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The proposed CMBPol mission will be able to detect the imprint of topological defects on the
cosmic microwave background (CMB) provided the contribution is sufficiently strong. We quantify
the detection threshold for cosmic strings and for textures, and analyse the satellite’s ability to
distinguish between these different types of defects. We also assess the level of danger of misidentifi-
cation of a defect signature as from the wrong defect type or as an effect of primordial gravitational
waves. A 0.002 fractional contribution of cosmic strings to the CMB temperature spectrum at mul-
tipole ten, and similarly a 0.001 fractional contribution of textures, can be detected and correctly
identified at the 3σ level. We also confirm that a tensor contribution of r = 0.0018 can be detected
at over 3σ, in agreement with the CMBpol mission concept study. These results are supported by
a model selection analysis.

I. INTRODUCTION

Cosmological probes are reaching a sensitivity where
they are able to meaningfully constrain models of the
early Universe. Data compilations including Wilkin-
son Microwave Anisotropy Probe (WMAP) data [1–5]
already indicate that the observed inhomogeneities are
mostly due to primordial adiabatic scalar perturbations
[6, 7]. However, there remains room for low-level contri-
butions from other sources such as cosmic defects [8–11]
and primordial tensor perturbations, believed to be gen-
erated by inflation alongside the scalars.

These will be detected primarily from the signal they
produce in cosmic microwave background (CMB) polar-
ization, in particular the B-modes which have yet to be
detected and are a target for future probes. The possible
detection of B-modes produced by primordial gravita-
tional waves (tensor modes) is often referred to as the
‘smoking gun’ of inflation. The amplitude of the primor-
dial gravitational wave background would provide strong
constraints on high-energy physics models of inflation,
including some appealing models coming from string the-
ory/brane inflation. String/M-theory may thus be con-
strained by cosmological data: even though there exist
models [12] that give rise to a measurable tensor-to-scalar
ratio r, a fairly general prediction from string cosmol-
ogy seems to be that the level of primordial gravitational
waves, given by r, is very low (r ≪ 10−3, in some cases
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even r ∼ 10−23). As emphasized by Kallosh et al. [13]
it is hard to obtain an inflationary model coming from
string theory which predicts measurably high primordial
tensor modes. Thus, a future detection of r in the ac-
cessible range r & 10−2–10−3 would present important
implications for string cosmology.
Another typical prediction of string cosmology is the

production of cosmic (super)strings [14–16]. Indeed, cos-
mic strings are a quite general prediction from high-
energy inflationary models within the Grand Unified
Theory (GUT) framework [17]. Strings produced after
inflation will also generate CMB anisotropies [18–20].
Cosmic strings are not the only possible cosmic defects
in high-energy inflationary models: global monopoles,
semilocal strings and textures are all examples of cosmic
defects that could be created after inflation and remain
consistent with the Universe we observe. Determining
the nature of cosmic defects would provide invaluable in-
formation on high-energy symmetry breaking.
Defects produce scalar, vector and tensor perturba-

tions. In contrast to the standard inflationary model,
their vector perturbation modes do not die out since they
are seeded continuously by the defects. Moreover, there
are no free parameters that quantify the relative amount
of scalar, vector and tensor perturbations independently,
only an overall normalization factor; the relative amount
of those perturbations is fixed for a given model. As de-
fects produce vector and tensor modes, they create polar-
ization B-modes directly [21–23]. It is interesting to note
that even though cosmic defects can contribute at most
a small fraction of the temperature perturbations, which
must be mostly created by inflationary scalar modes to
match the temperature anisotropy data, they can still be
dominant in the B-mode spectra. Urrestilla et al. [24]
have shown that Planck satellite [25] data would not
suffer from significant degeneracy between tensors and
strings. Thus, if Planck detects extra ingredients in the
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B-mode polarization spectra, its accuracy will be enough
to say whether the source of the spectra are primordial
tensor modes or cosmic defects.
CMBPol [26] is a proposed space mission that has

higher sensitivity than Planck and is specifically designed
to target the polarization anisotropies. Here we perform
an analysis, partly along similar lines to Ref. [24], to de-
termine both the detection threshold for different types
of signal in CMBpol data and the ability of the satellite
to distinguish between different defect types as well as
primordial tensors. We use both parameter estimation
and Bayesian model selection tools to achieve this. The
detection thresholds we find improve on those expected
from Planck over an order of magnitude, under realis-
tic assumptions about foreground residuals and without
assuming any level of delensing.

