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We present two issues here: (i) that in situation when total energy is kept constant re-
cently proposed fluctuations of volume ensemble is equivalent to the approach using Tsallis
statistics with fluctuating temperature and (ii) that the later (in which fluctuations are
described by the nonextensivity parameter ¢) leads to the observed experimentally sum
rule connecting fluctuations of different physical observables.

1 Introduction

Statistical modelling represents a standard tool widely used to analyze multiparticle production
processes [I]. However, this approach does not account for the possible intrinsic nonstatisti-
cal fluctuations in the hadronizing system which usually result in a characteristic power-like
behavior of single particle spectra or in the broadening of the corresponding multiplicity dis-
tributions (and which can signal a possible phase transition(s) [2]). To include such features
one should base this modelling on the so called Tsallis statistics [3 4 [5] (represented by Tsallis
distribution) which accounts for such situations by introducing, in addition to the temperature
T, one new parameter, ¢ > 1, directly connected to fluctuations [6l [7] (for ¢ — 1 one recovers
the usual Boltzmann-Gibbs distribution):

oxp, <—%> - [1— (1—11)%ﬁ 12 exp <—%> g—1= % (1)

The most recent applications of this approach come from PHENIX Collaboration at RHIC [§]
and from CMS Collaboration at LHC [9]. One must admit at this point that this approach is
subjected to a rather hot debate of whether it is consistent with the equilibrium thermodynamics
or it is only a handy way to phenomenologically description of some intrinsic fluctuations in the
system under consideration [10]. However, as was recently demonstrated on general grounds in
[11], fluctuation phenomena can be incorporated into traditional presentation of thermodynamic
and Tsallis distribution [3] belongs to the class of general admissible distributions which satisfy
thermodynamical consistency conditions and which are therefore a natural extension of the usual
Boltzman-Gibbs canonical distribution. Actually, what was shown in [6] was that starting from
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some simple diffusion picture of temperature equalization in the nonhomogeneous heat bath (in
which local T fluctuates from point to point around some equilibrium temperature, Tp) one gets
evolution of T in the form of Langevin stochastic equation and distribution of 1/T, f(1/T), as
solution of the corresponding Fokker-Planck equation. It turns out that f(1/7") has form of
gamma distribution,

F/T) = F(;) = (qfl?)% e (-7 )

Convoluting exp(—E/T') with such f(1/T') one gets immediately Tsallis distribution, exp,(—FE/T)
from Eq. (@) [6]. Parameter ¢, i.e., according to Eq. () also the temperature fluctuation pat-
tern, is therefore fully given by the parameters describing this basic diffusion process (cf., [6]
for details, this was recently generalized to account for the possibility of transferring energy
from/to heat bath, which appears to be important for AA applications [4, 12] and for cosmic
ray physics [I3]; we shall not discuss this issue here). This approach has now been successfully
applied in many circumstances, see [4 [12] 8] [0] and references therein.

2 Fluctuations of V or T7?

It must be stressed at this point that the form of f(1/T') as given by Eq. (@) is not assumed but
has been derived from the underlying physical process. We shall now compare this approach
with that proposed in [I4] in which the volume V was assumed to fluctuate in the scale invariant
way following the observed KNO scaling behavior of the multiplicity distributions, P(N) [15].
We shall demonstrate here that when total energy is kept constant, as was assumed in [14],
both approaches are equivalent. Let us first notice that for constant total energy, E = const,
both the volume V and temperature T are related via F ~ VT*, what means that

T = (T) <<—¥>>_<iy> where y—<<—¥>> (3)

Following now [I4] the mean multiplicity in the microcanonical ensemble (MCE), N, can be

written as
_ v o/ T\*
Y=y () = W W

what means that N fluctuates in the same way y. It is then natural to assume that y follows the
pattern of fluctuations of N, i.e., KNO limit of the NBD distribution observed in data fitting
[15], which is given by gamma function. The power-like form of single particle spectra then
follow immediately, all apparently without invoking any reference to Tsallis statistics. Notice,
however, that because of @), 1/T will fluctuate according to the same gamma distribution. So
we get T' fluctuations with the same functional form but now without the physical background
behind the Eq. (2) mentioned above. However, we can proceed in reverse order and obtain
from our T fluctuations introduced in Section [I fluctuations of V' introduced in [I4]. In this
sense both approaches are equivalent with the former being based on some physical processes
and the second on apparently ad hoc assumptio.

