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Abstract. One of the most interesting sources of gravitational waves (GWs) for LISA

is the inspiral of compact objects on to a massive black hole (MBH), commonly referred

to as an “extreme-mass ratio inspiral” (EMRI). The small object, typically a stellar

black hole (bh), emits significant amounts of GW along each orbit in the detector

bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map space-

time around MBHs in detail, as well as to test our current conception of gravitation

in the strong regime. The event rate of this kind of source has been addressed many

times in the literature and the numbers reported fluctuate by orders of magnitude. On

the other hand, recent observations of the Galactic center revealed a dearth of giant

stars inside the inner parsec relative to the numbers theoretically expected for a fully

relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or

only a very shallow cusp) adds substantial uncertainty to the estimates. Having this

timely question in mind, we run a significant number of direct-summation N−body

simulations with up to half a million particles to calibrate a much faster orbit-averaged

Fokker-Planck code. We then investigate the regime of strong mass segregation (SMS)

for models with two different stellar mass components. We show that, under quite

generic initial conditions, the time required for the growth of a relaxed, mass segregated

stellar cusp is shorter than a Hubble time for MBHs with M• . 5× 106M⊙ (i.e. nuclei

in the range of LISA). SMS has a significant impact boosting the EMRI rates by a

factor of ∼ 10 for our fiducial models of Milky Way type galactic nuclei.

http://arxiv.org/abs/1010.5781v1
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1. Introduction

Nowadays it is well-established that a massive dark object, very possibly a massive black

hole (MBH) with a mass of about 4× 106M⊙, is lurking in the centre of the Milky Way

(Eisenhauer et al. 2005; Ghez et al. 2005, 2008; Gillessen et al. 2009). While there is an

emerging consensus about the origin and growth of supermassive black holes (SMBH,

with masses about or larger than 108M⊙), MBHs with smaller masses such as the one

in the Galactic centre remain a (relatively) understudied enigma. One of the keys to

understanding the growth and evolution of MBHs in this lower mass range resides in

the dynamics of stars in their vicinity. This is the case mainly because relaxation times

there are low enough that the surrounding stellar systems should have had enough

time—through two-body relaxation alone—to evolve towards a steady-state which is

independent of the particular initial conditions at the time of formation. The Galactic

center is thought to fulfill such condition. It is the universality of such relaxed stellar

nuclei that gives us a crucial predictive power on the expected properties of the MBH

environment, on the stellar candidates for close interaction with the central MBH and

on the resulting gravitational wave (GW) signatures. If, on the contrary, non-relaxed

systems were generic, then one would need to resort to case-by-case modelling of each

galactic nucleus.

The ideal probe for these innermost regions of galaxies is the GW radiation that is

emitted by stellar bhs and other compact objects that come very close to the MBH. One

of the main channels for interaction between stars and a central MBH is the adiabatic,

slow inspiral of compact remnants (CR) into the MBH due to the emission of GWs—an

EMRI. During such an event, the small body effectively acts as a probe of spacetime

close to the MBH as its orbit slowly shrinks due to the energy and angular momentum

lost in the form of GW radiation. In case of 105−106M⊙ MBHs, after some ∼ 104−105

orbits in the LISA band (forb & 10−4 Hz and a periapsis a . few × RSchw, since we

only consider sources which are completely embedded in the band, and not bursting

sources), the small body eventually merges with the MBH. The information contained

in the waves will allow us to determine the parameters of these binary system with an

unprecedented accuracy (see for instance Babak et al. 2010), corroborate the existence

of MBHs and maybe even provide the first direct detection of an intermediate MBH (in

case the primary is ∼ 103−4M⊙).

LISA will thus scrutinize exactly the mass range about which electromagnetic

observational information is currently lacking. In its most general form, the EMRI

problem—the astrophysical modelling of event rates and parameters for EMRIs—

spans many orders of magnitude. From the bulge regions at few×10 pc, where the

dynamics is essentially collisionless –but from where single stellar bhs and binaries with

CRs originate; down to the parsec scale of the nucleus itself which evolves secularly

over (local) relaxation timescales; and then further down to milliparsec scales where

relativistic effects start to dominate the evolution. But, however, once a steady state

configuration establishes itself in the central parsec region, the EMRI rates are rather
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expected to depend strongly on the (universal) density distribution of CRs within (in

order of magnitude) O(0.01pc) from the hole. This is indeed the region from which

these inspiralling sources are expected to originate (Hopman and Alexander 2005).