II. DIFFERENT COSMIC DEFECTS.

High-energy physics models of inflation often give rise
to cosmic defects after inflation ends. The most stud-
ied ones are cosmic strings. These are one-dimensional
objects that are extremely long (cosmic size) and yet mi-
croscopic in width, which generate CMB perturbations.
They can arise in field theories (for example, they are
expected in SUSY GUT models [17]) and can also be
present as cosmic superstrings arising in fundamental
string theories [14–16].
Other kinds of defects are also possible; global defects

can be formed, such as global monopoles or textures [27–
30]. Global monopoles do not present a problem in a
cosmological setup (contrary to their local counterparts,
the ‘usual’ magnetic monopoles), because their scaling
properties are such that their energy density remains a
fixed small fraction of the total. Textures are also per-
missable byproducts of cosmological symmetry breaking
processes; indeed textures have been invoked in the CMB
context as a possible explanation of the cold spot [31].
In previous papers by some of us [23, 29, 30, 32] we

calculated the CMB power spectra (temperature and po-
larization spectra) of cosmic strings, semilocal strings
[33, 34] and textures from field theoretical simulations.
There we showed that the spectra from all these de-
fects are very different from those of primordial infla-
tionary models (including tensors). We also showed that
even though there are similarities amongst them, there
are also differences, with the semilocal predictions lying
somewhere between textures and strings.
The zoo of possible defects is richer than that described

here, but rather than performing an extensive compar-
ison, we choose to focus on just two of them: cosmic
strings and textures. An exhaustive analysis would not
generate further insight at this stage. Besides, the exact
prediction for each kind of defect has its subtleties, and
often different calculational approaches result in slightly
differing spectra [35]. Our aim is to verify and quantify
at what level the spectra created by two different kinds
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FIG. 1: The CMB temperature and B-mode polarization
spectra for different components. The figure shows the
temperature spectra from inflationary scalar modes (black
dashed), inflationary tensor modes (black thin), cosmic
strings (gray dot-dashed), and textures (black thick). The
normalizations shown are at the threshold detection levels
identified later in this paper assuming the true model is
known: for the tensors this is at the r = 0.0018 level, for
strings f st

10 = 0.0012, and textures f tex

10 = 0.0005. Clear dif-
ferences are seen in the shapes of the spectra.

of defects, such as the ones shown in Fig. 1, can be dis-
tinguished by CMBpol.

We use the latest, more accurate, spectra derived from
field theoretical simulations of cosmic strings and tex-
tures [36]. Those spectra have been obtained by making
the minimal possible computational changes in order to
capture the differences between those two defect types.
The Abelian Higgs model used to model cosmic strings
and the linear σ-model for the textures were evolved us-
ing the same discretization algorithms, the same type
of initial conditions, and the same procedure to calcu-
late the power spectra (more details can be found in
Refs. [30, 32]). As in our previous papers, we quantify
the amount of defects by f10, which is the fractional con-
tribution to the total TT power spectrum at l = 10.
Observational data sets an upper limit on defects of a
few percent: for strings f10 ∼ 0.1 [10, 11] and for tex-
tures f10 ∼ 0.16 [30]. In turn, this parameter f10 can be
translated into a value of Gµ, with G the gravitational
constant, and µ the string tension. For the Abelian Higgs
model simulations used in this paper, f10 = 0.1 corre-
sponds to Gµ ≃ 6× 10−7.



3

For textures, it is not natural to talk about a “string”
tension, but we will use µ defined as 2πφ2

0, where φ0 is
the symmetry-breaking scale, to ease comparison (see the
appendix of Ref. [30] for more details).

III. METHODS

We simulate CMBPol data as described in the CMBPol
mission concept study [26] in its high-resolution version.
The treatment there follows the approach of Ref. [37]
in modelling residuals from foreground subtraction and
propagating their effects into uncertainties in cosmologi-
cal parameters.
We consider a flat ΛCDM model with the same set

of fiducial parameters as used in Ref. [26]: H0 =
72 km s−1 Mpc−1, Ωbh

2 = 0.0227, Ωch
2 = 0.1099, τ =

0.087, As = 2.41× 10−9, ns = 0.963. In our analysis we
vary these parameters in addition to the tensor-to-scalar
ratio r and/or the level of strings and textures (for which
we quote the level of these defects relative to the total
TT power spectrum at multipole l = 10, which we la-
bel as f st,tex

