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Using simulations of helically driven turbulence, it is 8ltothat the ratio of kinetic to magnetic energy dissipaticalas

with the magnetic Prandtl number in power law fashion witteaponent of approximately 0.6. Over six orders of mag-
nitude in the magnetic Prandtl number the magnetic fieldusdato be sustained by large-scale dynamo action of alpha-
squared type. This work extends a similar finding for smalgnaic Prandtl numbers to the regime of large magnetic
Prandtl numbers. At large magnetic Prandtl numbers, mdsieoénergy is dissipated viscously, lowering thus the amoun
of magnetic energy dissipation, which means that simulatitan be performed at magnetic Reynolds numbers that are
large compared to the usual limits imposed by a given reisolufhis is analogous to an earlier finding that at small
magnetic Prandtl numbers, most of the energy is dissipatgstively, lowering the amount of kinetic energy dissipat

so simulations can then be performed at much larger fluid Bldgmumbers than otherwise. The decrease in magnetic

energy dissipation at large magnetic Prandtl numbers ésigied in the context of underluminous accretion foundnmeso
quasars.

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction number is unity. In galaxies and galaxy clusters this number
tends to be very large, while in stars and stellar accretion

The magnetic fields in astrophysical bodies often havedscs it is quite small. Also liquid metals used in laborgtor
pronounced large-scale component that is associated wegkPeriments have small magnetic Prandtl numbers. There-
large-scale dynamo action. Examples are the cyclic maigre, much of what has been learnt from numerical simu-
netic fields in late-type stars such as the Sun and the magtions at magnetic Prandtl numbers of around unity has to
netic spirals in many galaxies, including even irreguldte re-examined in cases of low and high magnetic Prandtl
galaxies; see Beck et al. (1996) for a review. In additiofumbers.
all observed magnetic fields also have a significant small- The purpose of this paper is to focus on the relative im-
scale component that may either be the result of turbulegértance of viscous and ohmic dissipation rates at difteren
motions distorting the large-scale field, or, alternafivél values of the magnetic Prandtl number. Often, viscous and
could be the result of what is known as small-scale dynanghmic dissipation are only treated “numerically” by making
action (Cattaneo 1999). sure the code is stable. In such cases, viscosity and mag-
Much of our knowledge about large-scale and smalhetic diffusivity are usually not even stated explicitlythe
scale dynamos has come from numerical simulations; seguations, suggesting that these terms are negligible@nd n
Brandenburg & Subramanian (2005) for a review. It is cleamportant. This is of course not the case, as can be illus-
that, in order for simulations to approach an astrophylsicaltrated by considering the case of quasars that belong to the
interesting regime, one wants to make both the magnetitost luminous objects in the sky. The discovery of the first
diffusivity and the kinematic viscosity as small as possibl quasar, 3C 273, is nicely explained by Rhodes (1978) in a
This means that the magnetic and fluid Reynolds numberepular magazine. Indeed, 3C 273, has alout0'? times
should be as large as possible for a given numerical resotbe luminosity of the Sun and is indeed the brightest one
tion. For example, with a simulation at a resolutiors@®3  in the sky. This quasar would not shine at all if it was not
mesh points, one can hardly exceed values of the magndtic the effect of microphysical viscosity that leads to vis-
and fluid Reynolds number of about 500-700 (e.g., Bragous dissipation. But how important is viscous dissipation
denburg 2009). However, as will be discussed in more deompared with ohmic dissipation? In order to address this
tail in this paper, this constraint on the resolution realtyy — problem we need to understand the effects of both viscos-
applies if the ratio of magnetic and fluid Reynolds numbeity and magnetic diffusivity in a turbulent system where the
is about unity. This ratio is also referred to as the magnetigagnetic field is self-sustained by dynamo action. In this

Prandtl number, and there is hardly any system where tifigper we review briefly some recent work on dynamos in
the regime of small magnetic Prandtl numbers and turn then

* Corresponding author: brandenb@nordita.org to the investigation of large magnetic Prandtl numbers.

