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Abstract

In this work we construct the ππ scattering amplitude T 0
0 with regular analytical properties in

the s complex plane, that describes simultaneously the data on the ππ scattering, φ → π0π0γ decay

and ππ → KK̄ reaction. The chiral shielding of the σ(600) meson and its mixing with the f0(980)

meson are taken into account also. The data agrees with the four-quark nature of the σ(600) and

f0(980) mesons.

The amplitude in the range −5m2
π < s < 0.64 GeV2 also agrees with results, obtained on the

base of the chiral expansion, dispersion relations and the Roy equations.

PACS numbers: 12.39.-x 13.40.Hq 13.66.Bc
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I. INTRODUCTION

Study of light scalar resonances is one of the central problems of non-perturbative QCD,

it is important for understanding both the confinement physics and the chiral symmetry

realization way in the low energy region. The commonly suggested nonet of light scalar

mesons is f0(600) (or σ(600)), K∗

0(800) (or κ(800)), f0(980) and a0(980) [1]. Light scalar

mesons are intensively studied theoretically and experimentally in different reactions.

In Refs. [2] we described the high-statistical KLOE data on the φ → π0π0γ decay

[3] simultaneously with the data on the ππ scattering and the ππ → KK̄ reaction. The

description was carried out taking into account the chiral shielding of the σ(600) meson

[4, 5] and it’s mixing with the f0(980) meson. It was shown that the data don’t contradict

the existence of the σ(600) meson and yield evidence in favor of the four-quark nature of

the σ(600) and f0(980) mesons.

This description revealed new goals. The point is that at the same time it was calculated

in Ref. [6] the ππ scattering amplitude in the s complex plane, basing on chiral expansion,

dispersion relations and Roy equations. In particular, the pole was obtained at s = M2
σ =

(6.2− 12.3i)m2
π, where

Mσ = 441+16
−8 − i272+9

−12.5 MeV , (1)

that was assigned to the σ resonance.

Aiming the comparison of the results of Refs. [2] and [6] it is necessary to build the ππ

scattering amplitude with correct analytical properties in the complex s plane. The point

is that in Ref. [2] S-matrix of the ππ scattering is the product of the ”resonance” and

”background” parts:

Sππ = Sback Sres , (2)

and the Sres had correct analytical properties, while analytical properties of the Sback in

the whole complex s plane were not essential for the aims of [2], where physical region was

investigated, and Adler zero existence [7] together with poles absence on the real axis of the

s complex plane were demanded.

In this paper we present the ππ scattering amplitude with correct analytical properties

in the complex s plane and the data description obtained with this amplitude [8]. The
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comparison with the results of Ref. [6] is presented also.

All formulas for the φ → (Sγ+ρ0π0) → π0π0γ reaction (S = f0(980)+σ(600)) are shown

in Sec. II. Our new parameterization of the background amplitude is presented in Sec. III

and Sec. IV. The results of the data analysis are presented in Sec.V. A brief summary is

given in Sec.VI.

II. THEORETICAL DESCRIPTION OF THE φ → (f0(980) + σ(600))γ → γπ0π0
AND

φ → ρ0π0 → γπ0π0
REACTIONS

In Refs. [9, 10] it was shown that the dominant background process is φ → π0ρ → γπ0π0,

while the reactions e+e− → ρ → π0ω → γπ0π0 and e+e− → ω → π0ρ → γπ0π0 have a

small effect on e+e− → φ → γπ0π0 in the region mπ0π0 ≡ m > 900 MeV. In Ref. [11] it

was shown that the φ → π0ρ → γπ0π0 background is small in comparison with the signal

φ → γf0(980) → γπ0π0 at m > 700 MeV.

The amplitude of the background decay φ(p) → π0ρ → γ(q)π0(k1)π
0(k2) has the following

form:

Mback = Fbe
−iδgρπ0φgρπ0γφαpνǫδqǫǫαβµνǫβδωǫ

(

k1µk2ω
Dρ(q + k2)

+
k2µk1ω

Dρ(q + k1)

)

. (3)

Here constants Fb and δ take into account ρπ rescattering effects [12]. Note that in this

work and our previous works it was assumed that Fb = 1 [13].

In the K+K− loop model, φ → K+K− → γ(f0 + σ) [9–11], above the KK̄ threshold the

amplitude of the signal φ → γ(f0 + σ) → γπ0π0 is

Msig = g(m)
(

(φǫ)− (φq)(ǫp)

(pq)

)

T
(

K+K− → π0π0
)

× 16π , (4)

where the K+K− → π0π0 amplitude, taking into account the mixing of f0 and σ mesons,

T
(

K+K− → π0π0
)

= eiδB
∑

R,R′

gRK+K−G−1
RR′gR′π0π0

16π
, (5)

where R,R′ = f0, σ,

δB = δππB + δKK̄
B , (6)

where δππB and δKK̄
B are phases of the elastic background of the ππ and KK̄ scattering,

respectively, see Refs. [14–17].
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Note that the additional phase δKK̄
B changes the modulus of the KK̄ → π0π0 amplitude

under the KK̄ threshold, at m < 2mK . Let’s define

PK =











eiδ
KK̄
B m ≥ 2mK ;

analytical continuation of eiδ
KK̄
B m < 2mK . (7)

Note also that the phase δππB was defined as δB in Refs. [10, 11].