10 ). We assume the inflationary consistency
relation nt = −r/8 for the tensor spectral index, and
do not allow running of the scalar spectral index. The
inflationary parameters are specified at a pivot scale of
k∗ = 0.05Mpc−1. We assume that 80% of the sky can
be used for cosmological analysis.
The effect of lensing in the inflationary spectra is in-

cluded in the prediction of the signal. We work in the
Gaussian limit (ignoring mode correlations due to lensing
or defects) where the likelihood takes its usual form [38],
and ignore lensing due to defects. The task of detecting
defects through B-modes primarily amounts to detect-
ing the excess variance in the Cl from defects against
this lensing contribution, which is more or less fixed by
the other spectra. Accordingly its recovery is approxi-
mately limited by the cosmic variance of the lensing sig-
nal, but this is fully modeled through the likelihood. We
use the pessimistic dust model (third column of Table 10
of Ref. [26]), and use an intermediate value for the level
of foreground residuals (not 1% or 10%, but 5%).
We simulate instrumental data with the input sources

being adiabatic primordial scalars plus either cosmic
strings or textures at different contribution levels. We
then analyze that data in two ways, the first being a
parameter estimation exercise and the second a model
comparison.
We use CosmoMC [39] to obtain parameter confidence

contours. Our fiducial model consists of a flat ΛCDM
model with the parameters quoted above, and we include
some defects (one case with cosmic strings, the other with
textures). Then we try to fit that simulated data using
all the different possibilities that can be assembled from
the different components: a model with strings; a model
with tensors; a model with textures; a model with strings
and textures; with strings and tensors; with textures and
tensors; and with strings, tensors and textures. This

exercise allows us to infer the level of defects needed to
clearly distinguish one from the other.
For our model-level analysis, we compute the Bayes

factors of the set of models mentioned above, that is,
models with one extra ingredient (strings, textures or
tensors) and models with combinations of two of those or
all three extra ingredients. In order to obtain the Bayes
factors we use the Savage–Dickey ratio [40, 41], and we
consider two sets of priors for these extra ingredients:
flat linear priors and flat logarithmic priors. The relative
Bayes factors of all these models will pinpoint which of
those models is favoured and at which level.
We have also analysed the data under different assump-

tions than those described above. Ignoring foreground
uncertainties reduces parameter error bars by about a
factor of two. If we turn off lensing (i.e. assume that the
CMB can be perfectly delensed) then error bars decrease
by a factor of about seven. Thus, an order of magnitude
improvement in f10 is still possible over the uncertainties
described in the rest of this paper.
Previous works that considered constraints on strings

in CMBPol-like experiments include Refs. [21] and [42].
However, the assumptions made there are different to
those considered here regarding, for example, polariza-
tion sensitivities and lensing residuals. In addition,
Ref. [21] uses the Unconnected Segment Model [43] for
string perturbations, which has a different Gµ for a given
f10 unless special parameters are chosen [44].

IV. PARAMETER ESTIMATION ANALYSIS

We carry out two kinds of parameter estimation anal-
yses. In the first, we fit assuming we already know the
fiducial model used to generate the data. This enables
us to determine the sensitivity of CMBpol to the differ-
ent defect signals, under the best possible circumstances.
We then carry out an analysis in the presence of model
uncertainty, to assess the possible effect of mistaken as-
sumptions.

A. Fitting with the correct model

If we assume we already know the correct model the
analysis is particularly straightforward. We first use
the fiducial model described above together with cos-
mic strings only, with f st

10 = 0.0021 (correspondingly,
Gµ ≃ 9 × 10−8). Fitting for the same parameters as
went into the model, strings are detected at high signifi-
cance, with f st

10 = 0.0021±0.0004. Thus in this best-case
scenario, a 0.0012 fractional contribution from cosmic
strings (Gµ ≃ 7 × 10−8) would qualify for a 3σ detec-
tion, and hence this is the detection threshold for strings
with this CMBpol configuration.
Repeating the analysis with textures, using a fiducial

value of f tex
10 = 0.0007 (Gµ ≃ 1.2×10−7), we find that in

fitting for textures f tex
10 = 0.00070± 0.00015 is obtained.
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FIG. 2: The correlation between strings and cold dark matter
density, the hubble parameter, the scalar spectral index, and
the amplitude of primordial perturbations. These are the pa-
rameters with which strings are most correlated, at the -37%,
34%, 28% and -24% levels respectively. Textures are less cor-
related with cosmological parameters, the levels being -10%,
20%, 9%, and -8% respectively.

The 3σ detection threshold for textures is therefore a
0.0005 fractional contribution to the CMB TT power
spectrum at l = 10 (Gµ ≃ 1.0× 10−7).

The power spectra shown in Fig. 1 were normalized to
indicate these detection thresholds. The distinct shapes
of the spectra in both TT and BB are evident, with the
defect spectra more resembling each other than the ten-
sors.

