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Measuring primordial non-Gaussianity through weak lensing peak counts

Laura Marian1, Stefan Hilbert1, Robert E. Smith2,1, Peter Schneider1, Vincent Desjacques2

Argelander-Institut für Astronomie, Universität Bonn, Bonn, D-53121, Germany 1

Institute for Theoretical Physics, University of Zürich, Zürich, CH 8037, Switzerland2

We explore the possibility of detecting primordial non-Gaussianity of the local type using weak
lensing peak counts. We measure the peak abundance in sets of simulated weak lensing maps
corresponding to three models fNL = 0,−100, 100. Using survey specifications similar to those of
euclid and without assuming any knowledge of the lens and source redshifts, we find the peak
functions of the non-Gaussian models with fNL = ±100 to differ by up to 15% from the Gaussian
peak function at the high-mass end. For the assumed survey parameters, the probability of fitting
an fNL = 0 peak function to the fNL = ±100 peak functions is less than 0.1%. Assuming the other
cosmological parameters known, fNL can be measured with an error ∆fNL ≈ 13. It is therefore
possible that future weak lensing surveys like euclid may detect primordial non-Gaussianity from
the abundance of peak counts.

Introduction— The inflationary paradigm is the lead-
ing theory of the early Universe, of fundamental interest
for cosmology and particle physics. Understanding the
mechanism and energy scale of inflation remain major
goals to attain, despite the continuous and fervent efforts
invested in this field.
A measurement of primordial gravitational waves

would pin down the energy scale of inflation, though it
still belongs to the not-so-near future. One possible way
to discriminate between single- and multi-field inflation
models is to test the Gaussianity of the primordial den-
sity fluctuations [1]. The Cosmic Microwave Background
(CMB) has been so far the main and cleanest inflation-
ary probe. Recent results from the Wilkinson Microwave
Anisotropy Probe (WMAP) [2] established the existence
at the 1σ-level of primordial non-Gaussianity of the local
type, defined by the equation:

Φ(x) = φ(x) + fNL[φ
2(x)− 〈φ2(x)〉]. (1)

The parameter fNL quantifies the local quadratic devia-
tion of the Bardeen potential Φ from a Gaussian potential
φ, and it is currently constrained to the value 32±21 [2].
It has long been suggested [3–6] that low-redshift ob-

servables can also be used to measure primordial non-
Gaussianity, despite the fact that the density field at such
redshifts is strongly non-Gaussian due to the action of
gravity. In the local non-Gaussianity models, there are
mainly two effects on low-redshift observables as recently
outlined in the comprehensive study of [7], and further
explored in [8–12]. First, fNL induces a scale-dependence
in the bias of dark matter halos, which affects primarily
the largest scales, i.e. k < 0.02 hMpc−1. Thus one can
in principle separate the fNL scale dependence from the
gravitational one, which occurs on smaller scales. Sec-
ond, the abundance of massive halos is higher/lower for
positive/negative values of fNL [6, 13].
In this paper we shall numerically investigate the sen-

sitivity of weak gravitational lensing (WL) peak counts
to primordial non-Gaussianity of the local type. The po-
tential of WL surveys to constrain fNL has already been

tackled [14–16], though without considering shear peaks.
Peak counts are a natural candidate for fNL studies, since
the largest of them are caused primarily by massive halos.
Should peak counts prove to be a sensitive fNL probe,
then one could easily use large future surveys like eu-

clid [17] or the Large Synoptic Survey Telescope (lsst)
[18] to obtain low-redshift constraints on primordial non-
Gaussianity.

Method—We study simulated WL convergence maps
created from ray-tracing through a suite of N -body
simulations, generated with the publicly available code
GADGET [19]. A subset of these simulations was used
and described in the work of [8]. Three values of fNL

are considered: 0, -100, +100, while the other cosmolog-
ical parameters are kept fixed. The cosmology matches
the WMAP5 results [20]. We have a total of 18 simula-
tions, with 6 realizations per fNL value. The initial con-
ditions for each of the 6 sets of fNL-model realizations are
matched to reduce the cosmic variance on the compari-
son of the peak functions corresponding to each model.
The box size is 1600 h−1 Mpc, the number of particles is
N = 10243, and the softening length is lsoft = 40 h−1 kpc.

We consider a euclid-like survey [17] for the WL sim-
ulations with: an rms σγ = 0.3 for the intrinsic image
ellipticity, a source number density n̄gal = 40 arcmin−2,
and a redshift distribution of source galaxies given by
P(z) = 1.5 z2/z30 exp[−(z/z0)

1.5], where z0 = 0.6. The
mean redshift of this distribution is zmean = 0.9.