EY
InterScience® -
STSCOVER SoMETHING GREAT (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://arxiv.org/abs/1010.4805v1

726 A. Brandenburg: Dissipation in dynamos at low and high mégirandtl numbers

2 Small magnetic Prandtl number dynamos  reason, however, why it is not usually seen in wind tunnel or
atmospheric boundary layer turbulence is the fact that one

In the last 6 years the issue of low magnetic Prandtl nuneasures in these cases only one-dimensional spectra. In

bers, Pi; = v/n, has become a frequently discussed topierder to obtain three-dimensional spectra, one has tordiffe

in the dynamo community. This is the regime where thentiate those data, i.e. (Dobler et al. 2003)

magnetic diffusivityy is large compared with the kinematic E5p = —dF;p/dInk. 1)

viscosity v. Already over a decade ago, Rogachevskii accepting thus the physical reality of the bottleneck effec
Kleeorin (1997) noticed that for small-scale dynamos thig pecomes plausible that the critical magnetic Reynolds
critical value of the magnetic Reynolds number,Réor  number for the onset of small-scale dynamo action reaches
the onset of dynamo action should rise from a value arougdmaximum around Ry = 0.1, and that it decreases some-
35 at Piy = 1 to values around 400 for small values ofyhat for smaller values of Ry. This is indeed what the sim-
Pry. Here, Ra; = wuwms/nks is defined with respect to ylations of Iskakov et al. (2007) suggest.

the wavenumbet; of the energy-carrying eddies and the | ot ys now switch to large-scale dynamos. Their exci-
rms velocity,u,ms. However, the result of Rogachevskii & tation conditions are characterized by the dynamo number

Kleeorin was not widely recognized at the time. In 2004y hich, for helical turbulence and in the absence of shear, is
simulation began to address this point systematically- Sifyst

ulations of Schekochihin et al. (2004) and Haugen et al. a ks

(2004) provided clear indications that & rises, and the Co = H ~ Gka—l- (2)
results of Schekochihin et al. (2005) might have even SUfere K,
gested that the critical value of igefor small-scale dynamo of size L. and we have inserted standard approximations for

action might have become infinite for r~ 0.1. the o effect,a = %Tﬂ, and the turbulent magnetic dif-

Meanwhile, Boldyrev & Cattaneo (2004) provided aysivity, 1, = Lru2. Hereu = U —U is the fluctuating ve-

attractive framework for understanding this behavior.ggiv locity, i.e. the3difference between the actual velo&itand

that the energy spectrum of the small-scale dynamo peaks mean velocity, 7 & (umske) ! is the turnover time,
at the resistive scale, which is the smallest possible stale,, _ v « 4 is the fluctuating vorticitye; = @ /ku?
which the motions can still overcome resistive damping, ong 5 measure for the relative helicity, and= 1 + 3/Rey
must ask what are the properties of the flow at this scale. js 5 correction factor of order unity for sufficiently large

In the original scenario of Kazantsev (1968), the smallzalues of Re,. It turns out that in all cases the spectra of
scale dynamo works through a velocity field that is randonfmagnetic energy are at the largest scale approximately in-
but essentially laminar and of large scale. In a simulatioflependent of Rg for Pry; between 1 and0~3. This was
this can be realized by choosing a large magnetic PrangHown in Brandenburg (2009) and will here be extended to
number, so the magnetic Reynolds number is much larggy < Pr,, < 103.
than the fluid Reynolds number. However, subsequent stud- At larger wavenumbers there is a striking difference in
ies show that small-scale dynamo action can also occur f@fe magnetic energy spectra betweeg Pt 1 and< 1 in
magnetic Prandtl numbers of order unity. Both fop>= 1 that the resistive cutoff wavenumber moves toward smaller
and for Pr; > 1 one finds that the spectral magnetic enyalues. At the same time, the kinetic energy spectrum be-
ergy increases with wavenumber proportionaltt¢”. comes progressively steeper, leaving less kinetic energy t