The matrix of the inverse propagators [10] is

GRR′ ≡ GRR′(m) =







Df0(m) −Πf0σ(m)

−Πf0σ(m) Dσ(m)





 ,

Πf0σ(m) =
∑

a,b

gσab
gf0ab

Πab
f0
(m) + Cf0σ,

where the constant Cf0σ incorporates the subtraction constant for the transition f0(980) →
(0−0−) → σ(600) and effectively takes into account contribution of multi-particle intermedi-

ate states to f0 ↔ σ transition, see Ref. [10]. The inverse propagator of the R scalar meson

is presented also in Refs. [9–11, 14–23]:

DR(m) = m2
R −m2 +

∑

ab

[ReΠab
R (m2

R)−Πab
R (m2)], (8)

where
∑

ab[ReΠab
R (m2

R)−Πab
R (m2)] = ReΠR(m

2
R)−ΠR(m

2) takes into account the finite width

corrections of the resonance which are the one loop contribution to the self-energy of the R

resonance from the two-particle intermediate ab states.

For pseudoscalar a, b mesons and ma ≥ mb, m ≥ m+ one has:

Πab
R (m2) =

g2Rab

16π

[

m+m−

πm2
ln

mb

ma
+

+ρab



i+
1

π
ln

√

m2 −m2
−
−
√

m2 −m2
+

√

m2 −m2
−
+
√

m2 −m2
+







 (9)

m− ≤ m < m+

Πab
R (m2) =

g2Rab

16π

[

m+m−

πm2
ln

mb

ma
− |ρab(m)|+

+
2

π
|ρab(m)| arctan

√

m2
+ −m2

√

m2 −m2
−



 . (10)
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m < m−

Πab
R (m2) =

g2Rab

16π

[

m+m−

πm2
ln

mb

ma
−

−1

π
ρab(m) ln

√

m2
+ −m2 −

√

m2
−
−m2

√

m2
+ −m2 +

√

m2
−
−m2



 . (11)

ρab(m) =

√

(1− m2
+

m2
)(1− m2

−

m2
) , m+ = ma ±mb (12)

The constants gRab are related to the width

ΓR(m) =
∑

ab

Γ(R → ab,m) =
∑

ab

g2Rab

16πm
ρab(m). (13)

Note that we take into account intermediate states ππ,KK̄, ηη, η′η, η′η′ in the f0(980)

and σ(600) propagators:

Πf0 = Ππ+π−

f0
+Ππ0π0

f0
+ΠK+K−

f0
+ΠK0K̄0

f0
+Πηη

f0
+Πη′η

f0
+Πη′η′

f0
, (14)

and also for the σ(600). We use gf0K0K̄0 = gf0K+K−, gf0π0π0 = gf0π+π−/
√
2, the same for the

σ(600), too.

For other coupling constants the naive four-quark model predicts [9, 21]:

gf0ηη = −gf0η′η′ =
2
√
2

3
gf0K+K−, gf0η′η = −

√
2

3
gf0K+K− ;

gσηη = gσηη′ =

√
2

3
gσπ+π−, gση′η′ =

1

3
√
2
gσπ+π− .

The definition of gRπ0π0 , gRηη, gRη′η′ takes into account the identity of the particles. As

for these relations are approximate, we introduce the effective correction coefficients xσ and

xf0 :

gf0ηη = −gf0η′η′ =
2
√
2

3
gf0K+K− xf0 , gf0η′η = −

√
2

3
gf0K+K− xf0 ;

gσηη = gσηη′ =

√
2

3
gσπ+π−xσ, gση′η′ =

1

3
√
2
gσπ+π−xσ .

In the K+K− loop model g(m) has the following forms (see Refs. [9, 20, 22, 23]).
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For m < 2mK+

g(m) =
e

2(2π)2
gφK+K−

{

1 +
1− ρ2(m2)

ρ2(m2
φ)− ρ2(m2)

×
[

2|ρ(m2)| arctan 1

|ρ(m2)| − ρ(m2
φ)λ(m

2
φ) + iπρ(m2

φ)−

−(1− ρ2(m2
φ))

(

1

4
(π + iλ(m2

φ))
2 −

−
(

arctan
1

|ρ(m2)|

)2)]}

, (15)

where

ρ(m2) =

√

1− 4m2
K+

m2
; λ(m2) = ln

1 + ρ(m2)

1− ρ(m2)
;

e2

4π
= α =

1

137
. (16)

For m ≥ 2mK+

g(m) =
e

2(2π)2
gφK+K−

{

1 +
1− ρ2(m2)

