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Abstract

The meson-baryon coupled channel unitary approach with the local hidden gauge formalism is

extended to the hidden beauty sector. A few narrow N∗ and Λ∗ around 11 GeV are predicted as

dynamically generated states from the interactions of heavy beauty mesons and baryons. Produc-

tion cross sections of these predicted resonances in pp and ep collisions are estimated as a guide

for the possible experimental search at relevant facilities.
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I. INTRODUCTION

In the classical quark models, all established baryons are ascribed into simple 3-quark

(qqq) configurations [1]. The excited baryon states are described as excitation of individual

constituent quarks, similar to the cases for atomic and nuclear excitations. However, unlike

atomic and nuclear excitations, the typical hadronic excitation energies are comparable

with constituent quark masses. Hence to drag out a qq̄ pair from gluon field could be a new

excitation mechanism besides the conventional the classical orbital excitation of original

constituent quarks. Some baryon resonances are proposed to meson-baryon dynamically

generated states [2–8] or states with large (qqqqq̄) components [9–11]. A difficulty to pin

down the nature of these baryon resonances is that the predicted states from various models

are around the same energy region and there are always some adjustable ingredients in

each model to fit the experimental data. A typical example is N∗(1535) which has large

couplings to the strangeness. In the 3-quark (qqq) configurations, it is described as the

orbital angular momentum L = 1 excitation of a quark. But phenomenological studies

suggest that it may be a quasi-bound state of KΣ system [12–14], or as a hidden strangeness

5-quark state [10, 15]. In order to clearly demonstrate the new excitation mechanism and

the corresponding states, in Ref.[16], the meson-baryon coupled channel unitary approach

with the local hidden gauge formalism was performed for the hidden charm sector and

several narrow N∗ and Λ∗ resonances with hidden charm were predicted to exist. If found

experimentally, these resonances would definitely not be described as three constituent quark

states. Here, we extend the study to the hidden beauty sector. Some super-heavy N∗ and Λ∗

resonances with hidden beauty are predicted to exist, with mass around 11 GeV and width

smaller than 10 MeV. If these resonances can be experimentally confirmed, they should

be part of the heaviest super-heavy island of N∗ and Λ∗ state. As a guild to the future

experimental search for these new predicted states, their production cross sections in pp and

ep collisions are estimated.

In the next section, we present the formalism and ingredients for the study of interac-

tions between heavy beauty meson and baryon, and give some detailed discussion on the

intermediate meson-baryon loop G functions. In the section.III, our numerical results for

the masses and widths of the predicted super-heavy N∗ and Λ∗ states are given, followed by

a discussion. In the section.IV, the calculation about production of these predicted states
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from pp and ep collisions is presented. Finally, a short summary is given in the last section.

II. FORMALISM FOR MESON-BARYON INTERACTION

We follow the recent work of Ref. [16] on the interactions between charmed mesons

and baryons, and replace charm quark by beauty quark. The PB → PB and V B →
V B interactions by exchanging a vector meson are considered, as shown by the Feynman

diagrams in Fig. 1.

B1

V*V*

(a) (b)

P1 P2 V1

B2 B1
B2

V2

FIG. 1: Feynman diagrams for the pseudoscalar-baryon (a) or vector-baryon (b) interaction via

the exchange of a vector meson (P1, P2 are B0, B+ or B0
s , and V1, V2 are B0∗, B+∗ or B0∗

s , and

B1, B2 are Σb, Λb, Ξb, Ξ
′
b or Ωb, and V ∗ is ρ, K∗, φ or ω).

The effective Lagrangians for the interactions involved are [17]:

LV V V = ig〈V µ[V ν , ∂µVν ]〉

LPPV = −ig〈V µ[P, ∂µP ]〉

LBBV = g(〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉) (1)

where P and V stand for pseudoscalar and vector mesons of the 16-plet of SU(4), respectively.