From each N -body simulation we generate 16 indepen-
dent fields of view. Each field has an area of 12× 12 deg2

and is tiled by 40962 pixels, yielding an angular resolu-
tion θpix = 10 arcsec and a total area of ≈ 14000 deg2

for each fNL model. The effective convergence κ in each
pixel is calculated by tracing a light ray back through
the simulation with a Multiple-Lens-Plane ray-tracing
algorithm [21, 22]. Gaussian shape noise with variance
σ2
γ/(n̄gal θ

2
pix) is then added to each pixel [23].

For the peak finding we use an aperture filter [24],
matching an Navarro-Frenk-White (NFW) profile [25]
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convolved with a Gaussian function. The width of the
latter is f × lsoft, where f = 1.5 for M < 7×1014 h−1 M⊙

and f = 2 otherwise. Thus we adopt the convergence
model: κmodel = κNFW ◦ fGauss, which agrees very well
with the measured convergence profiles of the peaks in
the maps. The model is useful both when working with
simulations, since it accounts for the lack of resolution
below the softening scale, and also when using real data,
since shear data is difficult to obtain near the centres of
clusters.
The amplitude of the smoothed field at a point x0 is

given by:

M̂(x0) =

∫
d2xW (x0 − x)κ(x), (2)

where W is our filter and κ is the convergence field. The
filter W can be written as follows:

W (x) = CW

κmodel(x)− κ̄model(R)

σ2
γ/n̄gal

, (3)

where CW is a normalization constant and R is the aper-
ture radius, i.e. the radius over which the filter is com-
pensated. We choose the normalization constant to be:

CW =
σ2
γ

n̄gal

MNFW∫
d2xκ2

model(x) − πR2 κ̄2
model(R)

. (4)

If x0 is the location of a peak created by an NFW cluster
of mass MNFW and redshift z, and the convergence field is
smoothed with a filter tuned to precisely such a cluster,
i.e. κmodel in Eq. (3) corresponds to the same MNFW and
z, then this filter returns a maximum S/N at x0. At this
location, the amplitude of the smoothed map is:

M̂(x0|MNFW, z) = MNFW . (5)

The peak is assigned the mass MNFW. In practice,
we smooth the convergence field with filters of vari-
ous masses, which yield different amplitudes (larger and
smaller than the filter mass) at the location of peaks. We
interpolate these amplitudes to determine the filter mass
that would satisfy Eq. (5).
We choose R to be the virial radius of the cluster to

which the filter is tuned: R = (3MNFW/800 π ρ̄)1/3, where
ρ̄ is the mean density of the universe. Thus a filter at a
given redshift can be specified either through the mass
MNFW or through its size R. We adopt the mass conven-
tion of Sheth-Tormen [26], with an overdensity defined as
200 × the mean density (not the critical density). The
NFW profile that defines κmodel is also truncated at R,
as described for instance by [27]. We evaluate the S/N
of the mass estimator in a simplified scenario where we
ignore projection effects, and consider only the intrinsic
ellipticity noise. In this case the variance of the estima-
tor is given by: Var(M̂) = MNFW CW, and the S/N is
obtained by combining this with the above equations.

Finally, in the case where no shape noise is included,
we use the same filter as in our previous work [28]. This
filter can also be obtained by formally taking σ2

γ/n̄gal = 1
in Eqs (3), (4) above, and it is no longer an optimal fil-
ter. The analysis of the convergence maps is carried out
in two situations: with and without shape noise. We
adopt a very conservative approach in which we consider
known only the redshift distribution of the source galax-
ies and the shape noise level, without any other informa-
tion on the sources or on the detected peaks. We also do
not resort to tomographic techniques. While this is an
overly-pessimistic scenario for a next-generation lensing
survey like euclid, our goal here is to provide a proof
of concept of the possibility of using WL peak counts
to constrain primordial non-Gaussianity, rather than the
final quantitative answer to this question.

We perform a hierarchical smoothing of the maps with
filters of various sizes, from the largest down to the small-
est, as described in [28, 29]. This approach removes the
problem of ‘peaks-in-peaks’ and it also naturally elimi-
nates the dependence of the measured peak function on
a particular filter scale. Since the mean redshift of the
source distribution is 0.9, we adopt a fixed redshift of 0.3
for the matched filter described above. For this redshift,
the scale of the filter varies from corresponding masses
of 2× 1015 h−1 M⊙ to 3× 1013 h−1 M⊙ in the absence of
shape noise, and 1014 h−1M⊙ in the presence of it. The
latter lower-limit choice of the filter scale is due to the
fact that shape noise contaminates seriously the smaller
peaks; imposing a minimum S/N threshold alleviates but
does not remove the contamination. Peaks are detected
in the smoothed maps as local maxima, and are assigned
a mass as described in the previous section.