B. Fitting with a range of models

In reality we do not know a priori which model is cor-
rect, and indeed our primary interest is likely to be in de-
termining the correct model. One should be concerned
about whether one might be able to draw conclusions
based on the wrong model assumption, e.g. in the actual
presence of strings, instead fitting primordial tensors and
apparently detecting r at some significance. We wish also
to know whether or not such data fits are able to draw
us towards the correct model conclusion. The parame-
ter estimation approach of this section is complemented
by the more robust model-level analysis we provide in
Section V.
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FIG. 3: 1D marginalized likelihood for tensors, strings, and
textures, for the fiducial model with strings f st

10 = 0.004 (top
row) and for the fiducial model with textures f tex

10 = 0.0009
(bottom row). In the texture case the peak is not strong
enough for even a 2σ detection.

1. True model is strings

If we fit for tensors instead of strings, we do get a mild
detection of r with r = 0.0012 ± 0.0005, and other pa-
rameter recoveries are biased against their fiducial values;
the ones that shift by more than a sigma are cold dark
matter density (which goes up more than 1σ to 0.1103),
the scalar spectral index (which goes down more than
1σ to 0.961) and H0 (goes down more than 1σ to 71.8).
Parameter correlations are shown in Fig. 2. If instead
we wrongly fit for textures we get a strong detection of
textures with f tex

10 = 0.0006±0.00015 and again other pa-
rameters get biased, though less significantly, as expected
because textures can account for part of the string sig-
nal (cold dark matter density, scalar spectral index and
H0 shift to 0.1102, 0.962 and 71.8 respectively) There is
therefore a danger of being led astray through assump-
tion of the incorrect cosmological model. The bias in the
values for other parameters is a potential signal but there
may be no independent means of estimating them to the
same accuracy. It is therefore important to test different
model assumptions, and this motivates attempts to fit
multiple components.
When fitting for strings and textures together, or for

all of strings, textures and tensors, results are very simi-
lar. Figure 3 shows the marginalized likelihoods for each
component from a fit where all parameters are simultane-
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FIG. 4: The correlation between strings and textures in sim-
ulated CMBPol data with strings (left panel) and textures
(right panel), showing 68% and 95% confidence contours.

ously varied, the upper panels showing a fiducial string
model. From these likelihoods we get f st

10 = 0.0015 ±
0.0005, while f tex

10 < 0.0002 (68% c.l.), 0.0005 (95% c.l.)
and r < 0.0005 (68% c.l.), 0.0011 (95% c.l.) receive only
upper limits. The level of correlation between strings and
textures is found to be ≈ 60%, shown in Fig. 4. Tensors
are not much correlated with strings (10%) or textures
(15%) (Fig. 1 shows that strings peak at roughly twice
as high an l as textures, and at low l strings have a little
peak where the tensors dip, making strings a little more
dissimilar to tensors than textures). Table I summarizes
the uncertainties found under various assumptions.
The correct component can also be sought based on

the quality of the fits, i.e. by looking at the best-fit
and mean likelihoods achieved in the MCMC analysis.
Strings+textures+tensors and strings alone lead to sim-
ilar best-fit or mean log-likelihood, in each case being
at least 3 better than with textures alone and 10 bet-
ter than tensors alone. We conclude that at this fiducial
string contribution, the model of tensors alone could be
discounted, and strings favoured over textures, though
not convincingly.
We find that a slightly higher fiducial value of f st

10 =
0.003 gives a 4σ detection (f st

10 = 0.0024± 0.0006), in a
joint fit, while the other components continue to receive
upper limits. The recovered string fraction is underes-
timated because part of the string signal gets ascribed
to textures in the fits. Such results would be a strong
indication that strings were the right model, and a sub-
sequent refit varying the string amplitude alone would
remove this recovery bias. The 3σ threshold for identi-
fying strings correctly in favour of these alternatives is
therefore f st

10 ≃ 0.002 (Gµ ≃ 9× 10−8).

