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On A Cosmological Invariant as an Observational Probe in the Early Universe
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k-essence scalar field models are usuually taken to have lagrangians of the form L = −V (φ)F (X)
with F some general function of X = ∇µφ∇

µφ. Under certain conditions this lagrangian in the
context of the early universe can take the form of that of an oscillator with time dependent frequency.
The Ermakov invariant for a time dependent oscillator in a cosmological scenario then leads to an
invariant quadratic form involving the Hubble parameter and the logarithm of the scale factor. In
principle, this invariant can lead to further observational probes for the early universe. Moreover,
if such an invariant can be observationally verified then the presence of dark energy will also be
indirectly confirmed.

PACS numbers: 98.80.Cq

1.Introduction

The motivation for this work lies in the existence of an
invariant related to the time dependent oscillator, first
obtained by Ermakov [1],[2],[3]. In the context of the
k−essence lagrangian [4], the logarithm of the scale fac-
tor in a homogeneous universe at very early times after
the big bang satisfies the equations of motion of an os-
cillator with time-dependent frequency [5]. The classical
solutions of this theory are fully consistent with the in-
flationary scenario and a radiation dominated universe.
A measure of temperature fluctuations can also be es-
timated using standard prescriptions [5]. In this work
the focus will be on another interesting aspect of the
time dependent oscillator ,viz., the existence of invari-
ants or first integrals of motion [1]. Here we show that
as the k− essence lagrangian takes the form of that of a
time dependent oscillator,the invariant has cosmological
analogues–in the classical as well as a quantum context.
Classically one can construct an invariant quadratic form
involving the Hubble parameter and the logarithm of the
scale factor. Quantum expectation values of a function
containing the scale factor and Hubble parameter can
also be obtained. The quantum aspects will be discussed
in subsequent publications.In this work we will limit our-
selves to the classical aspects. Existence of this invariant
implies possibilities of further observational probes in the
early universe.

First a brief review is in order. Scherrer [6] showed
that it is possible to unify the dark matter and dark en-
ergy components into a single scalar field model with the
scalar field φ having a non-canonical kinetic term. These
scalar fields are the k−essence fields which first appeared
in models of inflation [7] and subsequently led to mod-
els of dark energy also [8]. The general form of such
lagrangians is some function F (X) with X = ∇µφ∇µφ,
and do not depend explicitly on φ to start with. In [6],
a scaling relation was obtained ,viz. X( dFdX )2 = Ca(t)−6,
C a constant (similar expression was also derived in [9]).

[4] incorporates the scaling relation of [6] and in [5] it is
shown how this lagrangian can be approximated to that
of a time dependent oscillator for small scale factors in
a certain epoch of the early universe. Literature on dark
matter, dark energy and k− essence can be found in [10].

The lagrangian L (or the pressure p) is taken as

L = −V (φ)F (X) (1)

The energy density is

ρ = V (φ)[F (X)− 2XFX ] (2)

with FX ≡ dF
dX . In this work, the scalar potential V (φ) =

V is a (positive) constant and all the time variables t ≡
t/t0, where t0 is the present epoch and we are interested
only in t < 1 scenarios. Also a(t1) < a(t2) for t1 < t2
etc.

Using the scaling law and the zero-zero component of
Einstein’s field equations an expression for the lagrangian
is obtained as follows.Take the Robertson-Walker (RW)

metric : ds2 = c2dt2−a2(t)[ dr2

(1−kr2)+r
2(dθ2+sin2θdφ2)].

where k(= 0, 1 or − 1) is the curvature constant. The
zero-zero component of Einstein’s equation reads: R00 −
1
2g00R = −κT00. This gives with the RW metric k

a2 +

H2 = 8πG
3 ρ. For k = 0, and a homogeneous and isotropic

spacetime (i.e. φ(t,x) = φ(t)) (1) becomes

L = −c1q̇2 − c2φ̇e
−3q (3)

with q(t) = ln a(t), c1 = 3(8πG)−1, c2 = 2V
√
C, and

two generalised coordinates q(t) and φ(t). (3) has a ki-
netic term for q and an interaction term. There is no
kinetic term for φ.
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Note that a = eq. It is readily seen from the graph (in
the figure x ≡ q) of the exponential function that in the
region −1 < q < 0 one has , a = eq < 1 . Hence in this
region q small (i.e. |q| < 1) means a is also small (i.e a <
1). Moreover, in this region a grows from e−1 = 0.367879
to e0 = 1. So within this region a grows as q grows. So
smaller values of q mean that we are going back to smaller
values of a i.e. to earlier epochs. Throughout this work

we will restrict ourselves to this domain i.e. −1 < q < 0.
In this domain a is small when q is small and |a| < 1
for |q| < 1. So expand the exponential in (3), keep terms
upto O(q2) and replace q by q + 1

