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Pulsar timing arrays (PTAs) will be sensitive to a finite number of gravitational wave (GW)
“point” sources (e.g. supermassive black hole binaries). N quiet pulsars with accurately known
distances dpulsar can characterize up to 2N/7 distant chirping sources per frequency bin ∆fgw = 1/T ,
and localize them with “diffraction limited” precision δθ & (1/SNR)(λgw/dpulsar). Even if the pulsar
distances are poorly known, a PTA with F frequency bins can still characterize up to (2N/7)(1− 1

2F
)

sources per bin, and the quasi-singular pattern of timing residuals in the vicinity of a GW source
still allows the source to be localized quasi-topologically within roughly the smallest quadrilateral of
quiet pulsars that encircles it on the sky, down to a limiting resolution δθ & (1/SNR)

√

λgw/dpulsar.
PTAs may be unconfused, even at the lowest frequencies, with matched filtering always appropriate.

Our Local Group of galaxies is sprinkled with milli-
second pulsars – natural clocks of extraordinary stability.
Gravitational waves (GWs) passing through the Milky
Way, after being generated e.g. by the inspiral of two
supermassive black holes in a distant galaxy, generate
fluctuations in the time of arrival (TOA) of the pulses
at the Earth [1, 2]. In the future, we are likely to de-
tect such GWs via their coherent imprint on the TOA
fluctuations from a collection of pulsars distributed on
the sky: a “pulsar timing array” (PTA). Much research
has focused on using PTAs to study stochastic GW back-
grounds ([3–5] and references therein). Recently, various
authors have begun to study the ability of PTAs to detect
and characterize individual GW point sources [6–13].

Continuing in this direction, this paper is concerned
with conceptually clarifying the theoretical behavior and
capabilities of PTAs as GW point source telescopes. We
address two related issues. (i) A PTA may be sensitive to
so many GW sources that it becomes “confused” – i.e.

unable to disentangle and individually characterize the
sources. When does a PTA become “confusion limited”
rather than sensitivity limited? How many GW sources is
it capable of individually characterizing? (ii) When a set
of GW point sources can be individually characterized,
how well can their angular positions be determined?

Regarding issue (i) we will see that PTAs with many
pulsars can characterize many GW sources per frequency
bin; the traditional rule of thumb that a gravitational
wave detector becomes confused when there is more
than about one source per bin is too pessimistic for
PTAs. Regarding issue (ii) we must distinguish pulsars
whose distances are known accurately or poorly relative to
λgw/(1+cosθ), where λgw is the gravitational wavelength
and θ is the angle between pulsar and source. Pulsars
with accurately known distances can angularly localize
a GW source very precisely; each such pulsar acts like
a single baseline of a diffraction-limited radio interfer-
ometer array – with the radio wavelength replaced by
the gravitational wavelength, and the length of the radio

baseline replaced by the distance from the pulsar to the
Earth! The contribution from pulsars with poorly known
distances is more interesting: due to a quasi-singularity
in the pattern of timing residuals near the location of the
GW source, the source can still be localized surprisingly
well, for reasons that have less to do with diffraction, and
more to do with topology!
Basic Formalism. We will label the 3 spatial direc-

tions with the latin indices {i, j, k, l,m = 1, 2, 3}, raised
and lowered with δij and δij . The N pulsars in the net-
work are labelled by the greek indices {α, β = 1, . . . , N},
raised and lowered with δαβ and δαβ . We follow the
Einstein summation convention: repeated indices (one
upper, one lower) are summed.
A gravitational wave on Minkowski space is described

in transverse-traceless (TT) gauge [14] by the line ele-
ment ds2 = −dt2 + [δij + 2hij ]dx

idxj . In this gauge,
the ~x = constant worldlines are timelike geodesics; along
such worldlines, the proper time τ is the coordinate time
t. To avoid notational clutter, let us start with just a sin-
gle gravitational plane wave travelling in the n̂ direction:

hij(t, ~x) =

∫

∞

−∞

dfh̃ij(f)e
2πif(n̂·~x−t); (1)

it is straightforward to extend the following analysis to
a sum of m = 1, . . . ,M plane waves, each travelling in a
different direction n̂m; this extension is discussed below.
Throughout this paper, we use “dot product” notation
to mean contraction with the unperturbed 3-metric δij :

~a ·~b ≡ δija
ibj; and hats denote unit 3-vectors: â · â = 1.