The dynamics in this tiny volume has been rather unexplored until the relevance of

EMRIs and sub-parsec observations of the Galactic center have raised its interest.

Since then, many authors have devoted a number of works to the analysis of this

peculiar regime(Sigurdsson and Rees 1997; Freitag 2003; Alexander and Hopman 2003;

Hopman and Alexander 2006).

We discuss in this work the stellar distribution of dense stellar systems around

MBHs in the LISA mass range. Realistic modeling of mass segregation—which is the

natural outcome for any realistic stellar population—will strongly impact the expected

EMRI rates, since it favors the accumulation of heavier objects towards the center

(Hopman and Alexander 2006; Alexander and Hopman 2009; Preto and Amaro-Seoane

2010a). We discuss the robustness of segregated stellar cusps and show that, under

very generic circumstances, the time required for the growth of a cusp is shorter than

a Hubble time. Therefore, quasi-steady, mass segregated, stellar cusps are expected to

be common around MBHs in the LISA mass range. EMRI detection rates for LISA are

expected to peak for M• ∼ 105−106M⊙ (Gair 2009) leading us to conclude that at least

a sizeable fraction of these events should originate from strongly segregated cusps. We

conclude by estimating the expected EMRI rates in mass segregated nuclei and conclude

that our realistic modeling of mass segregation has a significant impact on these rates.

2. Mass segregation

The distribution of stars around a massive black hole is a classical problem in stellar

dynamics (Bahcall and Wolf 1976; Lightman and Shapiro 1977). Bahcall and Wolf

(1976) have shown, through a kinetic treatment that, within the radius of gravitational

influence of the hole rh, in case all stars are of the same mass, this quasi-steady

distribution takes the form of power laws, ρ(r) ∼ r−γ, in physical space with ρ(r)

the stellar density at a radius r and f(E) ∼ Ep in energy space (with E the

energy and γ = 7/4 and p = γ − 3/2 = 1/4)‡. This is the so-called zero-flow

solution for which the net flux of stars in energy space is precisely zero. Preto et al.

(2004) and Baumgardt et al. (2004) were the first to demonstrate the robustness of

the corresponding direct-summation N -body realizations, and have therefore validated

the assumptions inherent to the Fokker-Planck (FP) approximation—namely, that

scattering is dominated by uncorrelated, 2-body encounters and, in particular, dense

stellar cusps populated with stars of the same mass are robust against ejection of stars

from the cusp. The latter result is not trivial as for a BW γ = 7/4 cusp stellar densities

are extremely high at the center and the fraction of stars with speeds close to the escape

‡ We note that 12 years before the work of BW, Gurevich (1964) derived a similar solution for how

electrons distribute around a positively charged Coulomb center, which is the equivalent of the MBH

in our case.
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velocity from the cusp is quite high at all radii r . rh, with rh the influence radius of

the MBH (Preto 2010).

Single mass models are very poor approximations of real stellar populations. To

first order of approximation, an evolved stellar population can be represented by two

(well-separated) mass scales: one in the range O(1M⊙) corresponding to low mass main-

sequence stars, white dwarfs (WDs) and neutron stars (NSs); another with O(10M⊙)

representing stellar bhs. Therefore, for simplicity, here we restrict our discussion to

models with two mass components and leave the more general case to another work in

preparation (Preto and Amaro-Seoane 2010b).

When stars of two different masses are present, there is mass segregation which

is a process by which the heavy stars accumulate near the center while the lighter

ones float outward (Spitzer 1987; Khalisi et al. 2007). Accordingly, stars with different

mass get distributed with different density profiles. Bahcall and Wolf (1977), henceforth

BW77, have argued heuristically that a scaling relation pi = mi/mj × pj (where the

subindices i, j refer to the light or heavy components) establishes itself and depends

only on the mass ratio. Here, as in the single-mass case, the crucial assumption is

that all components are abundant enough that they undergo enough scattering among

themselves and with the other components as to stabilize into an approximate zero-flow

solution. Obviously, this cannot happen independently of the number fraction of the

different stellar masses (Alexander and Hopman 2009; Preto and Amaro-Seoane 2010a).