Using the same approach of Ref.[16], only the γ0 component of Eq.(1) are taken, the

three momentum versus the mass of the meson can be neglected under the low energy

approximation. Similarly, the q2/M2
V term in the vector meson propagator is neglected so

that the propagator is approximately gµν/M2
V . Note when we consider transitions from heavy

mesons to light ones later on, we perform the exact calculation without such approximation.
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Then with g =MV /2f the transition potential corresponding to the diagrams of Fig. 1 are

given by

Vab(P1B1→P2B2) =
Cab

4f 2
(EP1

+ EP2
), (2)

Vab(V1B1→V2B2) =
Cab

4f 2
(EV1

+ EV2
)~ǫ1 · ~ǫ2, (3)

where the a, b stand for different channels of P1(V1)B1 and P2(V2)B2, respectively. The E is

the energy of corresponding particle. The ~ǫ is the polarization vector of the initial or final

vector. And the ǫ01,2 component is neglected consistently with taking ~p/MV ∼ 0, with ~p the

momentum of the vector meson. Here we only change the charm quark to beauty quark,

so the Cab coefficients are exactly the same as those in Ref.[16], so that there are only two

cases, (I, S) = (1/2, 0) and (0, -1), which have attractive potential. We list the values of

the Cab coefficients for PB → PB for these two cases in Table I and Table II, respectively.

TABLE I: Coefficients Cab in Eq. (2) for (I, S) = (1/2, 0)

BΣb BΛb ηbN πN ηN η′N KΣ KΛ

BΣb −1 0 −
√

3/2 −1/2 −1/
√
2 1/2 1 0

BΛb 1
√

3/2 −3/2 1/
√
2 −1/2 0 1

TABLE II: Coefficients Cab in Eq. (2) for (I, S) = (0,−1)

BsΛb BΞb BΞ
′

b ηbΛ πΣ ηΛ η′Λ K̄N K Ξ

BsΛb 0 −
√
2 0 1 0

√

1
3

√

2
3 −

√
3 0

BΞb −1 0
√

1
2 −3

2

√

1
6 −

√

1
12 0

√

3
2

BΞ
′

b −1 −
√

3
2

√

3
4 −

√

1
2

1
2 0

√

1
2

ηbΛ 0 0 0 0 0 0

With the transition potential, the coupled-channel scattering matrix can be obtained by

solving the coupled-channel Bethe-Salpeter equation in the on-shell factorization approach

of Refs.[3, 5]

T = [1− V G]−1V (4)
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with G being the loop function of a meson (P), or a vector (V), and a baryon (B). The ~ǫ1 ·~ǫ2
factor of Eq. (3) factorizes out also in T .

For the G loop function, there are usually two ways to regularize it. First one is using

dimensional regularization by means of the formula

G = i2MB

∫

d4q

(2π)4
1

(P−q)2−M2
B+iε

1

q2−M2
P+iε

,

=
2MB

16π2

{

aµ + ln
M2

B

µ2
+
M2

P −M2
B + s

2s
ln
M2

P

M2
B

+
q̄√
s

[

ln(s− (M2
B −M2

P ) + 2q̄
√
s) + ln(s+ (M2

B −M2
P ) + 2q̄

√
s)

−ln(−s− (M2
B −M2

P ) + 2q̄
√
s)− ln(−s + (M2

B −M2
P ) + 2q̄

√
s)
]}

, (5)

where q is the four-momentum of the meson, P the total four-momentum of the meson and

the baryon, s = P 2, q̄ denotes the three momentum of the meson or baryon in the center

of mass frame, µ is a regularization scale, which we put 1000 MeV here. Changes in the

scale are reabsorbed in the subtraction constant aµ to make results scale independent. aµ

is of the order of −2, which is the natural value of the subtraction constant [18]. When we

look for poles in the second Riemann sheet, we should change q to −q when √
s is above the

threshold in Eq.(5) [19].

The second way to regularize the G loop function is by putting a cutoff in the three-

momentum:

G = i2MB

∫

d4q

(2π)4
1

(P − q)2 −M2
B + iε

1

q2 −M2
P + iε

=

∫ Λ

0

q̄2dq̄

4π2

2MB(ωP + ωB)

ωP ωB (s− (ωP + ωB)2 + iǫ)
, (6)

where ωP =
√

q̄2 +M2
P , ωB =

√

q̄2 +M2
B, and Λ is the cutoff parameter in the three-

momentum of the function loop.

