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Dissipation in dynamos at low and high magnetic Prandtl numbers
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Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales
with the magnetic Prandtl number in power law fashion with anexponent of approximately 0.6. Over six orders of mag-
nitude in the magnetic Prandtl number the magnetic field is found to be sustained by large-scale dynamo action of alpha-
squared type. This work extends a similar finding for small magnetic Prandtl numbers to the regime of large magnetic
Prandtl numbers. At large magnetic Prandtl numbers, most ofthe energy is dissipated viscously, lowering thus the amount
of magnetic energy dissipation, which means that simulations can be performed at magnetic Reynolds numbers that are
large compared to the usual limits imposed by a given resolution. This is analogous to an earlier finding that at small
magnetic Prandtl numbers, most of the energy is dissipated resistively, lowering the amount of kinetic energy dissipation,
so simulations can then be performed at much larger fluid Reynolds numbers than otherwise. The decrease in magnetic
energy dissipation at large magnetic Prandtl numbers is discussed in the context of underluminous accretion found in some
quasars.
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1 Introduction

The magnetic fields in astrophysical bodies often have a
pronounced large-scale component that is associated with
large-scale dynamo action. Examples are the cyclic mag-
netic fields in late-type stars such as the Sun and the mag-
netic spirals in many galaxies, including even irregular
galaxies; see Beck et al. (1996) for a review. In addition,
all observed magnetic fields also have a significant small-
scale component that may either be the result of turbulent
motions distorting the large-scale field, or, alternatively, it
could be the result of what is known as small-scale dynamo
action (Cattaneo 1999).

Much of our knowledge about large-scale and small-
scale dynamos has come from numerical simulations; see
Brandenburg & Subramanian (2005) for a review. It is clear
that, in order for simulations to approach an astrophysically
interesting regime, one wants to make both the magnetic
diffusivity and the kinematic viscosity as small as possible.
This means that the magnetic and fluid Reynolds numbers
should be as large as possible for a given numerical resolu-
tion. For example, with a simulation at a resolution of5123

mesh points, one can hardly exceed values of the magnetic
and fluid Reynolds number of about 500–700 (e.g., Bran-
denburg 2009). However, as will be discussed in more de-
tail in this paper, this constraint on the resolution reallyonly
applies if the ratio of magnetic and fluid Reynolds numbers
is about unity. This ratio is also referred to as the magnetic
Prandtl number, and there is hardly any system where this
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number is unity. In galaxies and galaxy clusters this number
tends to be very large, while in stars and stellar accretion
discs it is quite small. Also liquid metals used in laboratory
experiments have small magnetic Prandtl numbers. There-
fore, much of what has been learnt from numerical simu-
lations at magnetic Prandtl numbers of around unity has to
be re-examined in cases of low and high magnetic Prandtl
numbers.

The purpose of this paper is to focus on the relative im-
portance of viscous and ohmic dissipation rates at different
values of the magnetic Prandtl number. Often, viscous and
ohmic dissipation are only treated “numerically” by making
sure the code is stable. In such cases, viscosity and mag-
netic diffusivity are usually not even stated explicitly inthe
equations, suggesting that these terms are negligible and not
important. This is of course not the case, as can be illus-
trated by considering the case of quasars that belong to the
most luminous objects in the sky. The discovery of the first
quasar, 3C 273, is nicely explained by Rhodes (1978) in a
popular magazine. Indeed, 3C 273, has about2×1012 times
the luminosity of the Sun and is indeed the brightest one
in the sky. This quasar would not shine at all if it was not
for the effect of microphysical viscosity that leads to vis-
cous dissipation. But how important is viscous dissipation
compared with ohmic dissipation? In order to address this
problem we need to understand the effects of both viscos-
ity and magnetic diffusivity in a turbulent system where the
magnetic field is self-sustained by dynamo action. In this
paper we review briefly some recent work on dynamos in
the regime of small magnetic Prandtl numbers and turn then
to the investigation of large magnetic Prandtl numbers.
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2 Small magnetic Prandtl number dynamos