ρ2(m2
φ)− ρ2(m2)

×

×
[

ρ(m2)(λ(m2)− iπ)− ρ(m2
φ)(λ(m

2
φ)− iπ)−

1

4
(1− ρ2(m2

φ))

(

(π + iλ(m2
φ))

2 − (π + iλ(m2))2
)]}

. (17)

The mass spectrum of the reaction is

Γ(φ → π0π0γ)

dm
=

dΓS

dm
+

dΓback(m)

dm
+

dΓint(m)

dm
, (18)

where the signal contribution φ → Sγ → π0π0γ

dΓS

dm
=

|PK |2|g(m)|2
√

m2 − 4m2
π(m

2
φ −m2)

3(4π)3m3
φ

|
∑

R,R′

gRK+K−G−1
RR′gR′π0π0 |2. (19)

The mass spectrum of the background process φ → ρπ0 → π0π0γ

dΓback(m)

dm
=

1

2

(m2
φ −m2)

√

m2 − 4m2
π

256π3m3
φ

∫ 1

−1
dxAback(m, x) , (20)

where

Aback(m, x) =
1

3

∑

|Mback|2 = (21)
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=
F 2
b

24
g2φρπg

2
ρπγ

{

(

m8
π + 2m2m4

πm̃
2
ρ − 4m6

πm̃
2
ρ + 2m4m̃4

ρ −

−4m2m2
πm̃

4
ρ + 6m4

πm̃
4
ρ + 2m2m̃6

ρ − 4m2
πm̃

6
ρ + m̃8

ρ − 2m6
πm

2
φ −

−2m2m2
πm̃

2
ρm

2
φ + 2m4

πm̃
2
ρm

2
φ − 2m2m̃4

ρm
2
φ + 2m2

πm̃
4
ρm

2
φ − 2m̃6

ρm
2
φ +

+m4
πm

4
φ + m̃4

ρm
4
φ

)

(

1

|Dρ(m̃ρ)|2
+

1

|Dρ(m̃∗

ρ)|2
)

+ (m2
φ −m2)(m2 −

−2m2
π + 2m̃2

ρ −m2
φ)(2m

2m2
π + 2m2

πm
2
φ −m4)

1

|Dρ(m̃∗

ρ)|2
+

+2Re
(

1

Dρ(m̃ρ)D∗

ρ(m̃
∗

ρ)

)

(

m8
π −m6m̃2

ρ + 2m4m2
πm̃

2
ρ +

+2m2m4
πm̃

2
ρ − 4m6

πm̃
2
ρ − 4m2m2

πm̃
4
ρ + 6m4

πm̃
4
ρ +

+2m2m̃6
ρ − 4m2

πm̃
6
ρ + m̃8

ρ +m2m4
πm

2
φ − 2m6

πm
2
φ + 2m4m̃2

ρm
2
φ −

−4m2m2
πm̃

2
ρm

2
φ + 2m4

πm̃
2
ρm

2
φ −m2m̃4

ρm
2
φ + 2m2

πm̃
4
ρm

2
φ − 2m̃6

ρm
2
φ −

−m4
πm

4
φ −m2m̃2

ρm
4
φ + 2m2

πm̃
2
ρm

4
φ + m̃4

ρm
4
φ

)

}

,

m̃ρ
2 = m2

π +
(m2

φ −m2)

2
(1− x

√

1− 4m2
π

m2
)

m̃ρ
∗2 = m2

φ + 2m2
π −m2 − m̃ρ

2 . (22)

The interference between signal and background processes accounts for

dΓint(m)

dm
=

1√
2

√

m2 − 4m2
π

256π3m3
φ

∫ 1

−1
dxAint(m, x) , (23)

where

Aint(m, x) =
2

3
(m2

φ −m2)Re
∑

MfM
∗

back = (24)

=
16π

3
FbRe

{

eiδg(m)gφρπgρπγT
0
0

(

K+K− → π0π0
)

[

(m̃2
ρ −m2

π)
2m2

φ − (m2
φ −m2)2m̃2

ρ

D∗

ρ(m̃ρ)
+

+
(m̃∗2

ρ −m2
π)

2m2
φ − (m2

φ −m2)2m̃∗2
ρ

D∗

ρ(m̃
∗

ρ)

]}

=

=
Fb

3
Re

{

PKe
iδππ

B eiδg(m)gφρπgρπ0γ

(

∑

R,R′

gRK+K−G−1
RR′gR′π0π0

)

×

×
[

(m̃2
ρ −m2

π)
2m2

φ − (m2
φ −m2)2m̃2

ρ

D∗

ρ(m̃ρ)
+

(m̃∗2
ρ −m2

π)
2m2

φ − (m2
φ −m2)2m̃∗2

ρ

D∗

ρ(m̃
∗

ρ)

]}

.
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The factor 1/2 in Eq. (20) and the factor 1/
√
2 in Eq. (23) take into account the identity

of pions.