If an electromagnetic flash is emitted from position ~xi

at time ti, what is its arrival time t at position ~xf? If
we define ~xfi ≡ ~xf − ~xi = xfix̂fi then, at zeroth order
(i.e. in the absence of gravitational waves) the answer is
t0 = ti+xfi. Solving the geodesic equation to first order
in hij yields the perturbed result t = t0 + δt where:

δt =

∫

df
ih̃ij(f)x̂

i
fix̂

j
fi[e

2πif(n̂·~xf−t0)−e2πif(n̂·~xi−ti)]

2πf(1−n̂ · x̂fi)
. (2)
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Now consider an observer at fixed spatial position ~x = ~0
receiving signals from α = 1, . . . , N pulsars at spatial
positions ~rα = rαr̂α. For pulsar α, the TOA fluctuation
δtα(t0), as a function of the unperturbed TOA t0, is

δtα(t0) =

∫

∞

−∞

dfδt̃α(f)e
−2πift0 (3)

where

δt̃α(f) =
ih̃ij(f)r̂

i
αr̂

j
α[1− Pα(f)]

2πf(1+n̂·r̂α)
(4)

and, for later convenience, we have defined the phase

Pα(f) ≡ e2πifrα(1+n̂·r̂α). (5)

The measured TOA fluctuations sα(t0) from pulsar α
are gravitational wave signal δtα(t0) plus noise nα(t0):

sα(t0) = δtα(t0) + nα(t0). (6)

We take the noise to be stationary and gaussian, so it
is characterized by its correlation function Cαβ(T ) or,

equivalently, its spectral density Sαβ(f) = C̃αβ(f):

Cαβ(T ) = nα(t0 + T )nβ(t0) (7a)

δ(f − f ′)Sαβ(f) = ñ∗

α(f)ñβ(f ′). (7b)

We also take the noise to be uncorrelated between dif-
ferent pulsars: Sαβ(f) = Sα(f)δαβ . Let us define the
natural noise-weighted inner product:

(g(1)|g(2)) =

∫

∞

−∞

df g̃(1)α (f)∗[S−1(f)]αβ g̃
(2)
β (f). (8)

Then matched filtering will detect a given gravitational
wave signal with expected signal-to-noise ratio squared
(SNR2) given by

SNR2 = (δt|δt) =
N
∑

α=1

SNR2
α (9a)

SNR2
α =

∫

∞

−∞

df
|δt̃α(f)|

2

Sα(f)
(9b)

where δt̃α(f) is given by (4). When a gravitational wave
signal (which depends on various parameters ξk) is de-
tected with sufficient SNR, the likelihood function may
be approximated as a gaussian ∝ exp[−(1/2)ξkΓklξ

l]
near its peak, and the expected inverse covariance matrix
is the Fisher information matrix, given by

Γkl =
( ∂t

∂ξk

∣

∣

∣

∂t

∂ξl

)

. (10)

We are interested, in particular, in the angular resolution
of a PTA. Define an orthonormal triad from n̂ and two

other unit vectors m̂µ̄ (µ̄ = 1, 2); let γ µ̄ be the rotation
angle around m̂µ̄. The 2× 2 angular part of Γkl is

Γµ̄ν̄ =

(

∂[δt]

∂γ µ̄

∣

∣

∣

∂[δt]

∂γ ν̄

)

=

N
∑

α=1

Γα
µ̄ν̄ (11a)

Γα
µ̄ν̄ =

∫

∞

−∞

df
∂[δt̃α(f)]

∂γ µ̄

∗

1

Sα(f)

∂[δt̃α(f)]

∂γ ν̄
. (11b)

To evaluate these angular derivatives, we act with the
infinitessimal rotation Rij ≈ δij − ǫijkm̂

k
µ̄γ

µ̄ on the grav-
itational wave field, but not on the pulsar positions: e.g.
∂(1+n̂·r̂α)/∂γ