In the last 6 years the issue of low magnetic Prandtl num-
bers, PrM = ν/η, has become a frequently discussed topic
in the dynamo community. This is the regime where the
magnetic diffusivityη is large compared with the kinematic
viscosity ν. Already over a decade ago, Rogachevskii &
Kleeorin (1997) noticed that for small-scale dynamos the
critical value of the magnetic Reynolds number, ReM , for
the onset of dynamo action should rise from a value around
35 at PrM = 1 to values around 400 for small values of
PrM . Here, ReM = urms/ηkf is defined with respect to
the wavenumberkf of the energy-carrying eddies and the
rms velocity,urms. However, the result of Rogachevskii &
Kleeorin was not widely recognized at the time. In 2004,
simulation began to address this point systematically. Sim-
ulations of Schekochihin et al. (2004) and Haugen et al.
(2004) provided clear indications that Recrit

M
rises, and the

results of Schekochihin et al. (2005) might have even sug-
gested that the critical value of ReM for small-scale dynamo
action might have become infinite for PrM ≈ 0.1.

Meanwhile, Boldyrev & Cattaneo (2004) provided an
attractive framework for understanding this behavior. Given
that the energy spectrum of the small-scale dynamo peaks
at the resistive scale, which is the smallest possible scaleat
which the motions can still overcome resistive damping, one
must ask what are the properties of the flow at this scale.

In the original scenario of Kazantsev (1968), the small-
scale dynamo works through a velocity field that is random,
but essentially laminar and of large scale. In a simulation
this can be realized by choosing a large magnetic Prandtl
number, so the magnetic Reynolds number is much larger
than the fluid Reynolds number. However, subsequent stud-
ies show that small-scale dynamo action can also occur for
magnetic Prandtl numbers of order unity. Both for PrM = 1
and for PrM ≫ 1 one finds that the spectral magnetic en-
ergy increases with wavenumber proportional tok3/2.

A qualitatively new feature emerges when the mag-
netic Prandtl number is small. In that case the wavenum-
ber corresponding to the resistive scale decreases and lies
in the inertial range of the turbulence. This property is
crucial because in the inertial range the velocity field is
“rough”, i.e. over a spatial intervalδx the velocity differ-
enceδu = u(x + δx) − u(x) scales likeδu ∼ δxζ where
ζ < 1. Thus, the finite difference quotient of the velocity,
δu/δx, diverges with decreasingδx, providedδx is still big-
ger than the viscous cutoff scale. According to Boldyrev &
Cattaneo (2004), the critical magnetic Reynolds number in-
creases with increasing roughness.

In all situations that have been simulated, the wavenum-
ber range of the spectra has been too limited so that they
are affected by cutoff effects both at large and small scales.
In particular, only in simulations beyond10243 meshpoints
the spectra are shallower thank−5/3. This is referred to as
the bottleneck effect and is believed to be a physical effect
(Falkovich 1994, Dobler et al. 2003, Frisch et al. 2008). One

reason, however, why it is not usually seen in wind tunnel or
atmospheric boundary layer turbulence is the fact that one
measures in these cases only one-dimensional spectra. In
order to obtain three-dimensional spectra, one has to differ-
entiate those data, i.e. (Dobler et al. 2003)
E3D = −dE1D/d lnk. (1)
Accepting thus the physical reality of the bottleneck effect,
it becomes plausible that the critical magnetic Reynolds
number for the onset of small-scale dynamo action reaches
a maximum around PrM = 0.1, and that it decreases some-
what for smaller values of PrM . This is indeed what the sim-
ulations of Iskakov et al. (2007) suggest.