A qualitatively new feature emerges when the magdissipate. This has two important consequences. First,of al
netic Prandtl number is small. In that case the wavenurthe fractional kinetic energy dissipation decreases wéth d

ber corresponding to the resistive scale decreases and lggasing Py; proportional to p}//f (Brandenburg 2009). On

in the inertial range of the turbulence. This property ishe other hand, the decreasecgfimplies that the demand
crucial because in the inertial range the velocity field ifor numerical resolution becomes less stringent. This, in
“rough”, i.e. over a spatial intervalz the velocity differ- turn, means that one can increase the value of Re beyond
encedu = u(x + dx) — u(x) scales likedu ~ dz¢ where the normally established limits. An important goal of the

¢ < 1. Thus, the finite difference quotient of the velocitypresent paper is the demonstration that the same is also true
du/dx, diverges with decreasing:, providediz is still big-  in the opposite limit of Py; > 1.

ger than the viscous cutoff scale. According to Boldyrev &

Cattaneo (2004), the critical magnetic Reynolds number in-

creases with increasing roughness. % The model

In all situations that have been simulated, the wavenumy,r model is similar to that presented in Brandenburg
ber range of the spectra has been too limited so that theyho1, 2009), where we solve the hydromagnetic equations
are affected by cutoff effects both at large and small scalgg, velocity U, logarithmic densityin p, and magnetic vec-

In particular, only in simulations beyorid24” meshpoints or potentialA for an isothermal gas in the presence of an
the spectra are shallower than®/3. This is referred to as externally imposed helical forcing functiofy

the bottleneck effect and is believed to be a physical effegfy )
(Falkovich 1994, Dobler et al. 2003, Frisch etal. 2008). Ong;,- = ~U-VU =V In p+ f+(J x B+V-2p18) Jp, (3)

= 27t/ L is the minimal wavenumber in the domain

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Here,B = V x A is the magnetic field] = V x B/ug
is the current densityy, is the vacuum permeability, is
the isothermal speed of sound, &g = %(Um- +Uj;) —
%%V - U is the traceless rate of strain tensor. We cor
sider a triply periodic domain of siz&3, so the small-
est wavenumber in the domainis = 2 /L. The forc-
ing function consists of eigenfunctions of the curl operatc
with positive eigenvalues and is therefore fully helicattwi
f-V x f=kf? where3.5 < k/k; < 4.5 is the chosen
wavenumber interval of the forcing function, whose avel
age value is referred to &g ~ 4 k;. The amplitude off
is such that the Mach number ig,,s/cs =~ 0.1, so com-
pressive effects are negligible (Dobler et al. 2003). As i
Brandenburg (2009), we choose as initial conditions a Be
trami field of low amplitude. The initial velocity is zero and
the initial density is uniform withp = py = const, so the
volume-averaged density remains constant, {g.= po.

In our simulations we change the values of magnetic ar |
fluid Reynolds numbers,

Rey = Urms/nkfa Re= Urms/kaa (6)

such that the ratio Rg/Re = Pry has the desired value
betweenl0~2 and10?, and we monitor the resulting kinetic
and magnetic energy dissipation rates per unit volume,

Fig.1 \Visualization ofU, andB, on the periphery of the
computational domain for Ry ranging from 10 to 1000 at
ex = (2vpS?),  en = (uoJ?), (7) aresolution oR56° mesh points.

whose sumer = e + er, Will be used to define the frac-

tional dissipation ratesx = ex/er andéy = ex/er. . N
We recall that, for the periodic boundary conditions undépe energy-carrying scale must be essentially independent

consideration(252) = (W?) 1 3((V - U)?), highlight- O T "™ o
incompressible case. of velocity and magnetic field at the periphery of the com-

putational domain for the new results withyPr> 10 and
in Fig.[d we show spectra of kinetic and magnetic ener-
4 Results gies, E(k) and M (k), respectively, for all values of By
. . between10—3 and 103. In the velocity pattern one can
In Table[1 we summarize the parameters of runs with Pr¢jearly make out the typical scale of the dominant eddies,

betweenl0~* and10°. The runs withl0=* < Pry; < 1are \yhose wave length is about 1/4 of the size of the box.
those presented already in Brandenburg (2009) usiag

mesh points, while those with) < Pry; < 1000 are new

ones and have been performed ust3g> mesh points. In Taple1 Summary of import input and output parameters

all cases, either Re or Rewere close to the maximum pos-for the runs reported in this paper.