In the realistic situation where the number fraction of heavy objects (in our case, stellar

bhs) is small, a new solution coined by Alexander and Hopman (2009) as strong mass

segregation (SMS) obtains with density of heavy objects scaling as ρH(r) ∼ r−α, where

α & 2. The solution has two branches and can be parametrized by the parameter

∆ =
D

(1)
HH + D

(2)
HH

D
(1)
LH + D

(2)
LH

≈ NHm
2
H

NLm2
L

4

3 + mH/mL
, (1)

where NL and NH are the total number of light and heavy stars, mL and mH are the

corresponding individual masses. ∆ provides a measure of the importance of the heavy

star’s self-coupling relative to the light-heavy coupling (in terms of the 1st and 2nd order

diffusion coefficients); and it depends essentially only on the mass and number ratios,

which is one parameter more than proposed by BW77. The weak branch, for ∆ > 1

corresponds to the scaling relations found by BW77; while the strong branch, for ∆ < 1,

generalizes the BW77 solution§. Stellar populations with continuous star formation and

an initial mass function (IMF) given by dN/dM ∝ M−α will be characterized by ∆ < 1

if α & 1.8 and ∆ < 1 otherwise; and, in particular, Salpeter and Kroupa’s IMF generate

evolved stellar populations with ∆ < 1 (Alexander and Hopman 2009).

Figure 1. Evolution of density profiles. Mass density profiles, ρL(r) (left panels)

and ρH(r) (right panels) at the end of the integrations, after ≈ 0.2Trlx(rh). Smooth

curves are from FP calculations, noisy

§ The choice of the names is based upon the resulting slopes in the density profiles, which are steeper

(stronger) or shallower (weaker)



Event rate of EMRIs and cusp re-growth 5

-4

-2

0

2

4

6

-1.5 N=124K

MBH=0.05

FP
NB

-2.1

∆ = 0.08

-4

-2

0

2

4

lo
g

1
0
ρ(

r)

-1.5

N=512K

MBH=0.01

-2.1

∆ = 0.08

-4

-2

0

2

4

-4 -3 -2 -1 0 1

r

-1.5

N=124K

MBH=0.05

-3 -2 -1 0 1

r

-1.8

∆ = 13.2

curves are from NB simulations. The agreement

between both methods is quite good. The mass

ratio between heavy and light stars is R = 10;

the number fraction of heavy stars fH = 2.5 ×
10−3 (top and middle panels) and fH = 0.429

(lower panels), corresponding to the strong and

weak segregation regimes respectively. The initial

condition is a Dehnen profile with central slope

γ = 1 for the top and bottom panels, γ = 1/2

in the middle panel; a central MBH with 5% of

the total mass of the cluster and 1% likewise. The

particle number is N = 124, 000 (top and bottom)

and N = 512, 000 (middle). The asymptotic slope

γH decreases from & 2 to ≈ 7/4 when moving from

the strong to the weak branch of the solution. The

asymptotic slope γH ≈ 3/2 throughout, or just

slightly below this value. The arrows point to radii rh and 0.1rh.

There is a straightforward physical interpretation for the strong branch of mass

segregation. In the limit where heavy stars are very scarce, they barely interact with

each other and instead sink to the center due to dynamical friction against the sea of

light stars. Therefore, a quasi-steady state develops in which the heavy star’s current is

not nearly zero and thus the BW77 solution does not hold exactly anymore. Indeed, in

the limit where the number fraction fH of heavy stars is vanishingly small, as is the case

of nuclei with realistic IMFs, the stellar potential is dominated by the light component.

In this case, the light stars should evolve as if in isolation and develop a γL ∼ 7/4 density

cusp. The scarce heavy stars sink to the center due to dynamical friction against the

background of light stars, and will not exert any significant back-reaction on them (Preto

2010).

Figure 1 displays the FP and NB evolutions of the spatial density ρL(r) and

ρH(r) for models with two mass components corresponding to different initial profiles,

MBH masses and total particle number N . The starting models are either γ = 1

or γ = 1/2 Dehnen profiles for both components with a MBH of 1% or 5% of the

total mass of the cluster. The density of both components reaches a quasi-steady state

within ∼ 0.2Trlx(rh), where Trlx(rh) relaxation time measured at the influence radius

(Preto and Amaro-Seoane 2010a). The top and middle panels display the strong mass

segregation solution with γH ∼ 2.1 as expected for ∆ = 0.08; while, in the bottom panel,

∆ = 13.2 displays the weak solution for which γH ∼ 7/4. One can see from Figure 1 that

in the case of weak segregation ρH > ρL everywhere due to the extremely high number

of heavy objects; in contrast, in the SMS regime ρH > ρL only for r . 0.01rh (and

the light objects dominate in number almost everywhere). In all cases the asymptotic

slopes are valid within ∼ 0.1rh and are totally predictable once ∆ is known.