3 to get [5]

L = −M
2
[q̇2 + 12πGg(t)q2]− (

1

2
)g(t) (4)

where M = 3
4πG , g(t) = 2

√
CV φ̇, and we use c = 1 (c is

speed of light). Put 12πGg(t) = −Ω2(t). This means

φ(t) = − 1

24πG
√
CV

∫

dtΩ2(t) (5)

(4) now becomes

L = −M
2
[q̇2 − Ω2(t)q2]− (

1

2
)g(t) (6)

Now, the term 1
2g(t) is a total time derivative and thus

has no contribution to the equations of motion and hence
ignorable. Then(6) becomes

L = −M
2
[q̇2 − Ω2(t)q2] (7)

Ignoring the overall negative sign in all subsequent dis-
cussions, we have a time dependent oscillator for q(t) =
ln a(t).
2. Ermakov Invariant in a cosmological context

The Hamiltonian H corresponding to (7) is

H =
M

2
[p2 +Ω2(t)q2] =

M

2
[H2 +Ω2(t)q2] (8)

where p = q̇ = ȧ
a = H , H is the Hubble parameter.

Following Ermakov [1], [2] , one can immediately write

down the invariant I as

I =
1

2
[ρ−2q2 +

(

ρH − 1

M
ρ̇q

)2

] (9)

where ρ(t) satisfies Ermakov’s equation

1

M2
ρ̈+Ω2ρ− ρ−3 = 0 (10)

Putting in the values of M and simplifying , one gets

I = A(t)(ln a(t))2 − B(t)(ln a(t))H(t) + C(t)H2

(11)

with

A(t) =
ρ−2(t)

2
+

32π2G2

9
(ρ̇(t))2,

B(t) = 8πGρ(t)ρ̇(t)

3
,

C(t) = ρ2(t)

2
(12)

I is an invariant for the Hamiltonian H in the sense:

dI

dt
=
∂I

∂t
+ [I,H]Poisson bracket = 0 (13)

Therefore, in the early universe one can write down an
invariant quadratic form in the Hubble parameter and
the logarithm of the scale factor with time dependent co-
efficients. These coefficients are functions of the solutions
of the Ermakov equation.
Let us now determine what type of solutions of ρ are

possible. Note that this is determined solely through (10)
and depend on the constantM = 3

4πG and the frequency
Ω(t) which in turn is determined by the scalar field φ. So
a choice for Ω(t) must ensure that a solution for ρ exists
and one also gets a scalar field consistent with cosmolog-
ical scenarios.
Case a

Consider a scalar field potential V = 1
2m

2φ2 where m
is the mass of the scalar field. If one assumes a scenario
where φ̇2 >> V i.e. the kinetic energy is large compared
to the potential energy then a solution for the scalar field
is [14]

φ(t) = const.− (12π)−1/2 lnt (14)

Choosing Ω(t) = t−1/2 and using (5) gives

φ(t) = φ0 −
1

24πG
√
CV

ln t (15)

where the constant of integration has been identified as
φ0. Comparing (14) and (15) will fix the constant φ0 and√
C. For this choice of Ω(t) = t−1/2 the general solution

for ρ is [2]

ρ(t) = γ1πMt1/2
[

A2Y 2
1 (2Mt1/2) +B2J2

1 (2Mt1/2)

+2γ2(A
2B2 − 1

π2M2
)1/2J1(2Mt1/2)Y1(2Mt1/2)

]1/2

(16)
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Here γ1 = ±1, γ2 = ±1, A,B are arbitrary complex con-
stants, J1, Y1 are Bessel functions of the first and second
kinds respectively. Let us take γ1 = γ2 = +1.
Thus this choice of Ω is consistent with an ultrahard

equation of state and a scalar field with a logarithmic
dependence on time [14]. Note that the dominance of
kinetic energy is a natural choice for k−essence scalar
fields.
Now we show that the Ermakov invariant (11) is a

powerful tool to estimate the scale factor. For t → 0,

Jα(x) → 1
Γ(α+1) (

x
2 )