sible limit at a given resolution. Indeed, forjPr= 10~2 we

were able to reach Re 4400 (for 5123 mesh points) while

for.PrM = 102 we could go to Rgy = 1200 (for 2563 mesh 07 4400 4 00l 099 426 & 515

points). _ 107 2325 23 004 096 344 25 5123
We note that in all cases the total energy dissipation is 1o-1 1175 118 013 087 286 81 5123

approximately the same. This is perhaps not so surprising,1g° 455 455 0.39 0.61 179 201512°

because we keep the amplitude of the forcing function the 10! 20 200 076 024 24 99 256°

Prar Re Rey €K €M kx kwm Res.

same. However, the constancy of the energy dissipation rate10? 9 850 0.90 0.10 14 263 256°
implies that the rate of energy injection must also be al- 102 0 425 099 001 3 129 2562
ways the same and thus independent of the magnetic Prandt}0 1 1175 099 001 5 234 25

number. This means that the flow properties of the eddies at

www.an-journal.org (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Pr,=0.001

1.00k
0.10F

been equally probably alternatives. We recall that allehes
fields are indeed the eigenfunctions of@hdynamo prob-

: 71 lem (e.g., Brandenburg & Subramanian 2005), and they also
0.01F ~< 1 emerge as the dominant field in helically driven turbulence.
1 10 100 Itis clear that in a triply periodic domain such as that con-
sidered here, these fields require a resistive time to reach
- . Pr,=0.01 X full saturation. For all further details we refer to Branden
1-005\/\ —— - - - - __ 31 burg (2001), where such a system was studied in full detail.
0.10p K N o Next, we consider the spectra of kinetic and mag-
0.01F "I ~ 3 netic energies in Fig.2 which are normalized such that
1 10 100 [E(k)dk = 3(pU?) and [ M (k) dk = $(B?/po). Itis
evident from the spectra that with increasing values gf Pr
- the viscous dissipation wavenumbeéy, = (ex /v°)Y4,
1.00E moves to smaller and smaller values. Analogously to the
0-10 case of Pf; < 1, this implies that most of the injected
0-01F energy gets dissipated by the shorter of the two cascades
1 10 100 — leaving only a reduced amount of energy for the other
Pro—1 cascade. This means that the corresponding diffusion coef-
c u ficient can be decreased further, without creating numilerica
100k difficulties.
0-10% It appears that it is not only the energy input at the small
0.01f ;
2 wavenumber end of the relevant cascade that is decreased,
! 10 100 but that there is possibly a continuous removal of energy
along the cascade, making the spectral index slightly steep
L ook 3 than—>5/3. For example, for By = 1073 the spectral slope
VE 3 of E(k) is about—2.2, while for Pry; = 10° the spectral
0.10F r :
0.0tk slope ofM (k) is about—2.0.
. It is quite extraordinary that in all these cases the na-
1 10 100 o
ture of the large-scale dynamo is virtually unchanged, even
Pr,=100 though Py, is varied by 6 orders of magnitude. The rea-
Loof PN 3 son is that in all cases the dynamo .numk@(;, exceeds
0.10F T T e~ - ;] thecritical value for dynamo actioq;<"'* = 1. Looking at
0.01F - - k“T RN , 3 Eq_. @), we see that', is dominated by the scale separation
ratio, which is herek¢/k; ~ 4. Furthermore, because the
1 10 100 . . .
turbulence is nearly fully helical, we have~ 1, and since
Pr,=1000 Rey; > 1, we haver =~ 1. Thus, we have’, > 1 for all
Look N runs. We recall also that the saturation amplitude of thd fiel
010k SN is essential given by the square root of the scale separation
0.01fF - Ik“ Se ratio (Brandenburg 2001), which is about 2 in units of the
1' 10 100 equipartition field strength. This is in reasonable agregme
k/k, with the simulation results; see FIg. 2, where we show the
resulting spectra for all the runs.
Fig.2 Compensated kinetic and magnetic energy spectra Next, we plot in Fig[B the ratio of kinetic to mag-