µ̄ = ǫijkn̂
ir̂jαm̂

k
µ̄ and ∂[h̃ij(f)r̂

i
αr̂

j
α]/∂γ

µ̄ =

2h̃il(f)ǫ
l

jk r̂iαr̂
j
αm̂

k
µ̄. In this way, we find

∂[δt̃α(f)]

∂γ µ̄
=

i[A(f) + B(f)]

2πf
(12)

where A comes from differentiating the phase Pα in (4),
and B comes from differentiating everything else:

A ≡ 2πifrα
h̃ij r̂

i
αr̂

j
αr̂

k
αn̂

lm̂m
µ̄ ǫklm

(1 + n̂ · r̂α)
Pα (13a)

B ≡
h̃ij r̂

i
αr̂

k
αm̂

l
µ̄

1+n̂ · r̂α

[

2ǫjkl−
r̂jαn̂

mǫklm
1+n̂ · r̂α

]

[1−Pα]. (13b)

In understanding the meaning of these equations, we
should distinguish two cases: (i) pulsars whose distances
rα are known accurately relative to λgw/(1+ n̂· r̂α), so Pα

is known; and (ii) pulsars whose distances rα are known
poorly relative to λgw/(1 + n̂ · r̂α), so Pα is essentially a
random phase. We consider these two cases in turn.
Pulsars with accurately known distances. First

consider a monochromatic gravitational plane wave of
frequency fgw = c/λgw, and a pulsar whose distance rα
is known accurately relative to λgw/(1 + n̂ · r̂α). Then,
if 2πrα/λgw ≫ 1, the A term dominates the B term in
Eq. (12) and we have

Γα
µ̄ν̄

SNR2
α

≈
(2πrα
λgw

)2 (r̂
i
αn̂

jm̂k
µ̄ǫijk)(r̂

i′

α n̂
j′m̂k′

ν̄ ǫi′j′k′)

|1− Pα(fgw)|2
. (14)

Since the second fraction on the right-hand side of this
equation is typically O(1), this says that when a pulsar
at a well known distance rα registers a gravitational wave
with signal-to-noise level SNRα, its contribution to Γα

µ̄ν̄

is typically Γα
µ̄ν̄ ∼ (2πrα/λgw)

2SNR2
α. In other words,

each such pulsar acts is just like one of the baselines of
a radio interferometer array; but, in this analogy, the
radio waves are replaced by gravitational waves, and the
baselines are of galactic length scales and extend in all
three spatial dimensions – a remarkable instrument!
Now consider multiple GW sources. At the low

GW frequencies probed by PTAs (where the expected
GW point sources are supermassive black hole binaries,
far from final merger) the frequency of each gravita-
tional plane wave drifts negligibly over the observation
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timescale T ∼ 10 yrs; and over the light travel time from
the pulsars to the Earth, the frequency drift or “chirp”
is approximately linear: hij(t, ~x) = Re{ĥije

−2πiχ(τ)},

where χ(τ) ≡ f0τ + 1
2 ḟτ

2, τ ≡ t − n̂ · ~x, and {ĥij , f0, ḟ}
are constants. The induced timing residuals for pul-
sar α are a sum of two peaks in frequency space: an
“Earth term” at frequency f0, and a “pulsar term” at
frequency f0 − ḟ rα(1 + n̂ · r̂α); if ḟ is large enough (i.e.
for supermassive black hole binaries of sufficiently high
mass, sufficiently close to merger) these two peaks may
lie in separate frequency bins [6]. The number of such
GW sources that may be individually characterized by
a PTA may be determined via the following counting
argument. To fully specify the pattern of timing residu-
als, we must provide the following information: in every
GW frequency bin, and for each “Earth term” in that
bin, we give the associated propagation direction n̂, fre-
quency derivative ḟ , and two complex amplitudes (i.e. an
the amplitude and phase for both polarization modes),
for a total of 7 real numbers. On the other hand, since
the angular dependence of Eq. (4) contains spherical har-
monics of arbitrarily high angular momentum order, the
number of independent measurements collected by the
PTA is simply 2N per GW frequency bin – namely, the
measured amplitude and phase of the timing residuals,
for each pulsar, in each frequency bin [16]. To com-
pletely characterize the individual sources, the indepen-
dent measurements must outnumber the parameters to
be determined; that is, the PTA can characterize up to
an average of 2N/7 chirping GW point sources per GW
frequency bin. For simplicity, this argument neglects
“boundary effects” coming from GW sources for which
the “Earth term” lies within the detectable frequency
range, while the “pulsar term” does not, or vice versa. If
we assume that all of the GW sources are monochromatic
(ḟ = 0), the maximum number that can be characterized
improves only slightly to 2N/6 per frequency bin, but the
fitting procedure becomes much easier since we can treat
each GW frequency bin independently. If the PTA can
disentangle and characterize the individual sources, one
expects the angular resolution to be diffraction limited
δθ & (1/SNR)(λgw/rpulsar) [the more precise expecta-
tion is given by Eq. (14)].
Pulsars with poorly known distances. If the pul-