The particle number in our direct-summation N−body simulations sample ranges
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from N = 124, 000 to N = 512, 000; our results do not show evidence of any dependence

on total N once the results are re-scaled appropriately (i.e. measured in terms of the

relaxation time). The agreement between NB and FP methods is quite good.

3. Cusp Re-growth

3.1. Current observations: A missing cusp

We have seen that theory predicts a steady state cusp that reaches extremely high

densities in the center near the MBH. Furthermore, given a normalization at, say, rh
and a knowledge of the stellar mass function (and thus of ∆), the density profile inside

rh becomes completely determined. But observations are much more complicated to

interpret. First, one must realize that there are very few galaxies for which the influence

radius rh can be resolved. In fact, except for the nearest galaxies, rh covers an angular

region in the sky which is too small to be resolved even with the HST. Second, even in

the few cases for which rh can be resolved to some extent, it still is necessary to assess

whether the observed stars (only those that are bright enough to be detected) really

trace the underlying (dynamically dominant) invisible population. Third, given the fact

that, as we have seen, stars tend to segregate by mass, there is an extra uncertainty

related to the unknown stellar mass function. Moreover, there are indications that star

formation events are common in galactic nuclei and furthermore that the resulting IMF

in these sub-parsec regions may be substantially different from that of the field stars and

biased towards heavy masses (Bartko et al. 2010). Finally, it is necessary to deproject

the observations and, in the (inevitable) absence of complete knowledge of phase space

coordinates, one must rely on kinematic assumptions regarding the (an-)isotropy of

stellar velocities and on the three dimensional shape of the stellar system.

Figure 2. Time for cusp re-growth. Single-mass relaxation time at rh for single-

mass cored models as a function of MBH mass. The shaded area covers
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[0.1Trlx, 0.2Trlx]—the time for cusp re-

growth if there is no hole in the initial

DF. The three dashed lines above the

shaded region represent the average

time needed for the cusp re-growth

in case one imposes an initial hole

with size Rcore = 0.5, 1 or 2 pc. The

horizontal dashed curve represents

13 Gyr. It can be seen that the

time needed to re-grow a cusp around

MBH with masses M• . 5 × 106M⊙

is below a Hubble time so long as the initial cavity is smaller than . 2 pc.

Nevertheless, it has come as a surprise that very recent spectroscopic observations

of the Galactic center revealed a core (or even a dip) in the surface distribution of the
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old stellar population (essentially red giants) which should have had time to relax into

a cuspy density profile (Buchholz et al. 2009; Do et al. 2009). The caveat is that the

detected stars are still a small fraction, of about 5%, of the stellar population as a whole

and therefore do not exclude the presence of an extended dark cluster (presumably

made of stellar bhs and other CRs)—which would indeed agree with our theoretical

expectations.

3.2. Carving a hole in the stellar distribution

To assess the likelihood that the Galactic center is indeed unrelaxed, it is natural to

ask: how long does it take to re-grow a cusp if, at some point, it has been destroyed? A

complete answer will, of course, depend on the extent to which the cusp was destroyed,

i.e. how much mass was expelled from the original cusp and over which radial range.

At this level, it does not matter which mechanism led to the destruction of the cusp.

We discuss briefly possible scenarios for cusp destruction at the end of the section.