The S-wave amplitude T 0
0 of the ππ scattering with I=0 [10, 15–17] is

T 0
0 =

η00e
2iδ0

0 − 1

2iρππ(m)
=

e2iδ
ππ
B − 1

2iρππ(m)
+ e2iδ

ππ
B

∑

R,R′

gRππG
−1
RR′gR′ππ

16π
. (25)

Here η00 ≡ η00(m) is the inelasticity, η00 = 1 for m ≤ 2mK+, and

δ00 ≡ δ00(m) = δππB (m) + δres(m) , (26)

where δππB = δππB (m) (δB in Ref. [10]) is the phase of the elastic background (see Eq. 6), and

δres(m) is the resonance scattering phase,

S0 res
0 = η00(m)e2iδres(m) = 1 + 2iρππ(m)

∑

R,R′

gRππG
−1
RR′gR′ππ

16π
, η00 = |S0 res

0 | , (27)

gRππ =
√

3/2 gRπ+π−. The chiral shielding phase δππB (m), motivated by the σ-model [4, 5]

and desired analytical properties, is taken in more complicated form than in Ref. [2], see

Sec. III.

The phase δKK̄
B = δKK̄

B (m) is parameterized in the following way:

tan δKK̄
B = fK(m

2)
√

m2 − 4m2
K+ ≡ 2pKfK(m

2) (28)

and

e2iδ
KK̄
B =

1 + i2pKfK(m
2)

1− i2pKfK(m2)
(29)

Actually, e2iδ
ππ
B

(m) has a pole at m2 = m2
0, 0 < m2

0 < 4m2
π, which is compensated by

the zero in e2iδ
KK̄
B

(m) to ensure a regular KK̄ → ππ amplitude and, consequently, the φ →
K+K− → ππγ amplitude at 0 < m2 < 4m2

π. This requirement leads to

fK(m
2
0) =

1
√

4m2
K+ −m2

0

≈ 1

2mK+

. (30)

As in Refs. [2], for fK(m
2) we used the form

fK(m
2) = −

arctan(
m2

−m2
1

m2
2

)

ΛK

. (31)
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The inverse propagator of the ρ meson has the following expression

Dρ(m) = m2
ρ −m2 − im2 g

2
ρππ

48π

(

1− 4m2
π

m2

)3/2

. (32)

.

The coupling constants gφK+K− = 4.376 ± 0.074 and gφρπ = 0.814 ± 0.018 GeV−1 are

taken from the most precise measurement [24]. To obtain the coupling constant gρπ0γ we

used the data of the experiments [25] and [26] on the ρ → π0γ decay and the expression

Γ(ρ → π0γ) =
g2ρπ0γ

96πm3
ρ

(m2
ρ −m2

π)
3, (33)

the result gρπ0γ = 0.26± 0.02 GeV−1 is the weighed average of these experiments.

III. THE BACKGROUND PHASE δππB

The proper analytical properties of the ππ scattering amplitude are: two cuts in the s-

complex plane, Adler zero in T 0
0 [27], absence of poles on the physical sheet of the Riemannian

surface, σ(600) and f0(980) poles in the resonance amplitude on the second sheet of the

Riemannian surface and absence of poles on the second sheet in the background amplitude

in the region 4m2
π < Re(s) < (1.2 GeV)2. This applies curtain restrictions on the δππB .

Let’s represent δππB in the physical region s = m2 > 4m2
π as

tan(δππB ) =
Im (Pπ1(s)Pπ2(s))

Re (Pπ1(s)Pπ2(s))
, (34)

and

e2iδ
ππ
B = Sback

1 Sback
2 =

P ∗

π1(s)P
∗

π2(s)

Pπ1(s)Pπ2(s)
=

Pπ1(s− iǫ)Pπ2(s− iǫ)

Pπ1(s+ iǫ)Pπ2(s+ iǫ)
, (35)

where

Pπ1(s) = a1 − a2
s

4m2
π

− Πππ(s) + a3Πππ(4m
2
π − s)− a4Q1(s) , (36)

Q1(s) =
1

π

∫

∞

4m2
π

s− 4m2
π

s′ − 4m2
π

ρππ(s
′)

s′ − s− iε
K1(s

′) , (37)

K1(s) =
L1(s)

D1(4m2
π − s)D2(4m2

π − s)D3(4m2
π − s)D4(4m2

π − s)D5(4m2
π − s)D6(4m2

π − s)
,

(38)

9



L1(s) = (s− 4m2
π)

6 + α1(s− 4m2
π)

5 + α2(s− 4m2
π)

4 + α3(s− 4m2
π)

3+

+α4(s− 4m2
π)

2 + α5(s− 4m2
π) + α6+

+
√
s
(

c1(s− 4m2
π)

5 + c2(s− 4m2
π)

4 + c3(s− 4m2
π)

3+

+ c4(s− 4m2
π)