sar distance rα is poorly known relative to λgw/(1+n̂·r̂α),
then Pα becomes a random phase containing essentially
no information; the A term is washed out, and only the
B term remains in Eq. (12). Such pulsars no longer con-
tribute diffraction-limited information, but all is not lost!
Let us start by giving the key idea, roughly. In spher-

ical coordinates, with the GW source at the north pole
and pulsar α at (θα, ϕα), the factor h̃ij(f)r̂

i
αr̂

j
α/(1+n̂·r̂α)

in Eq. (4) is the familiar [15] pattern ∝ cos 2ϕα(1 +
cos θα), which is singular (since the θα → 0 limit de-
pends on ϕα). Ultimately this singularity is smoothed
out by the [1 − Pα] factor in Eq. (4), but this smooth-

ing only kicks in for very small angular separations
θα .

√

λgw/(2πrα): for such small separations, Pα(fgw)
ceases to be a random phase, and [1−Pα(fgw)] vanishes
∝ θ2α. In other words, when λgw/(2πrα) ≪ 1, Eq. (4)
is quasi-singular at θα = 0; it becomes genuinely singu-
lar in the limit λgw/(2πrα) → 0. The fact that δt̃α(f)
varies rapidly (with cos 2ϕα dependence) around a tiny
circle of radius

√

λgw/(2πrα) . θα ≪ 1 surrounding the
quasi-singularity is the key to localizing the GW source.
To see this in more detail, split the pulsar directions r̂α

into components parallel and perpendicular to the GW
source direction ẑ: r̂α = ρ̂αsin θα+ ẑ cos θα. Now ap-
proach the quasi-singularity in two steps: first consider
the “weaker” limit

√

λgw/(2πrα) . θα ≪ 1 in which θα
is small but [1−Pα] is not; then proceed to the “stronger”
limit θα ≪

√

λgw/(2πrα) ≪ 1 in which θα and [1 − Pα]
are both small. In the weaker limit, Eq. (4) becomes

δt̃α(f) ≈
i

πf
h̃ij(f)ρ̂

i
αρ̂

j
α[1− Pα(f)] (15)

while Eq. (12) becomes

∂[δt̃α(f)]

δγ µ̄
=

2i

πf

Cαµ̄(f)

θα
[1− Pα(f)] (16)

where

Cαµ̄(f) ≡ h̃ij(f)ρ̂
i
α

[

ǫjkln̂
km̂l

µ̄+ρ̂jαρ̂
k
αn̂

lm̂m
µ̄ ǫklm

]

. (17)

Thus (still in the weaker limit) we have:

Γα
µ̄ν̄

SNR2
α

≈
4

θ2α

Cαµ̄(fgw)Cαν̄(fgw)
∗

∣

∣h̃ij(fgw)ρ̂iαρ̂
j
α

∣

∣

2 . (18)

Since the second fraction on the right-hand side of this
expression is generically O(1), this says that when a pul-
sar is near (but not too near) a GW source on the sky,
its contribution to Γµ̄ν̄ is typically Γα

µ̄ν̄ ∼ (4/θ2α)SNR
2
α.