Let us now switch to large-scale dynamos. Their exci-
tation conditions are characterized by the dynamo number
which, for helical turbulence and in the absence of shear, is
just

Cα =
α

ηTk1
≈ ǫfι

kf
k1

. (2)

Here,k1 = 2π/L is the minimal wavenumber in the domain
of sizeL and we have inserted standard approximations for
theα effect,α = 1

3τw · u, and the turbulent magnetic dif-
fusivity, ηt = 1

3τu
2. Here,u = U−U is the fluctuating ve-

locity, i.e. the difference between the actual velocityU and
the mean velocityU , τ ≈ (urmskf)

−1 is the turnover time,
w = ∇ × u is the fluctuating vorticity,ǫf = w · u/kfu2

is a measure for the relative helicity, andι = 1 + 3/ReM
is a correction factor of order unity for sufficiently large
values of ReM . It turns out that in all cases the spectra of
magnetic energy are at the largest scale approximately in-
dependent of ReM for PrM between 1 and10−3. This was
shown in Brandenburg (2009) and will here be extended to
10 ≤ PrM ≤ 103.

At larger wavenumbers there is a striking difference in
the magnetic energy spectra between PrM = 1 and≪ 1 in
that the resistive cutoff wavenumber moves toward smaller
values. At the same time, the kinetic energy spectrum be-
comes progressively steeper, leaving less kinetic energy to
dissipate. This has two important consequences. First of all,
the fractional kinetic energy dissipation decreases with de-
creasing PrM proportional to Pr1/2

M
(Brandenburg 2009). On

the other hand, the decrease ofǫK implies that the demand
for numerical resolution becomes less stringent. This, in
turn, means that one can increase the value of Re beyond
the normally established limits. An important goal of the
present paper is the demonstration that the same is also true
in the opposite limit of PrM ≫ 1.

3 The model

Our model is similar to that presented in Brandenburg
(2001, 2009), where we solve the hydromagnetic equations
for velocityU , logarithmic densityln ρ, and magnetic vec-
tor potentialA for an isothermal gas in the presence of an
externally imposed helical forcing functionf ,
∂U

∂t
= −U ·∇U−c2s∇ ln ρ+f+(J×B+∇·2ρνS)/ρ, (3)
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∂ ln ρ

∂t
= −U ·∇ ln ρ−∇ ·U , (4)

∂A

∂t
= U ×B − µ0ηJ . (5)

Here,B = ∇ ×A is the magnetic field,J = ∇ ×B/µ0

is the current density,µ0 is the vacuum permeability,cs is
the isothermal speed of sound, andSij = 1

2 (Ui,j + Uj,i) −
1
3δij∇ · U is the traceless rate of strain tensor. We con-
sider a triply periodic domain of sizeL3, so the small-
est wavenumber in the domain isk1 = 2π/L. The forc-
ing function consists of eigenfunctions of the curl operator
with positive eigenvalues and is therefore fully helical with
f · ∇ × f = kf2, where3.5 ≤ k/k1 ≤ 4.5 is the chosen
wavenumber interval of the forcing function, whose aver-
age value is referred to askf ≈ 4 k1. The amplitude off
is such that the Mach number isurms/cs ≈ 0.1, so com-
pressive effects are negligible (Dobler et al. 2003). As in
Brandenburg (2009), we choose as initial conditions a Bel-
trami field of low amplitude. The initial velocity is zero and
the initial density is uniform withρ = ρ0 = const, so the
volume-averaged density remains constant, i.e.,〈ρ〉 = ρ0.

In our simulations we change the values of magnetic and
fluid Reynolds numbers,

ReM = urms/ηkf , Re= urms/νkf , (6)

such that the ratio ReM /Re = PrM has the desired value
between10−3 and103, and we monitor the resulting kinetic
and magnetic energy dissipation rates per unit volume,

ǫK = 〈2νρS2〉, ǫM = 〈ηµ0J
2〉, (7)

whose sum,ǫT = ǫK + ǫM , will be used to define the frac-
tional dissipation rates,̃ǫK = ǫK/ǫT and ǫ̃M = ǫM/ǫT .
We recall that, for the periodic boundary conditions under
consideration,〈2S2〉 = 〈W 2〉 + 4

3 〈(∇ · U)2〉, highlight-
ing thus the analogy betweenW = ∇ × U andJ in the
incompressible case.