2 + c5(s− 4m2
π) + c6

)

, (39)

Di(s) = m2
i − s− giΠππ(s) , (40)

Πππ(s) =
16π

g2Rab

Πππ
R (s) , (41)

P ∗

π1(s) = Pπ1(s− iǫ) = Pπ1(s) + 2iρππ(s)
(

1 + a4K1(s)
)

, (42)

Pπ2(s) =
Λ2 + s− 4m2

π

4m2
π

+ k2Q2(s) , (43)

here

Q2(s) =
1

π

∫

∞

4m2
π

s− 4m2
π

s′ − 4m2
π

ρππ(s
′)

s′ − s− iε
K2(s

′) , (44)

K2(s) =
L2(s)

D1A(4m2
π − s)D2A(4m2

π − s)D3A(4m2
π − s)

, (45)

L2(s) = 4m2
π

(

s2 + βs+ γ1s
3/2 + γ2s

1/2
)

, (46)

P ∗

π2(s) = Pπ2(s− iǫ) = Pπ2(s)− 2iρππ(s)k2K2(s) . (47)

Note that this parameterization was inspired by Ref. [19], devoted to proof that the

propagators (8) satisfy the Källen – Lehmann representation in the wide domain of coupling

constants of the scalar mesons with the two-particle states. Following the ideas of this paper

the conditions

K1(s) ≥ 0, K2(s) ≥ 0 at s > 4m2
π
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guarantee absence of poles on the physical sheet in Eq. (35) (of course, the restrictions

of Sec. IV should be fulfilled too). Note also that we choose the denominator of (35) as

Pπ1(s)Pπ2(s) for our comfort.

IV. RESTRICTIONS ON THE PARAMETERS

Some parameters are fixed by the requirement of the proper analytical continuation of

amplitudes. The denominators Pπ1 and Pπ2 have zeroes at s = m2
0 and s = m2

0A respectively,

both belonging to the interval 0 < s < 4m2
π. These zeroes should be compensated by zeroes

in any pair from P ∗

π1, P
∗

π2 and S0 res
0 . We choose

P ∗

π1(m
2
0) = 0 ,

S0 res
0 (m2

0A) = 0 (48)

see Eq. (35). [28]

The requirement of the T 0
0 finitness at s = 0 leads to 2 conditions. Really, on the real

axis for s > 4m2
π we have

Sback
1 =

P ∗

π1(s)

Pπ1(s)
=

Pπ1(s− iǫ)

Pπ1(s+ iǫ)
= 1 + 2iρππ(s)

1 +K1(s)

Pπ1(s)
,

Sback
2 =

P ∗

π2(s)

Pπ2(s)
=

Pπ2(s− iǫ)

Pπ2(s+ iǫ)
= 1− 2iρππ(s)

K2(s)

Pπ2(s)
.

So, to avoid singularity in the

T 0
0 =

Sback
1 Sback

2 S0 res
0 − 1

2iρππ(s)

at s = 0, where ρππ(s) becomes infinite, we require

1 +K1(0) = 0,

as forK2(0), it is equal to zero at s = 0 via construction, see Eq. (45). Note that alternatively

one may require T 0 res
0 (0) = 0.

Additionally, as it was noted in Refs. [29], crossing symmetry implemented by Roy

equations imposes the condition
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dT 0
0

dm
(m2 = 0) = 0 .

Remain also the condition Eq. (30) removing the singularity in the T (ππ → KK̄)

amplitude. One can see that no special prerequisite to Adler zero existence in the ππ

scattering amplitude should be imposed, because it appears when we take into account the

results of Ref. [6].

V. DATA ANALYSIS

Analyzing data we imply a scenario motivated by the four-quark model [30], that is,

the σ(600) coupling with the KK̄ channel, gσK+K−, is suppressed relatively to the coupling

with the ππ channel, gσπ+π−, the mass of the σ meson mσ is in the 500-700 MeV range. In

addition, we have in mind the Adler self-consistency conditions for the T 0
0 (ππ → ππ) near

ππ threshold. The general aim of this section is to demonstrate that the data and the [6]

results on the ππ amplitude are in excellent agreement with this general scenario.

As in Ref. [2] for φ → π0π0γ decay we use the KLOE data [3] for m > 660 MeV. For

the δ00 we use the ”old data” [31–35], 44 points up to 1.2 GeV [36]. Besides, we take into

account the new precise data in the low energy region [37, 38].

The inelasticity η00(m) and the phase δπK(m) of the amplitude T (ππ → KK̄) are essential

in the fit region, 2mK+ < m < 1.2 GeV. As for the inelasticity, the experimental data of

Ref. [31] gives an evidence in favor of low values of η00(m) near the KK̄ threshold. The

situation with the experimental data on δπK(m) is controversial and experiments have large

errors. We consider these data as a guide, which main role is to fix the sign between signal

(4) and background amplitudes (3), and hold two points of the experiment [39], see Fig. 9.