In the stronger limit θα ≪
√

λgw/(2πrα) ≪ 1, Eqs.
(4) and (12) imply that δt̃α(f) and ∂[δt̃α(f)]/∂γ

µ̄ are
smooth and vanishing at θα = 0. So as θα decreases,
Γα
µ̄ν̄ initially increases as 1/θ2α, and then drops to zero;

in between it attains a maximum value:

Γα
µ̄ν̄ ∼

8πrα
λgw

SNR2
α (19)

at a separation angle θα ≈
√

λgw/(2πrα) ≪ 1.
Now consider multiple GW sources. We can repeat

the previous section’s counting argument, except that
we must now include the N unknown pulsar distances
when we are counting the parameters needed to spec-
ify the pattern of timing residuals; with this modifica-
tion, we find that a PTA which monitors F different
GW frequency bins can completely characterize up to
an average of (2N/7)(1 − 1/2F ) “chirping” sources [or
(2N/6)(1−1/2F ) monochromatic sources] per bin. Note
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FIG. 1: The 4 circles represent 4 pulsars that form a small
square on the sky. The timing residuals of all 4 pulsars are os-
cillating with the same amplitude and period Tgw, but differ-
ent phases; each pulsar’s oscillation is 180o out of phase with
its 2 nearest neighbors. (This figure depicts this by showing
4 different moments in the oscillation cycle: black, white, or
grey circles indicate that, at that moment, the pulses are ar-
riving early, late, or “on time,” respectively.) This signature
indicates that the square contains a GW point source.

that, although we didn’t know the pulsar distances a pri-

ori, they are determined, in principle, by the fit [17] [18].
If the PTA can disentangle and characterize the in-

dividual sources, how well can they be angularly local-
ized? To answer this question, one should ask, for each
combination of pulsar and GW source, whether the fit
to the timing residuals has determined rα accurately or
poorly relative to λgw/(1 + n̂ · r̂α); roughly speaking, if
rα has been determined accurately then we expect the
pulsar will contribute diffraction limited angular infor-
mation as described by Eq. (14); and if rα has been
determined poorly then we expect the pulsar will con-
tribute “quasi-singularity limited” angular information
Γα
µ̄ν̄ for that source, as described by Eqs. (18) and (19).

Consider the localization of a GW source when all of
the pulsar’s have poorly known distances; as explained
above, the quasi-singular pattern of timing residuals im-
plies that the angular localization will be dominated by
the pulsars that are close to that source on the celestial
sphere; in particular, it is roughly set by the smallest
quadrilateral of pulsars that encircles the source on the
celestial sphere, down to a limiting angular resolution of
roughly δθ ∼ (1/SNRα)

√

λgw/dpulsar [the more precise
statement is given by Eqs. (18) and (19)]. To understand
this behavior, consider the example in Fig. 1.
Discussion. In the previous sections, we have at-

tempted to clarify the limits on the capabilities of PTAs
and, in particular, how these limits depend on factors
such as the SNR distribution of the GW sources, the
number and angular distribution of the pulsars relative
to the GW sources, the distances to the pulsars and the
precisions of those distances. Our bounds on the angular
resolution were obtained by Fisher matrix methods; as
such, these bounds are saturated for GW sources with
high SNR, and still provide useful guidelines for mod-
est SNR sources, but will become “loose” for low SNR
sources. (Note that the relevant SNR here is the total

SNR of the source in the PTA, which can be high even
if the SNR per pulsar is not.) Our limits on the number

of sources that can be individually characterized relied
on deterministic counting arguments; again, these limits
will be saturated for high SNR sources, and loose for low
SNR sources; but even at low SNR, the essential point
remains that a PTA with many pulsars can distinguish
many sources per frequency bin, so the traditional rule of
thumb for confusion (that a gravitational wave detector
becomes confused when there is & one source per bin) is
too pessimistic for PTAs. Interesting problems for future
work include: (i) “tightening” the angular resolution and
confusion limits at low SNR; (ii) extending this work to
GW point sources that are near enough that their wave-
front curvature is significant [11]; (iii) determining the
circumstances in which pulsar distance determination by
GW fitting can compete with more traditional methods
(i.e. VLBI or timing parallax); (iv) clarifying the statis-
tics of GW sources which are anomalously well charac-
terized because they are fortuitously located relative to
one or several pulsars on the sky; (v) quantifying the
gain from matched filtering (with quasi-singular filters in
particular) compared to traditional stochastic correlation
analysis, even when the PTA appears source confused.
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