Here we give some detailed discussion on these two types of G function. Firstly the

free parameters are aµ in Eq.(5) and Λ in Eq.(6). The value of Λ is around 0.8 GeV,

which are within the natural range for effective theories [5]. Then we can choose aµ so that

the shapes of these two G functions from Eq.(5) and Eq.(6) are almost the same close to

threshold and they take the same value at threshold. In Fig.2, the real part and imaginary

part of two G functions vs the energy difference between the center mass energy and the

corresponding threshold for KΣ, D̄Σc and BΣb channels are demonstrated. In the Table.III,
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the parameters for different G functions and channels are listed. While the imaginary parts

of two G functions are exactly the same, there are some differences for the real parts of two G

functions and the differences become bigger for heavier channels. For the same Λ value, the

magnitude of aµ depends on the threshold of channels and gets bigger for heavier channels.

One point should be mentioned is that for the BΣb channel the real part of the G function

given by Eq.(5) is larger than zero for energies more than 50 MeV below the threshold as

shown in the Fig.2. As we know, if the interaction is repulsive potential, i.e., the value of

the potential V is positive, there should be no bound state. However, when the real part

of G function is also positive below the threshold, the pole can still be found in the model

T matrix with a repulsive potential. These poles far below threshold are beyond the valid

region of the model approximation and should be discarded. Since varying the G function in

a reasonable range does not influence our conclusion qualitatively, we present our numerical

results in the dimensional regularization scheme with aµ = −3.71, corresponding Λ around

0.8 GeV, in this paper.

-100 -75 -50 -25 0 25 50 75 100
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

R
e[

G
](G

eV
)

Mc.m. - Mthreshold(MeV)

-100 -75 -50 -25 0 25 50 75 100

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

 

 

-100 -75 -50 -25 0 25 50 75 100
-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Im
[G

](G
eV

)

Mc.m. - Mthreshold(MeV)

-100 -75 -50 -25 0 25 50 75 100

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

FIG. 2: The real part (left) and imaginary part (right) of two G functions vs the energy difference

between the C.M. energy and the threshold energy. The solid lines are for Eq.(6), and dashed lines

are for Eq.(5). The thickest lines are for BΣb channel, the thinnest ones are for KΣ channel, and

middle ones are for D̄Σc channel. The used parameters are listed in the Table.III with Λ = 0.8GeV .

With the potential and G function fixed, the unitary T amplitude can be obtained by

Eq.(4). The poles in the T matrix are looked for in the complex plane of
√
s. Those appearing

in the first Riemann sheet below threshold are considered as bound states whereas those

located in the second Riemann sheet and above the threshold of some channel are identified
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TABLE III: The parameters for two types of G functions in the cases of KΣ, D̄Σc and BΣb

interactions, with aµ for Eq.(5) and Λ for Eq.(6). The listed aµ and Λ(GeV ) give the same value

of two G functions at the corresponding threshold.

Threshold(GeV) aµ

Λ(GeV ) 0.7 0.8 0.9 1.0 1.1

BΣb 11.087 −3.679 −3.715 −3.751 −3.786 −3.822

D̄Σc 4.231 −2.196 −2.283 −2.369 −2.453 −2.536

KΣ 1.688 −1.297 −1.463 −1.619 −1.766 −1.905

as resonances. As previously discussed, the poles will be kept only when the real part of

Eq.(5) is negative.

From the T matrix for the PB → PB and V B → V B coupled-channel systems, we

can find the pole positions zR. Six poles are found in the real axes below threshold and

therefore they are bound states. For these cases the coupling constants are obtained from

the amplitudes in the real axis. These amplitudes behave close to the pole as:

Tab =
gagb√
s− zR

. (7)

We can use the residue of Taa to determine the value of ga, except for a global phase. Then,

the other couplings are derived from

gb = lim√
s→zR

(
gaTab
Taa

) . (8)

III. NUMERICAL RESULTS FOR THE SUPER-HEAVY N∗ AND Λ∗

Firstly, we discuss the (I, S) = (1/2, 0) sector. There are 2 channels, BΣb and BΛb.

The masses of these particles are taken from [1], mB = 5.279 GeV, mB∗ = 5.325 GeV,

mΣb
= 5.807 GeV and mΛb

= 5.620 GeV. With the approach outlined in the last section, the

obtained pole positions zR and coupling constants gα are listed in Tables IV for PB → PB

and V B → V B. Because these poles are bound states for each channel, they have zero

width when neglecting transitions mediated by t-channel exchange of heavy beauty mesons.