4 Results

In Table 1 we summarize the parameters of runs with PrM

between10−3 and103. The runs with10−3 ≤ PrM ≤ 1 are
those presented already in Brandenburg (2009) using5123

mesh points, while those with10 ≤ PrM ≤ 1000 are new
ones and have been performed using2563 mesh points. In
all cases, either Re or ReM were close to the maximum pos-
sible limit at a given resolution. Indeed, for PrM = 10−3 we
were able to reach Re= 4400 (for 5123 mesh points) while
for PrM = 103 we could go to ReM = 1200 (for 2563 mesh
points).

We note that in all cases the total energy dissipation is
approximately the same. This is perhaps not so surprising,
because we keep the amplitude of the forcing function the
same. However, the constancy of the energy dissipation rate
implies that the rate of energy injection must also be al-
ways the same and thus independent of the magnetic Prandtl
number. This means that the flow properties of the eddies at

Fig. 1 Visualization ofUy andBy on the periphery of the
computational domain for PrM ranging from 10 to 1000 at
a resolution of2563 mesh points.

the energy-carrying scale must be essentially independent
of PrM .

In Fig. 1 we present visualizations of they component
of velocity and magnetic field at the periphery of the com-
putational domain for the new results with PrM ≥ 10 and
in Fig. 2 we show spectra of kinetic and magnetic ener-
gies,E(k) andM(k), respectively, for all values of PrM

between10−3 and 103. In the velocity pattern one can
clearly make out the typical scale of the dominant eddies,
whose wave length is about 1/4 of the size of the box.

Table 1 Summary of import input and output parameters
for the runs reported in this paper.

PrM Re ReM ǫ̃K ǫ̃M kK kM Res.
10

−3 4400 4 0.01 0.99 426 8 512
3

10
−2 2325 23 0.04 0.96 344 25 512

3

10
−1 1175 118 0.13 0.87 286 81 512

3

10
0 455 455 0.39 0.61 179 201 512

3

10
1 20 200 0.76 0.24 24 99 256

3

10
2 9 850 0.90 0.10 14 263 256

3

10
3 0 425 0.99 0.01 3 129 256

3

10
3 1 1175 0.99 0.01 5 234 256

3
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Fig. 2 Compensated kinetic and magnetic energy spectra
in the saturated regime for PrM = 10−3 to 103. The spec-
tra are compensated byǫ−2/3

T k5/3, whereǫT is the sum of
kinetic and magnetic energy dissipation rates. The ohmic
dissipation wavenumber,kη = (ǫM/η3)1/4, is indicated by
an arrow.

The magnetic field also shows a turbulent component, but
there is a much stronger large-scale component superposed.
This is essentially the Beltrami field which is of the form
B = (cos k1z, sink1z, 0), although its wavevector could
have pointed in any of the other two coordinate directions,
(0, cos k1x, sin k1x) and (sin k1y, 0, cosk1y) would have

been equally probably alternatives. We recall that all these
fields are indeed the eigenfunctions of anα2 dynamo prob-
lem (e.g., Brandenburg & Subramanian 2005), and they also
emerge as the dominant field in helically driven turbulence.
It is clear that in a triply periodic domain such as that con-
sidered here, these fields require a resistive time to reach
full saturation. For all further details we refer to Branden-
burg (2001), where such a system was studied in full detail.