I However, after all, this assumption can have some phenomenological foundation, not mentioned in [I4], which
deserves further scrutiny. Namely, one observes experimentally a variation of the emitting radius (evaluated from
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We close this section with short reminder that temperature fluctuations discussed in Section
[ result in automatic broadening of the corresponding multiplicity distributions, P(N), from
the poissonian form for exponential distributions to the negative binomial (NB) form for Tsallis
distributions [I7]. Tt is known that whenever we have N independently produced secondaries
with energies {E;=1, .~} taken from the exponential distribution in Eq. (I and whenever

vazo E,<E< Z?{:—Sl E;, then the corresponding multiplicity distribution is poissonian,
o\ N
N = - F
P(N) = (N)' exp (—N) where N = 3 (5)

What was shown in [I7] is that whenever in some process N particles with energies {F;—1, . n}
are distributed according to the joint N-particle Tsallis distribution,

1-(1- q)Li:1 :

h({Ei=1,...n})=CnN A

(6)

N ] g t1-N

(for which the corresponding one particle Tsallis distribution function in Eq. (), is marginal
distribution), then, under the same condition as above, the corresponding multiplicity distri-
bution is the NB distribution,

P(N

N
(V)
T(N + k) (T) 1
)
T+ 5

= ; h k=——. 7
) = TN TR ( )<N+k>’ where g1 @
Notice that in the limiting cases of ¢ — 1 one has k — oo and () becomes a poissonian
distribution (Bl), whereas for ¢ — 2 on has k — 1 and (7)) becomes a geometrical distribution.
It is easy to show that for large values of N and (N) one obtains from Eq. () its scaling form,

WP 2 (o= A) = et enpl-2) ®)

& 2= | =52 xp(—kz),
(N)) T(k)

in which one recognizes a particular expression of Koba-Nielsen-Olesen (KNO) scaling [15] and

which, as discussed before, has been assumed to describe also the volume fluctuations in [14].

Here it results from the temperature fluctuations described by the parameter ¢ discussed in

Section [[] with well defined physical meaningE.

3 Composition of different fluctuations

Description of fluctuations phenomena by means of the parameter g using Tsallis statistics
allows for better understanding of interrelations between different fluctuations. From our ex-
perience with pp collisions [I9] we know that one can obtain very good description of the

the Bose-Einstein correlation analysis) with the charged multiplicity of the event, see, for example, [16]. An
increase of about 10 % of the radius when the multiplicity increases from 10 to 40 charged hadrons in the
final state was reported. Unfortunately, the quality of data does not allow us to precisely determine the power
index of the volume dependence. It is also remarkable that both the energy density, pp = E/V, and particle
density, pyy = N/V, decrease for large multiplicity events. For N/(N) ~ y one observes pg/(pg) ~ y~% and
oN/{pN) ~ y~3. All these deserves further consideration and should be checked in future LHC experiments,
especially in ALICE, which is dedicated for heavy ion collision.

21t is worth to mention at this point that, as shown in [18], fluctuations of N in the poissonian distribution
@) taken in the form of ¢(N/ < N >), Eq. @), lead to the NB distribution ().

ISMD2010 3



whole range of pr (o< exp, (—pr/T) with (Tr [GeV];qr) = (0.134;1.095), (0.135;1.105) and
(0.14;1.11) for energies (in GeV) 200, 540 and 900, respectively. These values should be com-
pared with the corresponding values of (T' = T; ¢ = ¢1,) obtained when fitting rapidity distribu-
tions (o< exp, (—pr coshy/T)) at the same energies: (11.74;1.2), (20.39;1.26) and (30.79;1.29).
It was noticed there that gq;, — 1 has the same energy behavior as 1/k in the NB distribution
fitting the multiplicity distributions at corresponding energies (¢, —1 = —0.104 + 0.058 In /).
It means that fluctuations of total energy are in this case driven mainly by fluctuations in
the longitudinal phase space. Explanations proposed in [I9] was following. Noticing that
q—1=02%(T)/T? (i.e., it is given by fluctuations of total temperature 7') and assuming that
0%(T) = 02(Tr)+0*(Tr), one can estimate that resulting values of ¢ should not be too different
rom quT; + qr T 17 4+ TF Ty>T
q = LT2 T _ LT2 T g Tl )
It turns out that situation is completely reversed in the case of nuclear collisions, which we
shall discuss novxE, cf. Fig. [l Left panel shows g obtained from different sources as function of
centrality represented by number of participants, Np. The one obtained from P(N) follows