2. True model is textures

If we fit for tensors instead of textures, we get a false
detection r = 0.0016±0.0005, while other parameters do
not get much biased away from their input values. Bi-

Model has δf st

10 δf tex

10 δr

String 0.00041 − −

String − 0.00015 −

String − − 0.00052
String 0.00056 0.00026∗ −

String 0.00055 0.00025∗ 0.00055∗

Texture − 0.00015 −

Texture 0.00041 − −

Texture − − 0.00054
Texture 0.00071∗ 0.00019 −

Texture 0.00067∗ 0.00023∗ 0.00070∗

TABLE I: Standard deviation achieved when trying to fit the
data with a model with one, two or three extra components.
In the string case the fiducial value is f st

10 = 0.0021, and for
textures f tex

10 = 0.0007. In each block of five, the first section
corresponds to fitting with the correct component, the sec-
ond and third the wrong component, and the fourth and fifth
fitting multiple components including the correct one. The
stars (*) denote the cases when only upper limits are placed
and the numbers quoted are the difference between the 68%
and 95% upper limits. (Just in this table we quote accuracies
to an additional significant figure as compared to the rest of
the text.)

ases are smaller because textures are less correlated with
cosmological parameters (see caption of Fig. 2). If we
perform the fit for strings instead of textures, strings re-
ceive a false detection with f st

10 = 0.0017 ± 0.0004, with
very insignificant parameter shifts this time in the op-
posite direction. Thus in both cases a false detection
of the wrong component occurs for the level of textures
assumed in the fiducial model.

When all of textures, strings and tensors are fitted for,
then the input level of textures proves to be too low for
a clear detection. Instead all components receive up-
per limits: f tex

10 < 0.0005 (68% c.l.), 0.0007 (95% c.l.),
f st
10 < 0.0008 (68% c.l.), 0.0015 (95% c.l.) and r <
0.0008 (68% c.l.), 0.0015 (95% c.l.); see the lower panels
of Fig. 3. Thus a 0.0007 contribution of textures to the
CMB TT power spectrum at l = 10 is not clearly de-
tectable when fitting for these two additional parameters.

Study of best-fit and mean likelihoods will again enable
a ranking of models considered, with models involving
textures preferred by about 3 (6) as compared to models
with just strings (tensors).

Further simulations show that f tex
10 = 0.0010 in the

data gives a 3σ detection of textures (f tex
10 = 0.0006 ±

0.0002) and f tex
10 = 0.0012 gives a 4σ detection of tex-

tures (f tex
10 = 0.0009± 0.0002), in the case when all com-

ponents are fitted. As above, a part of the texture signal
gets ascribed to strings in the fits, reducing the recovered
texture signal when strings are also allowed. The thresh-
old for identifying textures correctly in favour of these
alternatives thus is f tex

10 ≃ 0.001 (Gµ ≃ 1.4× 10−7).
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V. MODEL SELECTION ANALYSIS

Until we have uncovered the presence of defects, we
are less interested in constraints on the defect parameters
and more in the fundamental question whether there are
any defects in the Universe, and if yes, which kind. This
is a question of model selection rather than parameter
estimation, and should be dealt with by computing Bayes
factors between the different models, including a model
with no extra ingredients.1 In this section we will only
consider the fiducial string model.

Before embarking on a model selection analysis, we
need to consider the priors that we want to place on the
parameters. Here we will look at two different priors.
In the first one, we assume that the prior is uniform in
f10 in the interval [0, 1] for all extra contributions. This
interval is much wider than the precision of CMBPol,
which will lead to a significant “Occam’s razor” factor
that the defect models need to overcome in order to be
favoured against the no-defect baseline model. While this
prior makes sense when looking for a signal that may be
present at some level in the Cℓ, it appears at least as
natural to impose a prior which assumes that the phase
transition in which the defects were generated happens
with equal probability at an arbitrary energy scales with
some cut-off. This leads to a prior that is uniform in
log10 Gµ for cosmic strings, or more generally uniform in
the logarithm of the amplitude. As limits we choose that
the energy scales (∼ √

µ) would range from the GUT

scale (∼ 1016 GeV) to the SUSY breaking scale (∼ 103

GeV). This in turns translates into values of log10 f10
ranging from −52 (SUSY scale) to 0 (GUT scale). Ac-
tually, log10 f10 = 0 corresponds to a situation where all
the CMB signal is coming directly from strings, and it
is the absolute maximum number possible according to
the definition of f10. As we show in the Appendix, our
Bayes factors are only slightly changed when choosing
other physical scales for our lower cut-off for the prior.
For r there is not quite an equivalent to the symmetry
breaking scales of the universe since it is a ratio of ten-
sors to scalars rather than on an absolute scale, so we
just used the same range as for f10, i.e., r ranges from 1
to 10−52 in our logarithmic prior analysis.