As for inelasticity, for fitting we used only the key experimental point η00(m = 1.01 GeV) =

0.41± 0.14, see Fig. 5.

Providing all the above conditions, we have obtained perfect agreement with the general

scenario under consideration, see Fits 1, 2 in Tables I, II and Figs. 1-10. Fits 1 and 2 show

that allowed range of σ(600) and f0(980) parameters is rather wide.

The values of g2f0K+K−/4π in Fits 1 and 2 (1 GeV2 and 2 GeV2 correspondingly) show

scale of possible deviation of this constant. This may be important to coordinate g2f0K+K−/4π

with g2a0K+K−/4π [40], note the latter is usually larger than 1 GeV2.

12



In addition, we carry out Fit 3, where σ(600) and f0(980) are coupled only with the ππ

channel. As seen from Table I and Figs. 11-13, Fit 3 is in excellent agreement with the data

on the δ00 up to 1 GeV and the [6] results.

We introduce rather many parameters indeed (52), but for restrictions (expresses 5 pa-

rameters through others) and parameters (or their combinations), that go to bound of the

permitted range (7 effective links), the effective number of free parameters is reduced (to

40). It is significant that fits describe not only the experimental data (about 80 points), but

also the ππ amplitude from the [6] in the range −5m2
π < s < 0.64 GeV2 which is treated

along with experimental data.

The σ(600) pole positions, obtained in Fits 1 and 2, lie far from Eq. (1), see Table I. One

of the possible reasons is neglecting KK̄ and other high channels in the [6] approach. The

role of high channels can be estimated with the help of Fit 3, which σ(600) pole position is

considerably closer to Eq. (1), see Table I.

Note that kernels of the background integrals (38) and (45) are positive in the range of

integration [2mπ,∞), Fit 1 kernels are presented in Fig. 7.

The Adler zero in the T 0
0 (ππ → ππ) is near s = (100 MeV)2 in all Fits because we describe

the amplitude [6]. Fit 2 also has Adler zero in the T (ππ → KK̄) at s = (166 MeV)2, Fit 1

has a zero in the T (ππ → KK̄) at s = −(601 MeV)2.

The resonance amplitude T 0 res
0 have poles on the unphysical sheets of its Riemannian

surface. As we have multi-channel case, the amplitude has the set of lists depending on

lists of the polarization operators Πab
R (s). We show resonance poles only on some lists, see

Tables IV, V. For this choice, in case of metastable states, decaying to several channels, the

imaginary parts of pole positionsMR would be connected to the full widths of the resonances

(2ImMR = ΓR =
∑

ab Γ(R → ab)). Note that σ(600) and f0(980) poles, shown in Table I,

correspond to first lines of Tables IV, V.

As to the background amplitude T 0 back
0 , it has poles on the second sheet of the Riemannian

surface, where Pπ1 = 0 or Pπ2 = 0. The Pπ1 has a zero at s = (1246− 104 i)2 MeV2 for Fit

1, at s = (1354 − 110 i)2 MeV2 for Fit 2, and at s = (1056 − 142 i)2 MeV2 for Fit 3. The

Pπ2 has a zero at s = (0.2 − 9.5 i)m2
π for Fit 1, at s = (2.0 − 8.9 i)m2

π for Fit 2, and at

s = (−0.6 − 8.6 i)m2
π for Fit 3. These poles lie outside of the region 4m2

π < Re(s) < (1.2

GeV)2 except the pole at s = (1056 − 142 i)2 MeV2 for Fit 3, but for this Fit the upper

bound is 1 GeV2.
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Note it would be naive to treat the poles in the background as resonances (f0(1370), for

example) because in our approach to consider additional resonances one should extend the

matrix of the inverse propagators, etc.

Table I. Properties of the resonance amplitude and main characteristics

Fit 1 2 3

mf0 , MeV 979.16 986.50 964.01

gf0K+K−, GeV 3.54 5.01 0
g2
f0K

+K−

4π
, GeV2 1 2 0

gf0π+π−, GeV −1.3737 −2.1185 0.3183
g2
f0π

+π−

4π
, GeV2 0.150 0.357 0.008

xf0 0.6640 0.9584 -

Γf0(mf0), MeV 55.2 130.3 3.0

f0(980) pole, MeV 986.2− 25.5 i 990.5− 19.4 i 978.9− 11.4 i

mσ, MeV 487.59 506.95 480.46

gσπ+π−, GeV 2.7368 2.6735 2.5871
g2
σπ+π−

4π
, GeV2 0.596 0.569 0.533

gσK+K−, GeV 0.552 0.774 0
g2
σK+K−

4π
, GeV2 0.024 0.048 0

xσ 0.9750 0.8201 -

Γσ(mσ), MeV 377.8 352.9 340.2

σ(600) pole, MeV 581.0− 212.7 i 613.8− 221.4 i 528.6− 220.3 i

C, GeV2 0.04317 −0.07633 −0.11734

δ, ◦ −70.62 −73.6 -

m1, MeV 801.90 814.88 -

m2, MeV 465.95 554.95 -

ΛK , GeV 1.142 1.030 -

a00, m−1
π 0.223 0.226 0.221

Adler zero in ππ → ππ (94.4 MeV)2 (96.8 MeV)2 (87.1 MeV)2

η00(1010 MeV) 0.55 0.45 -

χ2
phase (44 points) 45.9 50.6 26.3 (34 points)