Next, we consider the spectra of kinetic and mag-
netic energies in Fig. 2 which are normalized such that
∫

E(k) dk = 1
2 〈ρU

2〉 and
∫

M(k) dk = 1
2 〈B

2/µ0〉. It is
evident from the spectra that with increasing values of PrM ,
the viscous dissipation wavenumber,kν = (ǫK /ν3)1/4,
moves to smaller and smaller values. Analogously to the
case of PrM ≪ 1, this implies that most of the injected
energy gets dissipated by the shorter of the two cascades
– leaving only a reduced amount of energy for the other
cascade. This means that the corresponding diffusion coef-
ficient can be decreased further, without creating numerical
difficulties.

It appears that it is not only the energy input at the small
wavenumber end of the relevant cascade that is decreased,
but that there is possibly a continuous removal of energy
along the cascade, making the spectral index slightly steeper
than−5/3. For example, for PrM = 10−3 the spectral slope
of E(k) is about−2.2, while for PrM = 103 the spectral
slope ofM(k) is about−2.0.

It is quite extraordinary that in all these cases the na-
ture of the large-scale dynamo is virtually unchanged, even
though PrM is varied by 6 orders of magnitude. The rea-
son is that in all cases the dynamo number,Cα, exceeds
the critical value for dynamo action,Ccrit

α = 1. Looking at
Eq. (2), we see thatCα is dominated by the scale separation
ratio, which is herekf/k1 ≈ 4. Furthermore, because the
turbulence is nearly fully helical, we haveǫf ≈ 1, and since
ReM ≫ 1, we haveι ≈ 1. Thus, we haveCα > 1 for all
runs. We recall also that the saturation amplitude of the field
is essential given by the square root of the scale separation
ratio (Brandenburg 2001), which is about 2 in units of the
equipartition field strength. This is in reasonable agreement
with the simulation results; see Fig. 2, where we show the
resulting spectra for all the runs.

Next, we plot in Fig. 3 the ratio of kinetic to mag-
netic energy dissipation rates. In agreement with Branden-
burg (2009), we find that the ratio is approximately pro-
portional to Pr1/2

M
, although a better fit is now provided by

ǫK/ǫM ≈ 0.6Pr0.6
M

. The reason for such a scaling is un-
clear. However, from Eq. (7) one can see that in the ratio
ǫK/ǫM there is an implicit proportionality with respect to
PrM . Assuming, for simplicity,〈2S2〉 ≈ 〈W 2〉 ≈ W 2

rms,
we see that

ǫK
ǫM

≈ ρ
ν

η

W 2
rms

J2
rms

∝ Prn
M
, (8)

so
Wrms

Jrms
∝ Pr(n−1)/2

M
≈ Pr−1/4

M
. . . Pr−1/6

M
, (9)
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Fig. 3 Dependence of the ratio of the dissipation rates on
PrM .

where we have assumed thatn lies between the values 1/2
and 2/3, which bracket the results seen here and in Bran-
denburg (2009). These scalings are surprising in view of
the usually expected individual scalings, namelyWrms ∝
ν−1/2 andJrms ∝ η−1/2 (cf. Brandenburg & Subramanian
2005).

In order to illuminate the issue further, we ask whether
not only the ratioǫK/ǫM scales with PrM , but whetherǫK
and ǫM are individually proportional to Re and ReM , re-
spectively. In Fig. 4 we plotǫK versus Re (blue, solid sym-
bols) andǫM versus ReM (red, open symbols). The scatter
is now much larger than in Fig. 3, and it seems that the scal-
ing exponent might even be as large asn = 2/3.

We mentioned earlier that the total dissipation rate,ǫT ,
is nearly independent of PrM . However, this is only true
when we look the the dimensional value ofǫT . It is custom-
ary to consider the normalized dissipation rate,

Cǫ =
ǫT

u3
1D/L

, (10)

whereu1D = urms/
√
3 is the one-dimensional rms velocity

andL = 3π/4kf is conventionally used as the integral scale
(Pearson et al. 2004). In the second and third panels of Fig. 4
we compareCǫ with Cǫ0, which is based on the maximum
value ofu1D in all the runs. The difference is caused by the
fact thaturms drops to rather low values in the large-PrM

regime. Part of this goes into magnetic energy, but it is not
enough to make up for this difference.