Having specified the priors, we are left with the tech-
nical question of how to compute the Bayes factors. One
possibility is to compute the model probabilities directly
using for example nested sampling [45–47]. Here we
instead employ the Savage–Dickey (SD) density ratio
[40, 41], since a model with a given kind of defects is
nested within the simpler model without defects at the
point f10 = 0. The Bayes factor in favour of the simpler
model is then just the value of the (marginalized and

1 In this section we will refer to the model with no extra ingredients

as the ‘no defect’ model, meaning a model without strings or

textures, but also without tensors.

normalized) posterior at f10 = 0 divided by the prior at
the same point. For our linear prior in the defect ampli-
tude, the prior is always just equal to 1. We include an
Appendix in which we describe the techniques employed
in order to accurately obtain the normalized posterior
values and subsequent Bayes factors.
For our analysis, we ran chains with a fiducial cos-

mic string fractional amplitude of f st
10 = 0.0021 and for

models that included only one kind of extra contribution
(strings ‘s’, texture ‘t’ and tensor modes ‘r’), two kinds
(‘st’, ‘sr’ and ‘tr’) and all three (‘str’). We then used the
SD ratio to derive the Bayes factors with respect to all
nested models, e.g. ‘st’ to ‘s’ and ‘t’. In this way we built
a partially redundant tree of model probabilities, starting
with the basic model of ‘no defects’ which we used as the
reference for defining relative probabilities. The partial
redundancy allowed us to check whether the results from
different paths through the model space are consistent:
it is for example possible to reach the ‘st’ model through
the sequence ‘no defects’ → ‘s’ → ‘st’ as well as through
‘no defects’ → ‘t’ → ‘st’. The Bayes factor from both
sequences must agree within the error bars. Indeed this
is the case for all results quoted in the paper.

A. Analysis for linear prior

We first performed the analysis described above using
linear priors for all the three extra components. Figure 5a
shows the results from this exercise, in the shape of a cube
with each axis denoting the presence of strings, textures
and tensors respectively. The model in the lower left cor-
ner of the cube is the ‘no defect’ model while the diago-
nally opposite corner corresponds to ‘str’. The numbers
given denote lnB, with positive values for models that
are favoured over the ‘no defect’ case. The fiducial string
amplitude was chosen so that there is strong evidence for
the presence of strings, which means that it is difficult
to evaluate the SD ratio far out in the tail of the distri-
bution in the ‘s’ case. The Appendix discusses how we
evaluated SD ratios for these cases. We notice that the
only other model with a positive evidence is ‘t’, which is
due to the partial degeneracy of the strings and textures.
The ‘r’, ‘rt’ and ‘rts’ models are significantly disfavoured.
Given these results we would conclude that there is

strong evidence in favour of defects – indeed, this is about
the minimal string contribution for which CMBPol would
be able to make such a statement. We notice that in a
parameter estimation context, the significance is 5σ if we
only fit for the correct component (supposing we know
which that component is), and it is a borderline detection
when fitting for all three components (of order 3σ).
As in the parameter estimation case, we would still not

be able to distinguish decisively between strings and tex-
ture, although strings are favoured by a factor of roughly
40 (∆ lnB = 3.7). To be able to pinpoint strings as the
origin of the observed signal would require either a larger
defect amplitude or else a more sensitive probe.
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FIG. 5: Pictorial representation of the logarithm of the Bayes factors for different models, relative to a model with ‘no defect’.
The lower left corner of the cube corresponds to the ‘no defect’ model, and the axes of the cube correspond to adding strings
(s), textures (t) or tensors (r). Thus, the diagonally opposite corner correspons to a model with strings+textures+tensors.
Figure a) depicts a model comparison with linear priors in f10, whereas in figure b) we have used a logarithmic prior instead.

B. Analysis for logarithmic prior

We also performed a model selection analysis using
logarithmic priors for the extra parameters. Obtaining
SD ratios for this case is even harder than for the lin-
ear case, since it presents the additional difficulty that
the models are not actually nested, since f10 = 0 is
not attainable (recall that the range for our priors is
log10 f10 ∈ [−52, 0]). The Appendix deals with the tech-
niques used to obtain the SD ratios, and in this section
we just present and discuss the results.

The outcome of this exercise should be very different to
the one obtained with linear priors: for any prior range,
the vast majority of the priors are always equivalent to
the no-defect model. Therefore it is much harder to rule
out defects if they are wrong as they will make the same
predictions as no-defect in too much of their prior space.
We can only get a signal if in some part of those prior
spaces we can get a much better fit, which will enable us
to rule out the no-defect case if there are defects.

We thus expect models without strings to all be indis-
tinguishable from each other, and the models with strings
to all be indistinguishable from each other. In fact, this
is roughly what we see in Fig. 5b, where the results for
the logarithmic prior case are shown. As it can be seen,
all models containing strings are now strongly favoured
(lnB ≈ 7). Tensors alone have a Bayes factor similar to
the no-defect model. However, models with texture but
no strings also get support (lnB ≈ 4), due to the de-
generacy between strings and textures. This allows us to
conclude that models with defects (strings or textures)
are actually favored with respect to the no-defect model.
However, as in the linear case, it is not conclusive in dis-
tinguishing between strings and textures, even though
models with strings have the highest Bayes factors.