χ2
sp (18 points) 24.9 19.1 -
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Table II. Parameters of the first background (Pπ1)

Fit 1 2 3

a1 −3.105 −4.549 −1.498

a2 0.01136 0.00998 0.05821

a3 0 0 0

a4 4.9328 13.1111 1.2475

α1, GeV2 604.137 624.512 −792.804

α2, GeV4 920.111 1000.739 −384.477

α3, GeV6 785.958 781.770 416.645

α4, GeV8 223.623 211.195 198.772

α5, GeV10 24.5339 23.8517 25.4265

α6, GeV12 0.248657 0.314094 0.198560

c1, GeV 356.128 224.404 995.905

c2, GeV3 −2735.40 −2600.82 −1070.75

c3, GeV5 284.008 445.192 542.745

c4, GeV7 430.758 461.717 411.927

c5, GeV9 49.7913 47.2357 51.4206

c6, GeV11 −0.664290 −0.684002 −0.635647

m1, MeV 1105.67 1111.87 1002.31

g1, MeV 347.70 350.48 306.18

m2, MeV 1061.53 1141.92 806.93

g2, MeV 344.12 381.73 350.51

m3, MeV 1061.85 1169.51 781.76

g3, MeV 311.56 311.80 322.57

m4, MeV 970.78 1040.96 970.78

g4, MeV 457.52 455.56 376.88

m5, MeV 1176.39 1320.55 1153.21

g5, MeV 544.43 588.48 500.59

m6, MeV 1521.20 1621.10 1808.74

g6, MeV 739.93 750.75 841.57
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Table III. Parameters of the second background (Pπ2)

Fit 1 2 3

Λ, MeV 83.238 74.477 70.268

k2 0.0152934 0.0168176 0.0150655

β 239.184 221.055 263.511

γ1 1006.367 928.743 878.056

γ2 22.7004 23.3341 29.4097

m1A, MeV 491.92 84.77 687.43

g1A, MeV 469.29 492.03 364.68

m2A, MeV 531.81 639.95 528.40

g2A, MeV 452.20 261.48 378.65

m3A, MeV 670.64 565.16 608.72

g3A, MeV 299.23 428.97 370.98

Table IV. σ(600) poles (MeV) on different sheets of the

complex s plane depending on lists of polarization operators Πab(s)

ΠKK̄ list Πηη list Πηη′ list Πη′η′ list Fit 1 Fit 2

I I I I 581.0− 212.7 i 613.8− 221.4 i

II I I I 617.5− 353.0 i 609.8− 291.6 i

II II I I 554.3− 375.3 i 559.4− 346.6 i

II II II I 579.0− 475.2 i 569.7− 410.7 i

II II II II 625.7− 474.9 i 581.6− 411.0 i

Table V. f0(980) poles (MeV) on different sheets of the

complex s plane depending on lists of polarization operators Πab(s)

ΠKK̄ list Πηη list Πηη′ list Πη′η′ list Fit 1 Fit 2

I I I I 986.2− 25.5 i 990.5− 19.4 i

II I I I 916.9− 299.4 i 1183.2− 518.6 i

II II I I 966.8− 450.5 i 1366.0− 756.5 i

II II II I 962.6− 465.2 i 1390.7− 813.0 i

II II II II 962.5− 608.0 i 1495.6− 1057.7 i
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FIG. 1: The π0π0 spectrum, theoretical curve and the KLOE data (points): a) Fit 1, b) Fit 2.
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FIG. 2: The phase δ00 of the ππ scattering (degrees): a) Fit 1, b) Fit 2.

VI. CONCLUSION

Thus, the background phase (34) allows us to obtain proper analytical features of the

ππ scattering amplitude, link results of [6] with properties of light scalars simultaneously

describing experimental data. The obtained description is in agreement with the scenario

based on the four-quark model.

Resonance masses and widths mR and ΓR(mR) in our formulas (which may be called

”Breit-Wigner” masses and widths) have clear physical meaning, in contrast to the resonance

poles in the complex plane. At first, what sheet of the complex plane should be considered?

For σ(600) it is natural to consider the first line of the Table IV (at any rate, it would be

correct for very narrow σ(600)). The obtained pole positions in this case don’t agree with
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FIG. 3: The comparison of the experimental data on δ00 [37] and the obtained curve: a) Fit 1, b)

Fit 2.
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FIG. 4: The comparison of the experimental data on δ00 [38] and the obtained curve: a) Fit 1, b)

Fit 2.

the pole position obtained in Ref. [6], see Eq. (1). Note that the σ(600) pole position is

dictated by the σ(600) propagator in our case, because the σ(600)−f0(980) mixing is small.