To consider some possible decay channels for them, such as πN , ηN , KΣ and so on, we

7



estimate these decays through heavy beauty meson exchanges by means of box diagrams

as in Refs.[16, 20, 21]. We neglect transitions to the hidden charm channels such as D̄Σc

and D̄Λ+
c , because they need t-channel exchange of too heavy vector meson constituted of

charm and beauty quarks. We also do not consider the transitions between V B and PB

channels for the same reason as given in Ref.[16]. The results for PB and corresponding

V B channels are listed in Table V.

zR (MeV) gα

BΣb BΛb

11052 2.05 0

B∗Σb B∗Λb

11100 2.02 0

TABLE IV: Pole positions zR and coupling constants ga for the states in (I, S) = (1/2, 0) sector.

M (MeV) Γ (MeV) Γi (MeV)

πN ηN η′N KΣ ηbN

11052 1.38 0.10 0.21 0.11 0.42 0.52

ρN ωN K∗Σ ΥN

11100 1.33 0.09 0.30 0.39 0.51

TABLE V: Mass (M), total width (Γ), and partial decay widths (Γi) for (I, S) = (1/2, 0) sector.

Then we discuss the (I, S) = (0, -1) sector. There are 3 channels, BsΛb, BΞb and BΞ′
b.

The masses of B, Bs, Ξb and Λb have been precisely measured and can be taken from Ref.[1].

mBs
= 5.366 GeV,mB∗

s
= 5.4128 GeV andmΞb

= 5.7924 GeV. The Ξ′
b has not been observed

yet. Its mass has been predicted to be 5.922 GeV in Ref.[22] and 5.960 GeV in Ref.[23].

We choose a middle value 5.940 GeV in this paper. From Table II, the BΞ′
b channel is

decoupled from other two channels, so there should be a bound state for this channel, the

same as corresponding vector-meson-baryon channel, B∗Ξ′
b. For this channel, the results are

listed in Table VI.
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It is much more complicated to consider T matrix for the coupled BsΛb and BΞb channels.

The T matrix can be written as:

T =
1

1− V GBΞb





V 2
BsΛb→BΞb

GBsΛb
VBsΛb→BΞb

VBsΛb→BΞb
V



 (9)

with V = VBΞb→BΞb
+ V 2

BsΛb→BΞb
GBsΛb

.

The V is negative and hence provides an attractive potential. For aµ = −3.71, one pole is

found for the coupled-channel system, with mass between the two thresholds of BsΛb (10.986

GeV) and BΞb (11.071 GeV). The pole position depends on the value of aµ as demonstrated

in Table VI and can move to below the BsΛb threshold when the magnitude of aµ increases,

such as for aµ = −3.82 corresponding to the Λ = 1.1 GeV. The coupling constants and

the possible decay channels of these two resonances are listed in Tables VII and VIII for

aµ = −3.71. Similarly, the results for the corresponding vector-meson-baryon channels are

also listed in Tables VII and VIII for aµ = −3.71.

aµ zR (MeV)

BsΛb and BΞb BΞ′
b

−3.68 11030 − 0.60i 11198

−3.71 11021 − 0.59i 11191

−3.75 11004 − 0.49i 11178

−3.78 10990 − 0.24i 11167

−3.82 10970 11151

TABLE VI: Pole positions zR with different aµ for PB → PB in (I, S) = (1/2, -1) sector.

Totally two N∗ and four Λ∗ states are predicted to exist with masses above 11 GeV

and very narrow widths of only a few MeV. The very narrow widths are due to the fact

that all decays are tied to the necessity of the exchange of a heavy beauty vector meson

because of hidden bb̄ components involved in these states, and hence are suppressed. If these

predicted narrow N∗ and Λ∗ resonances with hidden beauty are found, they definitely cannot

be accommodated by quark models with three constituent quarks. Together with other

possible N∗ and Λ∗ states of other quantum numbers with hidden beauty, they should form

9



zR (MeV) gα

BsΛb BΞb BΞ′
b

11021 − 0.59i 0.14 − 0.11i 2.27 + 0.004i 0

11191 0 0 1.92

B∗
sΛb B∗Ξb B∗Ξ′

b

11069 − 0.59i 0.14 − 0.12i 2.24 + 0.005i 0

11238 0 0 1.89

TABLE VII: Pole positions zR and coupling constants ga for the states in (I, S) = (1/2, -1) sector

for aµ = −3.71.

