j ≤ m and this first set of checks will pass.
For the last check, we first go back to Equation 5 to see how K1 is computed. Because B did not
abort in the signing phase, the zero-knowledge property of the proofs (as well as the derivation in
Appendix B) tell us that the commitments must be correctly formed, meaning they are formed as
ci = τ(ui)bi

∏
j h

tij
j ; computing the product

∏
i ci/τ(ui)bi will in fact give us the desired product∏

i

∏
j h

tij
j . This means that, writing Uψ = ψ(u′)

∏k
i=1 ψ(ui)bi , we have

K1

k∏
i=k0+1

m∏
j=1

K
tij
3j = S1 · ψ(g)β · U sψ.

We now write out the left-hand side of Equation 1 using Uτ = τ(u′)
∏
i τ(ui)bi and Uφ = φ(u′)

∏
i φ(ui)bi

to see that

LHS of (1) = E

K1

k∏
i=k0+1

m∏
j=1

K
tij
3j , τ(g)

 · E(K2, Uτ)

= E
(
φ(g)αψ(g)βU rφU

s
ψ, τ(g)

)
· E
(
φ(g)−rψ(g)−s, Uτ

)
= E

(
φ(g)αψ(g)β · U rφU sψ, φ(g)ψ(g)

)
· E(φ(g)−rψ(g)−s, UφUψ)

= E (φ(g)α, φ(g)) · E
(
ψ(g)β, ψ(g)

)
· E
(
U rφU

s
ψ, φ(g)ψ(g)

)
· E
(
φ(g)−r, Uφ

)
· E
(
ψ(g)−s, Uψ

)
= A · E

(
U rφ, φ(g)

)
· E
(
U sψ, ψ(g)

)
· E
(
Uφ, φ(g)−r

)
· E
(
Uψ, ψ(g)−s

)
= A · E

(
U rφ · U−rφ , φ(g)

)
· E
(
U sψ · U−sψ , ψ(g)

)
= A,

so that Equation 1 will in fact verify using the values B formed and A will output success (note
that the derivation makes use of Lemma C.1, specifically between lines 3 and 4 and lines 4 and 5).

Finally, we can turn to the output of B. Because A’s forgery is valid, we know that

E(S∗1 , τ(g)) · E(S∗2 , Uτ) = A. (8)

Furthermore, because B = B1 × B2, where B1 is in the kernel of the projecting map π from
Definition 5.3, computing π(S∗1) and π(S∗2) will cancel out the B1 component of S∗1 and S∗2 and
leave us with values in B2. Similarly, computing πT (A) yields

πT (A) = πT (E(φ(g), φ(g))αE(ψ(g), ψ(g))β)
= πT (E(φ(g), φ(g))α) · πT (E(ψ(g), ψ(g))β)
= E(π ◦ φ(g), π ◦ φ(g))α · E(π ◦ ψ(g), π ◦ ψ(g))β

= E(φ(g), φ(g))α · E(1, 1)β

= A′,

since by definition π cancels elements in B1 and leaves elements in B2 alone (and φ(g) ∈ B2 and
ψ(g) ∈ B1, again just by definition).

Finally, we use the projecting map πT applied to the left-hand side of Equation 8 to see that

πT (E(S∗1 , τ(g)) · E(S∗2 , Uτ)) = E(π(S∗1), π(τ(g))) · E(π(S∗2), π(Uτ))
= E(π(S∗1), φ(g)) · E(π(S∗2), Uφ),

23

where we use projecting, cancelling, and Lemma C.1 to derive this last line of our equation. If
we now recall that B’s original input map τ ′ is in fact identical to what we are calling φ, we can
see that we have values S1 and S2, as well as a value U corresponding to a message M , such that
E(S1, τ

′(g)) ·E(S2, U) = A′, and so we are done, as the output will pass the verification check and
is therefore a valid forgery.

D Proof of Lemma 6.4

In this section, we prove Lemma 6.4 from Section 6, which states that for a cancelling pairing
instantiated using (k − 1)-Linear we must have |BT | = p.