Providing the pole position (1) and taking into account only ππ channel in the propagator,

we can determine σ(600) mass and coupling to the ππ channel, and the obtained values

contradict the Källen – Lehmann representation, see [19]. Taking into account additional

channels we may fulfill the Källen – Lehmann representation, but the region of permitted

σ(600) parameters don’t allow to describe experimental data in the current model.

Note that the Roy equations are approximate, they take into account only ππ channel.

This can lead to different analytical continuation and, hence, explain deviation of the σ(600)
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FIG. 5: The inelasticity η00 : a) Fit 1, b) Fit 2.
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FIG. 6: The phase δ00 of the ππ scattering. Solid line is our description, dashed lines mark borders

of the corridor [6], points are experimental data: a) Fit 1, b) Fit 2.

pole position, compare Fit 3 with Fits 1 and 2 in Table I [42].

The current activity, aiming extremely precise determination of the σ(600) pole position,

has taken the forms of the Swift’s grotesque. Really, the residue of the σ pole can not be

connected to coupling constant in the Hermitian (or quasi-Hermitian) Hamiltonian, see Ref.

[5], for it has a large imaginary part and this pole can not be interpreted as a physical state

for its huge width.

The futility of the approach basing on poles treatment may be additionally illustrated

by Fit 2. As seen on line 1 of Table V, real part of the f0(980) pole ReMf0 on the II

sheet of the T 0
0 exceeds the K+K− threshold (987.4 MeV), it means that ImMf0 equals to
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FIG. 7: The real and the imaginary parts of the amplitude T 0
0 of the ππ scattering (s in units of

m2
π). Solid lines show our description, dashed lines mark borders of the real part corridor and the

imaginary part for s < 0 [6]: a) Fit 1; b) Fit 2.
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FIG. 8: Kernels K1(m
2) and K2(m

2) for Fit 1: a) K1(m
2) below 2 GeV. Minimum near 1.4 GeV

is 0.25. b) K1(m
2) up to 50 GeV. Then it asymptotically tends to 1. c) K2(m

2) up to 2 GeV.

Then it asymptotically tends to zero.

−
(

Γ(f0(980) → ππ)−Γ(f0(980) → K+K−)
)

/2, what is physically meaningless. In this case

we should take ΠK+K−

from the second sheet, this gives the pole at Mf0 = 989.6 − 168.7 i

MeV, with ReMf0 between the K+K− and K0K̄0 thresholds again. But as we work on the

s plane, we should consider not Mf0 , but M2
f0 = (0.951 − 0.334 i) GeV2. So we have the

pole with real part below the K+K− and K0K̄0 thresholds and imaginary part dictated by

analytical continuation of the kaon polarisation operators.

To reduce an effect of heavier isosinglet scalars we restrict ourselves to the analysis of the

mass region m < 1.2 GeV. As to mixing light and heavier isosinglet scalars, this question

could not be resolved once and for all at present, in particular, because their properties are
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FIG. 9: The phase δπK of the ππ → KK̄ scattering
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FIG. 10: The |PK(m)|2, see Eq. (7).

not well-established up to now. A preliminary consideration was carried out in Ref. [43],

where, in particular, it was shown that the mixing could affect the mass difference of the

isoscalar and isovector.

The factor |PK(s)|2 modifying the |T (ππ → KK̄)|2, see Eqs. (7) and (31), is shown on

Fig. 10. This factor don’t change the Kaon Loop Model radically, but helps to fulfill the

requirement (30) and to improve the data description. The influence of this factor may be

reduced if to use a more skilful form than Eq. (31) for it.

New precise experimental data are needed for the investigation of light scalars. The

elucidation of the situation, a contraction of the possible variants or even the selection of

the unique variant, requires considerable efforts. The new precise experiment on ππ → KK̄
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FIG. 11: The phase δ00 of the ππ scattering, Fit 3 and the experimental data.
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FIG. 12: The phase δ00 of the ππ scattering, Fit 3. The comparison with the data a) [37], b) [38].

would give the crucial information about the inelasticity η00 and about the phase δKK̄
B (m)

near the KK̄ threshold. The forthcoming precise experiment in KLOE on the φ → π0π0γ

decay will also help to judge about this phase in an indirect way. The precise measurement

of the inelasticity η00 near 1 GeV in ππ → ππ would be very important also.
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FIG. 13: a) The phase δ00 of the ππ scattering, Fit 3. Solid line is our description, dashed lines

mark borders of the corridor [6], points are experimental data. b) The real and the imaginary

parts of the amplitude T 0
0 of the ππ scattering (s in units of m2

π). Solid lines correspond to Fit 3,

dashed lines mark borders of the real part corridor and the imaginary part for s < 0 [6].
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