M (MeV) Γ (MeV) Γi (MeV)

K̄N πΣ ηΛ η′Λ KΞ ηbΛ BsΛb

11021 2.21 0.65 0.01 0.08 0.14 0.01 0.19 1.18

11191 1.24 0 0.28 0.18 0.10 0.18 0.48 0

K̄∗N ρΣ ωΛ φΛ K∗Ξ ΥΛ B∗
sΛb

11070 2.17 0.61 0.01 0.01 0.20 0.01 0.19 1.18

11239 1.19 0 0.26 0.26 0 0.17 0.48 0

TABLE VIII: Mass (M), total width (Γ), and partial decay widths (Γi) for the states in (I, S) =

(1/2, -1) sector for aµ = −3.71.

a super-heavy island of the heaviest masses for excited nucleons N∗ and excited hyperons

Λ∗.

IV. PRODUCTION OF N∗
bb̄

AND Λ∗
bb̄

IN pp AND ep COLLISIONS

In order to look for these predicted super-heavy N∗
bb̄
and Λ∗

bb̄
states, we give an estimation

of their production cross section in the pp → ppηb and ep → epΥ reactions. The Feynman

diagrams are shown in Fig.3. We also estimate the background of the pp → ppηb with N
∗
bb̄
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replaced by the nucleon pole.

p

pp

p

0

N*+
bb

b

e−

p
N*+

e−

p

Y

bb

FIG. 3: Feynman diagrams for the reaction pp → ppηb and ep → epΥ.

The Lagrangians for the interaction vertices of these two reactions are as follows [24–26]:

LNNπ = gNNπN̄γ5~τ · ~ψπN + h.c., (10)

LNNηb = gNNηbN̄γ5ψηbN + h.c., (11)

LN∗

bb̄
Nπ = gN∗+

bb̄
NπN

∗
bb̄
N~τ · ~ψπ + h.c., (12)

LN∗

bb̄
Nηb = gN∗+

bb̄
Nηb

N∗
bb̄
Nψηb + h.c., (13)

Leeγ = ieψ̄eγ5γµψeA
µ
γ + h.c., (14)

Lργ =
em2

ρ

fρ
ρµAγµ + h.c., (15)

LN∗

bb̄
Nρ = gN∗

bb̄
NρN∗

bb̄
γ5γ

µNg̃µν(PN∗

cc̄
)~τ · ~ψν

ρ + h.c., (16)

LN∗

bb̄
NΥ = gN∗

bb̄
NρN∗

bb̄
γ5γ

µNg̃µν(PN∗

cc̄
)ψν

Υ + h.c.. (17)

with g̃µν(P ) = −gµν + PµP ν

P 2 .

In our model calculation, we only consider S-wave PB and VB interactions, so the spin-

parity JP of our predicted N∗
bb̄
for the PB channels is 1/2−, and the N∗

bb̄
for the VB channels

can be either 1/2− or 3/2−, but assumed to be 1/2− here for a simple estimation of rough

production rate. The coupling constants of the Lagrangians can be either calculated from

its corresponding partial decay widths or obtained from references. They are all listed

in Table IX. For the NNηb vertex, the width of ηb has not been measured. Since both

ηb and ηc couple to nucleon through two gluon exchange, we use the relation gNNηb ∼
gNNηcα

4
s(Mηb)/α

4
s(Mηc) to estimate the gNNηb with gNNηc determined from the decay width

of ηc → pp̄.

As usual, the off-shell form factors should be considered here. We use two kinds of form

11



Vertex Γ(MeV ) Coupling Constant(g2/4π)

ppπ0 14.4

N∗+
bb̄

pπ0 0.033 1.03 × 10−5

N∗+
bb̄

pηb 0.52 1.81 × 10−3

eeγ 1/137

γρ 2.7 [24]

N∗+
bb̄

pρ0 0.030 4.42 × 10−4

N∗+
bb̄

pΥ 0.51 7.70 × 10−2

ppηb 1× 10−6

TABLE IX: The coupling constants of involved vertices and corresponding widths used.

factors for mesons and baryons, respectively.

FM =
Λ2

M −m2
M

Λ2
M − p2M

, (18)

FN =
Λ4

N

Λ4
N + (p2N −m2

N)
2
, (19)

where theM stand for π or ρ, and the N stand for N∗
bb̄
or nucleon pole. Here ΛM = 1.3 GeV,

ΛN = 1.0 GeV.