Proof. The (k − 1)-Linear assumption states that tuples of the form (gα1 , gα2 , . . . , gα1r1 , gα2r2 , . . . ,
g

P
i ri) are indistinguishable from ones of the form (gα1 , gα2 , . . . , gα1r1 , gα2r2 , . . . , gαk) for αi, ri ←

Fp. Therefore, a natural choice for B (and the one used by Groth and Sahai [32] for the k = 3 case)
is all k-tuples, with commitment keys h1 = (gα1 , 1, . . . , 1, g), hi = (1, 1, . . . , gαi , 1, . . . , 1, g), and
hk = (gα1s1 , gα2s2 , . . . , gαjsj , . . . , g

P
i si) for some s1, . . . , sk−1 ← Fp (in the binding case, and in the

hiding case hk is chosen to be linearly independent from all the previous hi elements). If these hi
generate B1, then elements of B1 are of the form (gα1r1 , . . . , g

P
i ri), where the values r1, . . . , rk−1

are allowed to range over all of Fp and thus B1 has order pk−1. As B = B1 × B2 and B has order
pk, this implies that B2 has order p and so we can write elements in B2 as (gβ1t, gβ2t, . . . , gβkt) for
some fixed β1, . . . , βk ∈ Fp (and t allowed to range over all Fp values).

To start, we write elements in B as either a = (a1, . . . , ak) or b = (b1, . . . , bk). We will generally
use a ∈ B1 and b ∈ B2, which means we can write them in their k − 1-Linear forms; namely as
a = (gα1r1 , . . . , gαk−1rk−1 , g

P
i ri) for some r1, . . . , rk−1 ∈ Fp and b = (gβ1t, . . . , gβkt) for some t ∈ Fp.

We can furthermore observe that the αi values are hidden, and that none of them can be equal to
0, as this would give us an easy way to distinguish B1 from B; more specifically, if αi = 0, then
given a random element in either B1 or B, we can check if the i-th value in the tuple is 1; if it is,
output B1 and otherwise output B. By similar logic, no αi can be related to another αj in some
known way, as this would again give us a way to distinguish between elements of B1 and elements
of B.

In general, elements of BT will be tuples, where each entry is of the form T = e(ai, bj)eij · . . . ·
e(a`, bm)e`m , so that any ai value can be paired with any (and possibly many) bj values, using any
coefficient eij . This is not quite true, however, as the eij values cannot depend on the αi values (as
they are assumed to be hidden) and furthermore cannot depend on the βj values. To see this last
part, suppose that the βj values were efficiently computable (as they would be if they were related
in some known way to the given eij values). Then given an element x in either B1 or B, we could
compute an element in B2 using the βj values and pair it with x; if the resulting value is 1 then we
can conclude x ∈ B1 and otherwise that x ∈ B.

Now, we suppose that a ∈ B1 and b ∈ B2 and see what we require in order to have T = 1. In
full generality (and cancelling the t values, as the result needs to hold for all t and so in particular
for t 6= 0), our requirement becomes having

∑
i

ri

∑
j

eijαiβj +
∑
j

ekjβj

 = 0,

where the terms in the first inner sum correspond to the cases in which we pair ai with bj for some j
and i 6= k, and the terms in the second inner sum correspond to the cases in which we pair ak with

24

bj for some j. We start by rewriting this equation as
∑

i ri(αi(
∑

j eijβj) +
∑

j ekjβj) = 0. Now,
suppose some ai term does not appear anywhere in the pairing, in other words that there exists
an ` such that e`j = 0 for all j. Then the term for ` becomes r`(

∑
j ekjβj) = 0, which implies that∑

j ekjβj = 0. Because this term exists for all i, however, we end up with the requirement that

αi(
∑
j

eijβj) +
∑
j

ekjβj = αi(
∑
j

eijβj) = 0,

and so we require
∑

j eijβj = 0 for all values of i. If this were true, however, then consider
pairing an arbitrary element c = (gγ1 , . . . , gγk) with b. Then we have T = e(g, g)

P
i γi(

P
j eijβj) =

e(g, g)
P

i γi(0) = 1, which implies that this tuple element will be 1 when b is paired with any value
in B, and not just values in B1. Therefore, if the BT tuple consisted only of elements of this form,
our pairing would be degenerate and so we conclude that this type of element cannot be the only
one appearing in the BT tuple.

Next, suppose that we do have each ai term appear in the product; this means that each ri
term does in fact appear in the sum. We can again group around each αi to see that we require

αi
∑
j

eijβj +
∑
j

ekjβj = 0. (9)

If we had
∑

j ekjβj = 0, then the only way for this equation to be satisfied would be to have∑
j eijβj = 0, which we also saw as a possibility earlier and will discuss later on. Assuming this

doesn’t happen, we end up with k − 1 linear equations (one for each i) over k variables (the βj);
we would now like to argue that these equations are in fact linearly independent. To see this, just
note that the i-th equation is the only equation containing the αi value, and that furthermore it
contains no α` value for ` 6= i. Therefore, there is no way to write the other equations in terms of
the i-th equation, as doing so would require us to introduce an αi term, thus introducing an αi term
into the

∑
j ekjβj term and violating the specified form of the ak term (namely, that ak = g

P
i ri

and so no αi terms appear in the exponent). As this is true for all i, the equations must be linearly
independent.