in the saturated regime for Br= 103 to 103. The spec- hetic energy dissipation rates. In agreement with Branden-
tra are compensated b¥2/3k5/3, wheree; is the sum of Purg (2009), WS find that the ratio is approximately pro-
kinetic and magnetic energy dissipation rates. The ohm@rtional to P};”, although a better fit is now provided by

dissipation wavenumbek,, = (exs/5)'/4, is indicated by ex/em =~ 0.6Pry;5. The reason for such a scaling is un-
an arrow. clear. However, from Eq[{7) one can see that in the ratio

ex /ey there is an implicit proportionality with respect to
Prys. Assuming, for simplicity,(25?) ~ (W?) ~ W2

rms’

The magnetic field also shows a turbulent component, b{ff S€€ that )
there is a much stronger large-scale component superposes. ¥ Wi

~ Py, 8
This is essentially the Beltrami field which is of the forme, N J2e oM ®
B = (coskiz,sink;z,0), although its wavevector could so
have pomteq in any of thg other two coordinate directiongy,  PEn-D/2 | pp1/4 py1/6 ©
(0,cos kyz,sinkix) and (sin k1y, 0, cos k1y) would have M P Py

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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where we have assumed thaties between the values 1/2 . . . . . . o
and 2/3, which bracket the results seen here and in Bran- "~ ;001 0010 0100 1000 10000 100.000 1000.000
denburg (2009). These scalings are surprising in view of Pry
the usually expected individual scalings, namBly,,s o
v~=12 andJ,ms o< /2 (cf. Brandenburg & Subramanian
2005).

In order to illuminate the issue further, we ask whether 10}
not only the raticex /e, scales with Py, but whethek o
ande,, are individually proportional to Re and Rg re- [ o
spectively. In Figl¥ we plotx versus Re (blue, solid sym- - “[’
bols) ande,; versus Rg; (red, open symbols). The scatter b EP El’ i
is now much larger than in Figl 3, and it seems that the scal- — : : : : : —

: ; 0.001  0.010 0.100  1.000 10.000 100.000 1000.000
ing exponent might even be as largenas: 2/3. Pry,

We mentioned earlier that the total dissipation rate,
is nearly independent of Rr. However, this is only true Fig.4  Top: Dependence ofx on Re (blue, solid sym-
when we look the the dimensional valuecef. Itis custom- bols) ande,; on Rey (red, open symbols). The solid line

ary to consider the normalized dissipation rate, has the slope 2/3, while the dotted and dashed lines have
o _ €T 10 slopes 0.6 and 0.5, respectiveMiddle and bottom: scal-
€= ui’D/L’ (10) ings of Cq andC. versus Py;.

whereuip = ums/+/3 is the one-dimensional rms velocity

andL = 3 /4k¢ is conventionally used as the integral scal@owever, a decrease in allows the dynamo to tap more
(Pearson etal. 2004). In the second and third panels diFigeAergy, so-(U - (J x B)) andey, increase at the expense
we compare. with Co, Which is based on the maximumof ¢ . This is indicated by the facty /e, is found to be
value ofu;p in all the runs. The difference is caused by th@roportional to(v/n)", Soe i decreases asdecreases. This
fact thatu.,s drops to rather low values in the large;Pr decease is weak in the sense that 1/2...2/3is less than
regime. Part of this goes into magnetic energy, but it is n@ity, but it is certainly no longer independent ofas it
enough to make up for this difference. would be in the purely hydrodynamic case.