It is important to realize that, on average,ǫM is just the
same as the rate of work done against the Lorentz force,
−〈U · (J × B)〉. This becomes evident when considering
the flow of energy in our system:

〈ρU · f〉 →
{

→ 〈2ρνS2〉
−〈U · (J ×B)〉 → 〈ηµ0J

2〉. (11)

Here,〈ρU · f〉 ≈ ǫT is the rate of energy injection into the
system by the forcing term. Normally, in the hydrodynamic
case,〈2ρνS2〉, or 〈νW 2〉 in the incompressible case, stay
constant asν is decreased. In the case with dynamo action,

Fig. 4 Top: Dependence ofǫK on Re (blue, solid sym-
bols) andǫM on ReM (red, open symbols). The solid line
has the slope 2/3, while the dotted and dashed lines have
slopes 0.6 and 0.5, respectively.Middle and bottom: scal-
ings ofCǫ0 andCǫ versus PrM .

however, a decrease inν allows the dynamo to tap more
energy, so−〈U · (J ×B)〉 andǫM increase at the expense
of ǫK . This is indicated by the factǫK/ǫM is found to be
proportional to(ν/η)n, soǫK decreases asν decreases. This
decease is weak in the sense thatn ≈ 1/2 ... 2/3 is less than
unity, but it is certainly no longer independent ofν as it
would be in the purely hydrodynamic case.

In view of the application to quasars, i.e. accretion discs
in active galactic nuclei, it is relevant to consider the frac-
tion of energy that goes into the heating of electrons. In-
deed, such discs are known to be underluminous, which led
to the standard paradigm of advection-dominated accretion
(Narayan & Yi 1994; Abramowicz et al. 1995). Alterna-
tively, this might be associated with the small value of the
ratio ǫM/ǫT , for which we find

ǫM
ǫT

=
ǫM

ǫM + ǫK
∝ 1

1 + Prn
M

. (12)
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Using standard accretion disc theory, Balbus & Henri
(2008) find that PrM depends on the distanceR from the
black hole and is proportional toR−9/8. In particular, they
find that PrM exceeds unity within about 50 Schwarzschild
radii. This would dramatically decreaseǫM in the inner
parts and might be sufficient to explain underluminous ac-
cretion.

5 Conclusions

The present work has shown that the ratio of kinetic to mag-
netic energy dissipation follows one and the same relation-
ship with PrM both for small and large values. An impor-
tant additional condition obeyed by all our runs is, how-
ever, that the magnetic Reynolds number is large enough
for dynamo action to occur. This constitutes an important
difference between our current results for large-scale dy-
namos and those mentioned in the first section for small-
scale dynamos. An important consequence of such scaling
is the fact that at extreme values of the magnetic Prandtl
number, larger Reynolds numbers can be tolerated at an oth-
erwise insufficient resolution. This was shown previously
for PrM = 10−3, in which case fluid Reynolds numbers
of 4500 were possible at a resolution of5123 meshpoints,
while for PrM = 1 it was only possible to reach Reynolds
numbers of less that 700. In the opposite case of large mag-
netic Prandtl numbers, here PrM = 103, it was possible to
reach magnetic Reynolds numbers of 1000 at2563 mesh
points.

The reason for the value of the exponentn in the power
law relation between the energy dissipation ratioǫK/ǫM
and the magnetic Prandtl number PrM remains unclear. For
example, ifǫK andǫM were independent of viscosity and
magnetic diffusivity the ratioǫK/ǫM would have been con-
stant. Instead, we find thatǫK decreases when Re decreases,
and likewise,ǫM decreases when ReM decreases. On the
other hand, one must be cautious when applying results
regarding the dependence on ReM /Re (= PrM ) for large
values of Re and ReM , because we may still not be in an
asymptotic parameter regime. It is therefore important to
extend this work to larger values of Re and ReM .
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