α ;Yα(x) → −Γ(α)
π ( 2x )

α ; 0 < x ≤
√

(α+ 1); α > 0. In our case α = 1 . Using these (16)
takes the form

ρ(t) = (πM)1/2t3/2 + (πM)−3/2t−1/2 (17)

One can now determine A(t), B(t), C(t). For small times
only the inverse powers of t will dominate. Therefore
keeping only O(t−2) and O(t−3) terms, (11) becomes
(q = ln a(t)):

qq̇

2π3M4t2
+

q2

8π3M5t3
≈ I (18)

and the solution for q is

q(t) =

[

A0t
−1/2M +A1t

3

]1/2

(19)

So the scale factor is

a(t) = e[A0t
−1/2M+A1t

3]1/2 ∼ eA
1/2
0

t−1/4M

(20)

and the solution is consistent with the inflationary sce-
nario. Here A0 is an arbitrary constant of integration

and A1 = 8π3M5I
6M+1 . Note that as a → e0 = 1 , t →

[−2A0

A1

]2M/(6M+1). So A0 should be chosen to be negative.
(Here we have illustrated solutions for (γ1 = 1, γ2 = 1).
Solutions for (γ1 = −1, γ2 = ±1) in the cosmological
context will be discussed in subsequent publications).
Case b

Now suppose we choose Ω to be a constant. Then (5)
gives

φ(t) = φi −
1

24πG
√
CV

t (21)

For a constant Ω the general solution for ρ is

ρ(t) = γ1Ω
−1

[

A2cos2(MΩt) +B2sin2(MΩt)

+2γ2(A
2B2 − Ω2)1/2sin(ΩMt)cos(ΩMt)

]1/2

(22)

Compare this with the attractor solution in [14] :

φatr(t) ≈ φi −
m√
12π

(t− ti) (23)

Here the trajectory joins the attractor where it is flat at
|φ| >> 1 and afterwards the solution describes a stage of
accelerated expansion [14] However, Ω = constant is not
a natural choice for k−essence fields because it implies
that the potential energy now dominates. The discussion
of this case is merely for illustrative purposes.

The Ermakov invariant also exists in the quantum con-
text [2].The invariant I , now an operator, is a constant
of motion for the quantum system for any ρ that sat-
isfies (10). So we now have the Heisenberg equation
of motion for I as dI

dt = ∂I
∂t + 1

i~ [I,H ] = 0. Creation
and annihilation operators can be constructed and nor-
malised eigenstates of I exist. Note that the hamilto-

nian corresponding to (7) is H(t) = p2

2M + 1
2MΩ2(t)q2. If

ψn(q, t) be the eigenfunctions of the invariant operator
I, then 〈ψn|H(t)|ψn〉 = M

2 (ρ−2 +Ω2ρ2 + 1
M2 ρ̇

2)(n+ 1
2 )~

where n = 0, 1, 2...... So in a quantum context, this in-
variant can also be used to estimate the quantum ex-
pectation value of a function involving the scale factor
and the Hubble parameter. An analogue of the Berry’s
phase in early universe can also be defined as follows
[15]. When the time dependent parameters of a quantum
system evolving adiabatically in time executes a com-
plete loop in parameter space, the wavefunction (in ad-
dition to its dynamic phase) picks up a geometric phase.
In the Ermakov context, this phase factor is given by

γn(C) = −(1/2)(n + 1/2)
∫ T

0
(ρρ̈ − ρ̇2). where ρ satis-

fies (10). These aspects will be discussed in subsequent
publications.

3. Conclusion: An observational probe in the

early universe

The basic conclusion of this work is that the Ermakov
invariant in a cosmological context (11) can be used as
an observational probe in the early universe in the do-
main viz. −1 < q(= ln a(t)) < 1 in the following way.
Observationally or otherwise, the Hubble parameter and
the scale factor is known over a substantially large pe-
riod of time. If these can be known for periods within
the domain under consideration, the validity of (11) can
be tested. Alternatively, knowing either of the two viz.

the Hubble parameter or the scale factor, will enable the
other to be determined using (11) and (12). As every-
thing is based on a particular form of the dark energy
lagrangian, any vindication of (11) implies an indirect
proof of the presence of dark energy as a principal con-
stituent of the universe.
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