1 N,
e ()

behavior (a = 0.98) [12]. Whereas for small centralities it approaches situation encountered in
pp collisions (where it was practically equal to ¢ = gz, obtained from rapidity distributions as
mentioned above), the more central is event the smaller is ¢ — 1, i.e., the nearer to poissonian
is the corresponding P(N). Notice that both, ¢;, and gr (obtained from pp distributions are
now greater than ¢ and have (approximately) visible similar dependence on Np, however now
qr < gr, again opposite to what was seen in pp [19] (for comparison ¢ obtained by [21] using
RHIC data Au + Au collisions at 200 GeV [22] are shown here as well). Right panel shows the
same quantities but now as function of energy for the most central Pb+ Pb collisions [20]. In
both cases we take from [20] distributions of rapidity, dN/dy, and in pr, dN/dpr, and from
them deduces the corresponding gq.

The natural question is, what causes such different behavior of parameter ¢ in this case.
The answer we propose is the following. When extracting values of parameter ¢ from the
rapidity distributions tacit assumption was made that pur in £ = pp coshy remains constant
(i.e., it does not fluctuate). What would happen if this assumption was false? Notice that in
the exp, (—E/T) = exp, [~ (ur/T)coshy] = exp,(—zcoshy). It means that fits to rapidity
distributions provide us, in fact fluctuations not so much of partition temperature T but rather
of the variable z = pp/T. This in turn can be written approximately as:

N (wr)? Var(T)
Var(z) ~ WV&T (ur) + <TT>2 . Gk
Because (z) ~ {(u7)/(T) and Var(1/T)/{(1/T)? ~ Var(T)/(T)? and because Var(z)/(z)? =
Var (ur) /{ur)? + Var(T)/(T)? one can write that
def Var(T) _ Var(z)  Var(pr)

CIE T TR T )

3We use for this purpose NA49 data on Pb -+ Pb collisions [20] because, at the moment, only this experiment
measures at the same time (at least for the most central collisions) multiplicity distributions, P(NN), and dis-

(11)

(12)

tributions in rapidity y, transverse momenta, pr, and transverse masses, ur = /m?2 + pzT, which is crucial for
our further considerations here.
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Figure 1: Left panel: ¢ from P(N) are our results obtained in [I2] from Var(N)/(N), q from
RHIC are taken from compilation [21I] and are based on data for dN/dpr from [22] analyzed
there, whereas ¢ from NA49 are obtained by us for this presentation using data on dN/dpr from
the first work in [20]. Right panel: all results were obtained for the sake of this presentation
using distributions provided by [20], i.e., respectively, dN/dur, dN/dy and dN/dpr. The errors
are similar to those presented as example for ¢ obtained from dN/dy. Open symbols correspond
to uncorrected values of ¢, full symbols to values corrected by means of the procedure proposed
in the text.

This sum rule is our main result and its action is presented in the right panel of Fig. [l
It connects total ¢, which can be obtained from the analysis of the NB form of the measured
multiplicity distributions, P(N), with ¢, — 1 = Var(z)/(z)?, obtained from fitting rapidity
distributions and Var (ur) /{ur)? obtained from data on transverse mass distributions. When
extracting ¢ from distributions of dN/dur we proceed in analogously way with z being in this
case equal to z = coshy/T.

4 Summary

To summarize: we have demonstrated that for constant total energy fluctuations of T" introduced
by us some time ago [0 [4] are equivalent to fluctuations of V' proposed recently [14] and that,
at the moment, the former have advantage of being backed by a plausible physical arguments
[6]. Moreover, due to relation (B]) valid for constant total energy, the inverse temperature 1/T
and V'/4 fluctuate in the same way, according to gamma distribution and such fluctuations
lead to the Tsallis form of the respective distributions for energy spectra.

However, the main results presented here is the sum rule formula, Eq. ([I2]), connecting ¢
obtained from analysis of different distributions which are obtained in the same experiment.
This allows us to understand why in AA collisions fluctuations observed in multiplicity distri-
butions are much smaller than the corresponding ones seen in the rapidity distribution or in
distribution of transverse momenta (i.e., why the corresponding ¢ parameters evaluated from
distributions of different observables are different). This issue should be checked further when

ISMD2010 5



completely sets of data would become available from the experiments at LHC (especially from
ALICE).
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