Itis important to realize that, on averagg; is just the In view of the application to quasars, i.e. accretion discs
same as the rate of work done against the Lorentz forGg, 5 otive galactic nuclei, it is relevant to consider thecfra
—(U - (J x B)). T_h|s becomes evident when con&dermgion of energy that goes into the heating of electrons. In-
the flow of energy in our system: deed, such discs are known to be underluminous, which led

— (2pvS?) to the standard paradigm of advection-dominated accretion
(U - f) = { —(U - (J x B)) = (nuoJ?). (11) (Narayan & Yi 1994; Abramowicz et al. 1995). Alterna-

. o tively, this might be associated with the small value of the
Here,(pU - f) = er is the rate of energy injection into the

ratio , for which we find
system by the forcing term. Normally, in the hydrodynamic em/er

case,(2pvS?), or (VW?2) in the incompressible case, staye, €M 1

constant ag is decreased. In the case with dynamo action,,, ~ ¢, + e« “Tr P, (12)

www.an-journal.org (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Using standard accretion disc theory, Balbus & HenBrandenburg, A., Subramanian, K.: 2005, PhR 417, 1
(2008) find that Py; depends on the distande from the Boldyrev, S., & Cattaneo, F.: 2004, Phys Rev Lett 92, 144501
black hole and is proportional t8=°/%. In particular, they Cattaneo, F.: 1999, ApJ 515, 1.39
find that PR, exceeds unity within about 50 Schwarzschild°Pler. W.. Haugen, N. E. L., Yousef, T. A., & Brandenburg; A.
radii. This would dramatically decreasg, in the inner 20(.)3‘ Phys Rev E 68, 026304

. . ) . Falkovich, G.: 1994, PhFI 6, 1411
part_s and might be sufficient to explain underluminous fskakov, A. B., Schekochihin, A. A., Cowley, S. C., McWiliie,
cretion. J. C., Proctor, M. R. E.: 2007, Phys Rev Lett 98, 208501
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S. S.iWi.,

Zhu, J.-Z.: 2008, Phys Rev Lett 101, 144501

Haugen, N. E. L., Brandenburg, A., & Dobler, W.: 2004, Phys Re

E 70, 016308
The present work has shown that the ratio of kinetic to magxzantsev, A. P.: 1968, Sov. Phys. JETP 26, 1031

netic energy dissipation follows one and the same relatioNarayan, R., & Yi, I.: 1994, ApJ 428, 13
ship with Pry; both for small and large values. An impor-Pearson, B. R., Yousef, T. A., Haugen, N. E. L., Brandenb#irg,
tant additional condition obeyed by all our runs is, how- & Krogstad, PA.: 2004, Phys Rev E 70, 056301
ever, that the magnetic Reynolds number is large enou Egggﬁé\?sllli??sé?@;%?nza N1°9937 1;1%5 rev E 56, 417
e e e, . A, Coe .. iron 3. s
. . . . C.: 2004, Phys Rev Lett 92, 054502
namos and those mentioned in the first section for smaliz,aochinin, A. A, Haugen, N. E. L., Brandenburg, A., Cayl
scale dynamos. An important consequence of such scaling s ¢, maron, J. L., & McWilliams, J. C.: 2005, ApJ 625, L115
is the fact that at extreme values of the magnetic Prandtl
number, larger Reynolds numbers can be tolerated at an oth-
erwise insufficient resolution. This was shown previously
for Pry; = 1072, in which case fluid Reynolds numbers
of 4500 were possible at a resolution 2% meshpoints,
while for Pry; = 1 it was only possible to reach Reynolds
numbers of less that 700. In the opposite case of large mag-
netic Prandtl numbers, here Pr= 103, it was possible to
reach magnetic Reynolds numbers of 100@%> mesh
points.
The reason for the value of the exponerih the power
law relation between the energy dissipation ratjg/e
and the magnetic Prandtl numbenrPremains unclear. For
example, ifex ande;; were independent of viscosity and
magnetic diffusivity the ratiex /e would have been con-
stant. Instead, we find tha decreases when Re decreases,
and likewise,e,, decreases when Redecreases. On the
other hand, one must be cautious when applying results
regarding the dependence onR&Re (= Pry,) for large
values of Re and Rg, because we may still not be in an
asymptotic parameter regime. It is therefore important to
extend this work to larger values of Re and)Re

5 Conclusions
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