In order to investigate this question, we have concocted a set of initial conditions

purported to mimic the outcome of a destroying cusp event—such as the carving of

a hole in the physical space through the ejection of stars by, say, an infalling IMBH

or, following a major merger, by a MBH. We model the outcome of such an event by

imposing that all stars with binding energies larger than some E0 or almost equivalently,

with semimajor axis smaller than GM•/2E0, are not present in the initial DF. We thus

set up an initial Dehnen model with f(E) = 0 for E > E0—in other words, there is

an initial hole in phase space density, but not in physical space as the stars with lower

energy still entail ρ(r) ∼ r−1/2 at the center, although with a smaller amplitude than the

original model. Note that these models are, by construction, isotropic in the velocity

distribution. ‖ Our fiducial model is a Milky Way type nucleus with M• = 4 × 106M⊙,

some 106M⊙ in total stellar mass inside 1 pc distributed according to an initial central

density slope γ = 1/2, two components with masses mL = 1M⊙ and mH = 10M⊙, and

0.1% of stellar bhs by number. When the stellar distribution has no phase space cavity,

this translates into having stars down to roughly 10−5 pc. Figure 2 shows the times

for cusp re-growth computed with FP for different galactic nuclei models. The shaded

region represents the time of cusp re-growth for a range of R and fH (all in the SMS

regime, ∆ < 1) for the case where f(E) extends to high E without any cut. It can be

seen that, for M• . 107M⊙, cusps grow in less than a Hubble time; in the particular

case of the Milky Way nucleus with M• ∼ 4 × 106M⊙, it takes no longer than ∼ 4.8

Gyr to fully re-grow a steady-state, mass segregated, stellar cusp and only ∼ 2.4 Gyr

to have it grown down to 0.01rh. If, instead, an initial hole is imposed at the center

with size Rcore = 0.5, 1 or 2 pc in case of the Milky Way (or Rcore = 0.2rh, 0.4rh or 0.8rh
in case of a generic nucleus), times for re-growth are represented by the dashed curves

‖ We assume that the timescale for isotropization of velocities is much shorter than that associated

with the cusp re-growth; in any event this should not affect our estimates by more than 10% or 20%

maximum.
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above the shaded region. In this case, times for cusp re-growth increase; in the Milky

Way case, it becomes ∼ 4.8, 7.2 or 12 Gyr, respectively. Note that, in the mass range

105 − 106M⊙, the times for cusp re-growth are definitely much shorter than a Hubble

time—even if a fairly large core of size close to rh is hypothesized. The full curve

represents the relaxation times computed at the radius of influence rh, while the dashed

curves represent the actual times for cusp re-growth as measured from FP calculations

(Preto and Amaro-Seoane 2010a).

It is difficult to devise plausible mechanisms for the formation of such large cores in

the stellar distribution. For instance, the inspiral of an IMBH of mass M• ∼ 103−4M⊙

that forms an unequal-mass binary with the MBH and ejects stars through three body

encounters would tend to progressively wipe out the stellar cusp. However, the core

radius carved by such an event is rc ∼ 0.02− 0.04 pc (Baumgardt et al. 2006) and thus

a steady inflow of such IMBHs (one every 107 years for a Hubble time) would be required

in order to carve a large core 50 or 100 larger. Such large inflow of IMBHs have been

proposed by Portegies Zwart et al. (2006). This does not seem very likely anymore

in light of the fact that such IMBHs were hypothesized to be formed by runaway

mergers of stars in the center of globular clusters. However, at solar metallicities,

such mechanism seems very inneficient. Mass loss due to very strong winds severely

limits the growth of the stellar object being formed and the likely end result of a

runaway merger is a ∼ 100M⊙ Wolf-Rayet star. At lower metallicities, mass loss is

lower and the remnant can be more massive ∼ 260M⊙, but in any case it will not form

an IMBH (Glebbek et al. 2009). In sum, it looks very unlikely that sufficient IMBHs

can be formed in order to generate such steady inflow to the Galactic center. Another

possibility would be that SgrA* is a binary MBH, but this would most likely imply

that there has been a more or less recent major merger involving the Milky Way—

aside from the fact that there are strong constraints from the SgrA* proper motion

Reid and Brunthaler (2004). This would contradict the apparent pure-disk nature of

the Galaxy, as theoretical interpretations of stellar kinematic data of the Galactic Bulge

seem to favor that the Bulge is part of the disk and not a separate component resulting

from a merger Shen et al. (2010).