Now that we know our k−1 equations over the βj are all linearly independent, we can conclude
that the solution space (i.e., the space of βj values) must be at most one-dimensional. Because B2

has dimension 1, however, we know that the space of βj values is exactly 1, which means that there
can be at most k − 1 equations over the βj variables before the system becomes overdetermined.

We must now consider the case when we have another element in the BT tuple, call it T ′. We can
define the set {eqi}k−1

i=1 to be the set of constraints imposed by T (of the form in Equation 9), and
see that T ′ comes with its own set of constraints {eq′i}

k−1
i=1 ; i.e., the requirement that αi

∑
j e
′
ijβj +∑

j e
′
kjβj = 0 for all i (and for some different coefficients e′ij , e

′
kj from the ones used to compute T).

By the same argument as before, we conclude that these equations must all be linearly independent.
Because we already have k− 1 linearly independent equations {eqi} over the βj , however, we know
we cannot add any more without overconstraining the variables, and so we know that each equation
eq′i in the T ′ set must be linearly dependent on the {eqi} ones from T . Therefore, we look at the
i-th equation, αi

∑
j e
′
ijβj +

∑
j e
′
kjβj = 0, and consider how to write it in terms of the equations

{eqi}. As before, however, we know we cannot introduce any new αi variables when constructing
our linear dependence, and so the only choice for this equation eq′i is for it to depend on the i-th
equation eqi from the T set, as it is the only one that also already contains an αi term. So, we can
write eq′i = cieqi for some constant ci; as this was true for an arbitrary i, we can repeat it for all i to
end up with a series of dependencies of the form eq′1 = c1eq1, . . . , eq

′
k−1 = ck−1eqk−1. Although at

first glance the ci terms might all be distinct, we observe that each equation eq′i contains the term

25

ci
∑

j ekjβj , and that this value does in fact need to be equal across all equations, so that we do
end up with c = c1 = . . . = ck−1. This further implies that T ′ = T c, meaning that any additional
terms will be dependent on T and so, although we can add in more elements to the tuple, BT will
still contain only one copy of GT .

We have one final step left in our proof, namely showing that the
∑

j eijβj = 0 case can never
come up. As mentioned, this case can occur only if the tuple also contains some other type of
element, as otherwise the pairing would be degenerate. By what we have just shown, however, the
only other type of tuple element involves constraining the βj variables using the maximum number
of equations, and so it is not possible to add the extra constraint that

∑
j eijβj = 0. Therefore, we

must conclude that these two types of elements cannot occur at the same time; as the first type
could only occur if the second did as well, however, we conclude that only the second type can
exist. Finally, we have argued that if we use this type then BT can contain only one copy of GT ,
which using Lemma 6.3 means that |BT | = p and so we are done.

E Blind Identity-Based Encryption

In this section, we briefly outline our blind IBE scheme based on our blind signature. The notion
of a blind IBE scheme was introduced by Green and Hohenberger [29]; here we use their definitions
for the scheme and its security properties.

A blind IBE scheme consists of four algorithms: the Setup(1k) algorithm which is run by
the master authority to output params and the master secret key msk , an interactive protocol
BlindExtract run between a user with identity id and the master authority in which the user obtains
a secret key skid for his identity id , an Encrypt(params, id ,m) algorithm in which a user computes
a ciphertext c, and finally a Decrypt(params, id , skid , c) algorithm which uses skid to decrypt the
ciphertext c and output m.

There are three security properties that a blind IBE scheme must satisfy. The first, adaptive-
identity security, requires us to show that the underlying IBE scheme is IND-ID-CPA secure [11],
a strengthening of IND-sID-CPA security [16] that allows the adversary to adaptively pick the
identities. The second, leak-free extraction, is related to the one-more unforgeability property
of blind signatures in that it requires that a malicious user cannot learn anything more from
BlindExtract than it could learn from an unblinded extraction protocol.10 Finally, the third property,
selective-failure blindness, is related to the blindness property of our signature scheme in that a
malicious authority cannot learn anything about the user’s identity during the BlindExtract protocol;
in particular, it cannot choose to fail based on the user’s choice of identity.

Because our signature scheme is a generalization of the Waters signature scheme, our blind IBE
will also be a straightforward generalization of the Waters IBE. This means that the Encrypt and
Decrypt algorithms should look very familiar, as they are generalizations of the same algorithms from
Waters. Furthermore, we remind ourselves that the Waters IBE requires the Decisional Bilinear
Diffie Hellman (DBDH) assumption for security, and so the security of our blind IBE will be based
on the same assumption (in addition to whatever assumption we use for the blindness property).