VI. CONCLUSIONS

Simulating data as per the CMBPol mission concept
study, propagating uncertainties due to foreground resid-
uals, we find that the level of cosmic strings and tex-
tures that can be detected and correctly identified (at
3σ) by CMBPol is 0.002 and 0.001 of the total TT power
spectrum at multipole 10 respectively (correspondingly,
Gµ ≃ 9 × 10−8 for strings and Gµ ≃ 1.4 × 10−7 for
textures). Similarly a tensor fraction of 0.0018 should
be discernible. Contributions from strings and textures
are highly correlated with each other, so at lower lev-
els the signal would be harder to attribute to one or the
other conclusively. Tensors are not much correlated with
strings but are somewhat correlated with textures.

We also performed a model selection analysis for a fidu-
cial model containing cosmic strings. Using a flat prior
on f10, we found that a model with only strings is favored
over all models but the texture-only model is also better
than a model without any defects. Models with several
types of defects are all strongly disfavored because of a
large “Occam’s razor” factor. This changes when taking
a prior that is flat in log10(Gµ). In this case, it is not
possible to rule out the presence of defects, and all mod-
els containing strings are strongly favoured (with models
containing textures but no strings having an intermediate
probability).

A CMBPol-like experiment, as has been proposed both
in the US and Europe, has the ability to illuminate us
on important issues regarding high-energy physics in the
early universe, that we can only speculate about at this
time. It is roughly two orders of magnitude better (in f10)
than what we can achieve at this point with WMAP, and
over an order of magnitude better than what the Planck
mission will achieve.
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Appendix A: Posterior calculation for the

Savage–Dickey density ratio

In this appendix we summarise the different techniques
used in this work to perform the model selection analy-
sis. In both prior choices (linear and logarithmic) for the
defect contribution, we encounter challenges in obtaining
an accurate normalized posterior. We will explain those
challenges and describe how we overcame them.
For both prior choices, the interval for the parameter

characterizing the string contribution is much wider than
the precision of CMBPol, which leads to a significant
“Occam’s razor” factor. For example, if the posterior
was Gaussian with a variance of σ2 and the prior flat with
a width of 1, then its normalization alone contributes a
factor

1√
2πσ2 ∼> 300 (A1)

in favour of the simpler no-strings model, where we used
the variance of the string contribution discussed earlier.
In order to strongly support the presence of strings, we
need to overcome this factor as well as reach down to
at least exp(−5) ≈ 1/150 with the posterior. We there-
fore need to have an accurate estimate of the posterior
over four to five orders of magnitude. A normal MCMC
chain would need to be exceedingly long to reach that far
out; we would effectively be counting only every 50,000-
th sample! This problem can be alleviated by running
MC chains at higher temperatures (we used T = 2, and
T = 4 where necessary) that probe the tails much bet-
ter. This increases the computational cost of using the
SD ratio, but not prohibitively, especially since we found
that scaled versions of the T = 1 covariance matrix were
sufficient to use for the proposal densities of the higher-
temperature chains. For T 6= 1 we are not sampling
from the desired probability density but from exp(−λ/T )
where λ = − lnL with L is the likelihood. If we scaled
the Gaussian proposal distribution the same way, then
the covariance matrix C1 at temperature T1 should be
changed to C2 = C1(T2/T1). What we did in practice
was to increase the proposal scale in CosmoMC from 2.4
to 3.6 whenever we doubled the temperature, i.e. an in-
crease by a factor of 1.5 (close to the theoretical value of√
2), which worked very well.
In order to use a chain with T 6= 1 for model selec-

tion and parameter estimation, we need to correct for
the temperature. This can be done through importance
sampling, by adjusting the sample weights wi,

wi(T = 1) = wi(T )
L(T = 1)

L(T ) = wi(T )
e−λ

e−λ/T
. (A2)

Figure 6 shows four chains for different temperatures that
use the correction given above. The resulting probabil-
ity densities agree well in the high-probability peak, but
the high-T chains probe the low-probability regions much
better.

�6.0 �5.5 �5.0 �4.5 �4.0 �3.5 �3.0 �2.5
log10f

st
10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

FIG. 6: The marginalized probability distribution function
for f st

10 in the logarithmic prior case for four different tem-
peratures: T = 1 (blue), T = 2 (cyan), T = 4 (magenta)
and T = 8 (red) [the curves with lower temperatures end at
higher f st

10]. All chains agree in the high-probability region
near log

10
f st

10 = −2.7, but only the two highest temperature
chains can probe the low-probability tail which is reached for
f st

10 → 0.