4. EMRIs rates

4.1. Adiabatic and abrupt EMRIs: Estimation of the rates

Given a steady state stellar bhs continue to diffuse in (E, J)-space and some of them

eventually come into close interaction with the MBH. During a close interaction, a stellar

bh can either be promptly scattered into the MBH, accompanied by a single or a few

brief bursts of GWs in the LISA band (the so-called “direct-plunges”, though they are

not likely detectable unless if emmited from the Galactic center (Hopman et al. 2007),

or scattered outwards in the cusp. In either case, it does not live enough to become

an EMRI. Alternatively, it may undergo a very slow, adiabatic, inspiral without being
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appreciably disturbed by other stars and, in this case, it will eventually become an EMRI

detectable by LISA. An EMRI object thus has to spend very many orbits without being

significantly scattered by the gravitational tugs of the other stars. In other words, they

must fullfill the following inspiralling criterion: the time TGW it takes for the inspiral,

due to orbital energy lost by GW emission only, must be shorter than the typical time

TJ it takes on average to drift in angular momentum by an amount J which equals

its orbital angular momentum. The inspiral criterion can be stated in terms of the

parameter s being smaller than unity, s = TGW/TJ < 1. For TGW > TJ , it is almost

certain that this object has either taken an almost radial orbit and fallen into the MBH

as a direct plunge or has been scattered outwards ¶ It turns out that this parameter

simply scales with orbital’s semimajor axis: s ∝ a3/2−p (Hopman and Alexander 2005),

which means that it is a decreasing function of a so long as p < 3/2. This is indeed

the case in both regimes of mass segregation. Furthermore, Hopman and Alexander

(2005) have shown that the probability for a successful inspiral as a function of orbital

semimajor axis (or energy) is almost a step function of semimajor axis. If a < aGW,

it is almost certain that the stellar bh will become an EMRI; it will almost certainly

not become one in case the inequality sign is reversed (and the width of the “transition

region” is very small). This crucial threshold quantity demarcates the orbits which are

close enough to the MBH to sucessfully decouple from the rest of the cluster and undergo

the slow, adiabatic inspiral that defines an EMRI from those more weakly bound orbits

that will be perturbed out of the EMRI tracks due to scattering with other stars.

Therefore, in order to estimate the EMRI event rate given a steady state f(E)

obtained via FP equation, one essentially counts the number of stars that populate the

region of phase space for which the inspiralling criterion above is satisfied and divide

it by the local relaxation time. Note that here, for simplicity, we ignore other driving

mechanisms—in particular, we ignore resonant relaxation. Under these assumptions,

the EMRI rate for stellar bhs is approximately given by

ΓEMRI = f•

∫ +∞

EGW

dE
n(E)

ln(Jc(E)/Jlc) Trlx(E)
, (2)

where f• is the number fraction of SBHs in the stellar population, n(E) is the total

number of stars per unit energy(n(E) ∝ f(E), see Preto (2010)), Jc(E) =
√
GM•/2E

is the specific angular momentum of a circular orbit of energy E, Jlc = 4GM•/c is the

loss-cone angular momentum and Trlx = 0.34 σ3/[G2(m•ρ•+m∗ρ∗) ln Λ] is the relaxation

time. The log term in the denominator arises from the phase space (partial) depletion

resulting from the presence of the loss cone. The conversion between r and E is, for

r ≪ rh, 〈E(r)〉 = GM•/2r or E = GM•/2a. The critical radius aGW, or energy EGW,

for EMRIs is approximately aGW = 0.01rh (Hopman and Alexander 2005); and, to first

order, aGW is independent of M• (Hopman 2009).

¶ In steady state, on average each star that drifts outwards by an amount J will be compensated by

another that drifts inward by the same amount. This balance only breaks down for those orbits that fall

on to the hole, since there are obviously no stars coming out of the hole to keep this detailed balancing.
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4.2. The relevance of realistic models of mass segregation for the rates

The weak regime of SMS and the corresponding BW solution would lead to a fairly

high rate of EMRIs. In fact, Figure 3 shows that, for a Milky Way nucleus, in case

∆ > 1, the EMRI rate is & 103 per Gyr. This is, however, unrealistic as such scenario

pressuposes an unrealistically high number fraction of bhs (f• & 0.0325 for ∆ > 1). In

the more realistic case, when ∆ ∼ 0.03 the BW solution would entail a strong supression

of the EMRI rate to—at best—a few tens of events per Gyr. This is where SMS solution

appears to rescue us. SMS implies a higher density of bhs inside rh as compared with

the γ = 7/4 solution, and in this way—by decreasing the local Trlx and increasing n(E)

close to the MBH—it partially, but not completely, compensates for the small number

fraction of bhs entailed by realistic mass functions.