• Setup(1k): Here, we output the CRS from our Setup algorithm for the blind signature scheme
in Section 5, as well as the keypair (pk = A, sk = τ(g)α) (where we remind ourselves that
A = F (τ(g), τ(g))α) from the Keygen algorithm. The authority will use msk = τ(g)α, and
the identity space will be I = {0, 1}k.

10As Green and Hohenberger note, leak-free extraction is stronger in that it implies one-more unforgeability.

26

• BlindExtract: In this protocol, we will run User(σCRS , pk, v)↔ Signer(σCRS , sk) from the blind
signature scheme, where v represents the user’s identity and the output signature (S1, S2) will
be interpreted as the secret key skv for this identity.

• Encrypt(pk,M, v): We first write pk = A and v = b1 . . . bk. Then the ciphertext C will be

C =

(
AtM, τ(g)−t,

(
τ(u′)

k∏
i=1

τ(ui)bi
)−t)

for some random value t← R.

• Decrypt(skv, C): Here we write skv = (S1, S2) and C = (C1, C2, C3). Then we compute

M = C1 · E(S2, C3) · E(S1, C2).

Theorem E.1. Under the DBDH and SGH assumptions, the above protocol is a concurrently secure
blind IBE system that satisfies leak-free extraction and selective-failure blindness.

Proof. (Sketch) First, we need to argue correctness of the Encrypt and Decrypt protocols (as the
correctness of the BlindExtract phase has already been argued in Theorem 5.1). To show that
Decrypt completely recovers the message M , we write U = τ(u′)

∏
i τ(ui)bi and see that

C1 · E(S2, C3) · E(S1, C2) = (E(τ(g), τ(g))α)t ·M · E(τ(g)−r, U−t) · E(τ(g)αU r, τ(g)−t)
= M · E(τ(g), τ(g))αt · E(τ(g), U)rt · E(τ(g)α, τ(g)−t) · E(U, τ(g))−rt

= M · E(τ(g), τ(g))αt · E(τ(g), τ(g))−αt

= M.

The IND-ID-CPA security of the scheme under the DBDH assumption has already been argued in
Waters’ original security proof, and so we won’t reproduce it here and instead move on to leak-free
extraction and selective-failure blindness. Because of the similarities between the properties, our
proof of leak-free extraction will use the same techniques as our proof of Theorem 5.4 and our
proof of selective-failure blindness will use the same techniques as our proof of Theorem 5.1. In
Theorem 5.4, we have already constructed the ideal adversary S needed for leak-free extraction:
it is just the adversary B. In the analysis of B, we argue that its behavior is indistinguishable
from that of an honest signer (we do this to make sure that A cannot distinguish between the two
and intentionally fail when it knows it is talking to B) and so if we define the behavior of S to be
identical to the behavior of B this implies that no efficient algorithm D can distinguish between
A interacting with an honest signer in the blind signature scheme and A interacting with an ideal
simulator S that has access to a signer for the underlying signature scheme.

For selective-failure blindness, we have also done all the work in our proof of Theorem 5.1. In
fact, if we look at the definition of selective-failure blindness given by Green and Hohenberger we
can see that it is identical to our strengthened blindness property in Definition A.1 and so our proof
of blindness in Theorem 5.1 immediately implies the proof of selective-failure blindness here.

Although our scheme might, on the surface, seem similar to the original one proposed by Green
and Hohenberger, we highlight here some advantages of our scheme. In the Green-Hohenberger
blind IBE, they use general discrete-log-based techniques for zero-knowledge proofs. In particular,
they require a protocol to prove knowledge of a discrete logarithm [46] and a protocol to prove that a
committed value lies in a public interval [14, 37]. These protocols are typically interactive, so Green
and Hohenberger either require the Fiat-Shamir heuristic [22] to make them non-interactive (and
thus secure only in the random oracle model) or require a round-complexity for the BlindExtract
protocol that is greater than two, which also implies that their scheme is not concurrently secure.

27

	Introduction
	Mathematical Background
	Modules
	Groth-Sahai commitments

	Security Notions for Blind and Partially Blind Signatures
	Blind signatures
	Partially blind signatures

	Underlying Signature Scheme
	CRS setup
	Signing protocol

	Our Blind Signature
	CRS setup
	The partially blind protocol
	Instantiation under the SGH assumption

	Converting to a Prime-Order Setting
	Conclusions and Open Problems
	References
	Formal Security Definition for Blind Signatures
	Proof of (Partial) Blindness
	Proof of One-More Unforgeability
	Proof of Lemma 6.4
	Blind Identity-Based Encryption