To produce the predicted N∗
bb̄
(11052) in the pp collisions, the center-of-mass energy should

be above 12 GeV. In Fig.4, the left figure shows our theoretical estimated total cross sec-

tion for the pp → ppηb reaction through the N∗
bb̄

production vs the center-of-mass energy,

with (dashed curve) and without (solid curve) including the off-shell form factors. As an

estimation of background contribution to the N∗
bb̄

production, we also calculate the corre-

sponding cross section through the off-shell nucleon pole without including the form factors.

The result is shown by the dotted curve. The contribution from the nuclear pole is much

smaller than that from the N∗
bb̄
production, because the nucleon pole is much more off-shell

than N∗
bb̄
. The contribution of the nucleon pole with form factors becomes very small for

the same reason, so it is not shown in Fig.4. This background reaction will not influence

the observation of the N∗
bb̄

production, especially for the energy range 13 ∼ 25 GeV. The

cross section from N∗
bb̄
production is about 0.1 nb, which is much smaller than that for the

corresponding reaction pp → ppηc with N
∗
cc̄ production [16] of about 0.1 µb. The main rea-

son is that both couplings of N∗
bb̄
Nπ and N∗

bb̄
Nηb are much smaller than the corresponding

12



N∗
cc̄Nπ and N∗

cc̄Nηc couplings. These two vertices cause a reduction of about 2 orders of

magnitude. In addition, because the center-of-mass energy here is much larger than that

in the previous calculation for the ηc production, the propagator of exchanged π0 further

reduce the contribution. For the same reason, the contribution with form factors is much

less than that without them.
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FIG. 4: Total cross section vs invariant mass of system for pp → ppηb reaction (left) and e−p →

e−pΥ reaction (right), with (dashed curves) and without (solid curves) including off-shell form

factors, through production of the predicted N∗
bb̄

resonances. The dotted curve is the background

contribution from the nucleon pole for the pp → ppηb reaction without including form factors.

For the production of N∗
bb̄
(11100) in ep collisions, the invariant mass of the system should

be above 11 GeV. The right figure in Fig.4 shows our calculated total cross section for the

e−p→ e−pΥ reaction vs the invariant mass of the system with (dashed curve) and without

(solid curves) including form factors. The cross section of this reaction is much larger than

that for the pp → ppηb reaction. The reason is due to the propagator of massless photon.

The propagator of photon is given as the following:

1

p2γ
=

1

2(m2
e + pipfcosθ − EiEf )

, (20)

where the pi, Ei are the three-momentum and energy of initial e−, and pf , Ef for final e−. θ

is the angle between initial and final e−. When the directions of initial and final e− are the

same, i.e., cosθ = 1, the value of Eq.(20) becomes very large because of the very small mass

of e−. As the beam momentum of e− becomes larger, the propagator of photon can reach

very big value. For the invariant mass of the system less than 15 GeV, the cross section of

e−p→ e−pΥ reaction is of the same order of magnitude as that of pp→ ppηb reaction.
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V. SUMMARY

In summary, the meson-baryon coupled channel unitary approach with the local hidden

gauge formalism is extended to the hidden beauty sector. Two N∗
bb̄
states and four Λ∗

bb̄
states

are predicted to be dynamically generated from coupled PB and VB channels with the same

approach as for the hidden charm sector [16]. Because of the hidden bb̄ components involved

in these states, the masses of these states are all above 11 GeV while their widths are of

only a few MeV, which should be form the heaviest island for the quite stable N∗ and Λ∗

baryons. The nature of these states is similar as corresponding N∗
cc̄ and Λ∗

cc̄ states predicted

in Ref.[16], which definitely cannot be accommodated by the conventional 3q quark models.

Production cross sections of the predicted N∗
bb̄

resonances in pp and ep collisions are

estimated as a guide for the possible experimental search at relevant facilities in the future.

For the pp → ppηb reaction, the best center-of-mass energy for observing the predicted N∗
bb̄

is 13 ∼ 25 GeV, where the production cross section is about 0.01 nb. For the e−p → e−pΥ

reaction, when the center-of-mass energy is larger than 14 GeV, the production cross section

should be larger than 0.1 nb. Nowadays, the luminosity for pp or ep collisions can reach

1033cm−2s−1, this will produce more than 1000 events per day for the N∗
bb̄
production. We

expect future facilities, such as proposed electron-ion collider (EIC) [27], to discover these

very interesting super-heavy N∗ and Λ∗ with hidden beauty.
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