Results—Figure 1 presents the main result of this work.
The upper panels illustrate the peak functions measured
in the fNL = ±100 cosmologies, in the absence (left
panel) and presence of shape noise (right panel). For
each fNL model, the points are the average of the peak
counts measured in all 96 fields and the error bars repre-
sent errors on the mean. In the case of shape noise, we
select only peaks with a S/N > 3. We note that the two
average peak functions are clearly distinct at the high-
mass end, i.e. for M > 3 × 1014 h−1 M⊙. This is better
seen in the lower panels which show the difference of the
peak abundance measured in the fNL = ±100 cosmolo-
gies, relative to the fNL = 0 peak abundance. The error
bars do not reflect the matched initial conditions of the
Gaussian and the fNL models: the fractional difference
is computed as an average of the fNL ± 100 peak abun-
dance in each field ratioed to the average Gaussian peak
abundance (which represents our best model for the true
Gaussian peak abundance), as opposed to the average of
the ratio of the non-Gaussian and Gaussian peak func-
tions measured in the same field. The latter would have
removed the cosmic variance of the fractional difference.

Just like in the case of the 3D halo mass function,
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FIG. 1: Upper panels: The measured peak functions for fNL = +100 (red circles) and fNL = −100 (blue triangles) for a survey
with a mean redshift zmean = 0.9 and an area of 14000 deg2. The filter used corresponds to redshift 0.3. The peak functions
in the left panel are measured in the absence of shape noise, while in the right panel shape noise is included (assuming 40
galaxies/arcmin2), and only the peaks with a S/N > 3 were selected (hence the smaller mass range on the x-axis).

Lower panels: The fractional difference of the peak functions for the fNL = ±100 models and the Gaussian model (red
circles/blue triangles), without/with shape noise (left/right panel). The points are obtained as an average over all the fields of
the fractional difference of the fNL ± 100 peak functions in every field and the average peak function in the Gaussian model.

(see for example [8, 12]), the peak functions for the fNL

models show a deviation from the Gaussian case. Unlike
the 3D studies which have presented halo mass functions
measured at a single redshift, the peak functions that
we show here combine peaks in the redshift range of the
source distribution, and therefore are not as regular and
symmetric as their 3D counterparts. The asymmetry is
most likely due to modifications of the S/N of peaks by
line-of-sight projections, and also by shape noise contam-
ination. The trend is similar however, with high-mass
peaks displaying the largest deviation. For both fNL

models, this is about 10-15% for the largest mass bins
i.e. M > 4× 1014 h−1 M⊙.

To quantify the significance of the deviation, we per-
form a χ2−test. For the fiducial model fNL = 0, we
estimate the covariance of the counts in a field. We use
the covariance of the mean to obtain the χ2. For both
fNL±100 we find a probability< 0.1% to fit the fNL±100
peak functions with an fNL = 0 peak function. This is
also true if we consider only the diagonal elements (the

variance of the mass bins) instead of the full covariance
matrix, and also if we vary the mass bins. We also use
the measured counts to estimate the Fisher error that a
14000 deg2 WL survey would yield on fNL. Assuming
all other cosmological parameters known, the forecasted
error is ∆fNL ≈ 13 for the fiducial value fNL = 0. The
values of the χ2 and the Fisher error are largely main-
tained also if we completely eliminate the reduction in
the cosmic variance due to the matching of the initial
conditions, by using the first three simulations to com-
pute the fNL = +100 peak function and the last three
for the fNL = −100 function.

Though these results are already very encouraging, it
is possible to improve measurements of primordial non-
Gaussianity from WL surveys even if one considers only
peak counts. The most important is probably the use
of tomography, as numerical and analytical studies of
the 3D mass functions have shown that deviations of the
halo abundance from the Gaussian case significantly in-
crease with redshift. Tomography would allow peaks to
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be separated not only in terms of their S/N–mass, but
also of their redshifts, thus acquiring more sensitivity to
fNL. Our immediate goals are to further study how WL
can be used to constrain primordial non-Gaussianity, to
build improved fNL estimators fromWL observables, and
to forecast fNL constraints based on these observables.
For now we convey a simple, yet powerful state-

ment: future WL surveys can detect primordial non-
Gaussianity of the local type from at least one statistic–
peak counts. In particular, a euclid-type survey should
convincingly achieve this purpose.
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