Figure 3. EMRI rate as a function of ∆. The number of stellar bh EMRI events

per Gyr in a Milky Way type nucleus (M• = 4 × 106M⊙ and M∗(< 1pc) = 106M⊙)
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Milky Way type nucleus, MBH=4x10
6
 MO•

R=10
R=15

as a function of the parameter

∆. This is computed from a

two-component mass segregated

stellar cusp (γH ≈ 2.1 and

γL ≈ 1.5) with mass ratios R =

10 and 15 obtained from FP

calculations. In the case of the

fiducial value f• = 10−3, ∆ ≈
0.03; in those circumstances,

each Milky Way like nucleus will

produce on average ∼ 250 stellar

bh EMRIs per Gyr.

In order to quantitatively evaluate the boost ΓSMS/ΓBW to the EMRI rates from

SMS, for a given ∆ and a fixed mass normalization at rh, one needs to estimate what

would be the rate if the spatial and phase space densities were determined by the γ = 7/4

cusp for r . 0.1rh. This is done as follows: we define analytically both ρ(r) and f(E)

that would result from a γ = 7/4 inside 0.1rh

ρ(r) = ρFP (r), r > rL

ρ(r) = ρFP (rL) ×
(rL
r

)7/4

, r ≤ rL, (3)

and

f(E) = fFP (E), E < EL

f(E) = fFP (EL) ×
(

E

EL

)1/4

, E ≥ EL, (4)

where the indices FP mean that the profile is taken from the Fokker-Planck calculation.

rL (and EL) is a reference radius (energy) chosen according to rL ∼ 0.1rh.
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Figure 4. Boost on EMRI rates from strong segregation.
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On can see that, for values of

∆ < 1, there is a significant to

the EMRI with respect to which

that would result in case of a γ =

7/4 BW cusp. For the fiducial

value ∆ ∼ 0.03 (f• ∼ 10−3, the

boost is of order of a factor 10.

Figure 4 shows the boost

to the EMRI rates due to

SMS relative to what would be

obtained from a BW profile.

Going from an unrealistically

high f• as adopted by BW77 (say ∆ = 3) to a more realistic f• (say ∆ = 0.03), while

neglecting the existence of SMS, one supresses the EMRI rate by factors of ∼ 100− 150

(the former would lead to ∼ few × 103 EMRIs per Gyr; the latter is reduced to ∼ few

tens per Gyr). However, by taking into account the SMS solution, for this low ∆ = 0.03,

we boost the rates by a factor close to 10, thus partially compensating the reduction

of EMRIs (from few tens to a few hundred per Gyr; in fact, there are ∼ 250 per Gyr

in case ∆ = 0.03). We conclude that the apparently inocuous and tiny change of the

logarithmic slope from γH = 7/4 to γH ∼ 2 can have a substantial effect (a factor of

∼ 10) on the expected EMRI rate.

5. Conclusions

We have considered simplified stellar models of galactic nuclei, with only two mass

components, which harbor MBHs that fall into the LISA detection bandwidth. For

quite generic initial conditions, such stellar clusters are expected to have reached a

relaxed, mass segregated, steady state which is independent of initial conditions at time

of formation. Strong (realistic) mass segregation is a robust outcome from the growth

and evolution of stellar cusps around MBHs in the mass range 104 − 107M⊙ to which

LISA will be sensitive. Our N-body results validate the Fokker-Planck description of the

bulk properties of the stellar distribution. SMS boosts the EMRI event rates with respect

to what would be implied by a shallower stellar density profile (e.g. γ = 7/4, which

has been the working assumption of almost all event rate estimates in the literature so

far) that also respect the mass normalization obtained from observations of the Galactic

center at 1 pc from the hole. In particular, our fiducial models of the Galactic center are

enhanced by a factor of ∼ 10—leading to a predicted value of ∼ 250 stellar bh EMRIs

per Gyr. The FP formalism assumes two-body relaxation as the only dynamical driver

present—this could be a severe restriction at radii . 0.01rh, inside which even the NB

simulations with higher N in our sample start to run out of particles . Other crucial

mechanisms are resonant relaxation, (small) triaxiality of the galactic potential, tidal
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separation of binaries and massive perturbers (see e.g. Amaro-Seoane et al. 2007, for a

review). These are the subject of our current research work.
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