The logarithmic prior presents the additional difficulty
that the models are not actually nested since f10 = 0
is not attainable. However, we know from the previous
discussion about parameter constraints that, e.g., a de-
fect fraction of f10 = 10−6 is completely undetectable
by CMBPol and corresponds for all practical (although
maybe not for philosophical) purposes to a model without
defects. For this reason, the Bayes factor of the model
with f10 = 10−6 relative to the more general model with
arbitrary defect contribution is the same as the one of a
model with f10 = 0. But the former model is nested in
the general model and allows us to compute the Bayes
factor with the help of the SD ratio.
Additionally we do not want to sample all the way

down to very big negative values of log10 f10 in the chains
(in our case log10 f10 = −52), since we already know that
the posterior will be flat once we are below the detection
threshold for the defects (see Fig. 6). For this reason we
impose a cut-off for the chains at a not so tiny value of
f10 (in the example described in the main text, we used
f10 = 10−6). This cut-off is arbitrary as long as it is
in the asymptotic region where the posterior has become
flat since defects are no longer detected. In addition, it is
better to choose it slightly lower than the value at which
we evaluate the SD ratio in order to avoid edge effects.
We proceed as follows: first we evaluate the posterior

at the chosen point (in our example, log10 f10 = −6).
Note that the value obtained is normalized to the width of
the prior actually used in the calculation (in log10 units,
the width is ǫ = 6). Since we are in the region where the
posterior is already flat, we add a stretch of width ∆ (in
our example ∆ = 46 to reach log10 f10 = −52), but we
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have to be careful with normalization, since the posterior
has now to be normalized taking into account this new
stretch. Let us denote by q the value measured at the cut-
off point inside the asymptotic region (e.g. q = 1.6×10−5

in Fig. 6). Then, the normalized posterior actually has a
value of p = q/(1 + q∆). The prior is flat over the whole
range so that its value is 1/(∆ + ǫ) and hence the Bayes
factor is

B =
1 + q∆

q(∆ + ǫ)
. (A3)

It is worth checking how much the Bayes factor changes
for different values ∆. Recall that ∆ basically gives us
the lower energy scale taken into account in the prior
for log10 f10. For example, ∆ = 46 corresponds to SUSY
breaking scale, and ∆ = 50 would correspond to the elec-
troweak scale. It is easy to verify that lnB(∆ = 46) ∼
7.09 and lnB(∆ = 50) ∼ 7.01, so a wide range of lower
cutoffs would give virtually the same results.
Unfortunately there is one additional hurdle that needs

to be overcome. In the model analysis we have per-
formed, we often need to fit for several kinds of com-
ponents: strings (s), textures (t) and tensors (r); and
combinations of them: ‘st’, ‘sr’, ‘tr’ and ‘str’ models. In
order to compute SD ratios for models with more than
one component, we marginalize over all but one compo-
nent. However, this marginalization should be done not
over the limited range of f that we actually sample from,
but over the full range (taking account the stretch ∆ in
all extra components).
We illustrate how this was performed in the concrete

example ‘st’ → ‘s’, where the simulated range of the pa-
rameters is smaller than the full range both in f st

10 and
in f tex

10 . First we get the weight of the full simulated
chain W sim

st , and the (normalized) pdf psimst of the ‘st’
chain by marginalizing over all parameters except f tex

10 .
That would be enough if our model was nicely nested
and we did not have to add the stretch ∆. To account
for the stretch, we consider the interval of unit width

log10 f
st
10 ∈ [−6,−5] of the ‘st’ chain. We calculate both

its weight W
(1)
st and its normalized pdf p

(1)
st , once again

by marginalizing over all parameters except f tex
10 . Note

that p
(1)
st should be the same as the pdf obtained from the

‘t’ chains, since p
(1)
st is calculated virtually in the region

with only textures (no strings). We verified that this was
the case.
We now have all the ingredients that are necessary to

marginalize over the full range: Let W∆
st = ∆×W

(1)
st be

the estimated weight over all the ∆ stretch. Then the
normalized marginalized pdf for the full range is given
by

pfullst =
p
(1)
st W∆

st + psimst W sim
st

W∆
st +W sim

st

(A4)

We still have to account for the ∆ stretch in f tex
10 , but

we are just in the case tackled earlier in this section, and
one just needs to apply Eq. (A3) to get the Bayes factor.
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