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Abstract. In 2010, Groth constructed a non-interactive zero-knowledge (NIZK) argument for
circuit satisfiability with communication Θ(1), verifier’s computation Θ(|C|), and common reference
string length and prover’s computation Θ(|C|2), where |C| is the circuit size. In the current paper,
we show how to reduce the common reference string length to O(|C|1+ε) for any ε > 0. For
this, we show that for any n > 0, [n] has a progression-free subset of odd integers of cardinality
Ω(n1−ε). Moreover, the NIZK argument for circuit satisfiability is slightly shorter than that of
Groth, due to a simpler element-wise product argument that may be of independent interest. One
of the applications of the current paper is a perfect zap for circuit satisfiability with communication
complexity O(|C|1/2+ε).
Keywords. Bilinear pairings, circuit satisfiability, non-interactive zero-knowledge, progression-
free sets.

1 Introduction

One of the central concepts in cryptography is zero-knowledge, introduced by Goldwasser, Micali and
Rackoff [GMR85]. By using the power of randomness and (usually) interaction, zero-knowledge proofs
make it possible for the prover to convince the verifier in the truth of a statement, without leaking
any side information. Zero-knowledge proofs are usually required to be statistically complete, statisti-
cally sound and computationally zero-knowledge. Computationally-sound proofs are usually known as
arguments. Due to wide applications of zero-knowledge in diverse areas of cryptography, it is of utmost
importance to construct efficient zero-knowledge proofs. As usually, efficiency of protocols is measured
by their round-complexity, communication complexity and computational complexity. In particular, non-
interactive zero-knowledge proofs are extremely useful, since in many applications the proof is generated
once but then have to be verified many times.

While it is known that non-interactive zero-knowledge (NIZK) proofs (or arguments) cannot be
constructed in the plain model (i.e., without random oracles or any trusted setup), Blum, Feldman
and Micali showed in [BFM88] how to construct NIZK proofs in the common reference string model.
During the last years, substantial amount of research has been done towards constructing efficient NIZK
proofs (and arguments). Since communication and verifier’s computational complexity are arguably more
important than prover’s computational complexity (a NIZK proof/argument is generated once but can
be verified many times), special effort has been put in minimizing these two parameters.

In some very recent NIZK proofs for NP-complete problems, see Tbl. 1, both the communication com-
plexity and verifier’s computational complexity are sublinear in a well-defined sense. Already in 1994,
Micali [Mic94] proposed sublinear NIZK arguments for all NP-languages. However, his CS proofs are
based on the PCP theorem (making them computationally unattractive) and on random oracles. Gen-
try [Gen09] noted that given his new fully-homomorphic cryptosystem, one can construct very efficient
NIZK proofs for all NP — unfortunately, again in the random oracle model. Another NIZK argument
for a NP-complete problem, circuit satisfiability, proposed by Groth in [Gro09], are also based on the
random oracle model. While the random oracle model makes it possible to design efficient protocols, it
is also well-known, see e.g., [CGH98,BP04], that there are many functionalities that are secure in the
random oracle model and insecure in the plain model. Thus, it is important to design efficient NIZK
proofs and arguments that do not use random oracles.

Recently, Groth [Gro10] proposed an efficient pairing-based NIZK argument for circuit satisfiability
in the common reference string model. Groth’s circuit satisfiability argument is based on two more
primitive NIZK arguments for element-wise product and permutation, and in particular it inherits the
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length-Θ(|C|2) common reference string of those two basic arguments. Here, |C| is the circuit size. The
security of Groth’s NIZK argument is based on two assumptions, a computational one (q-CPDH) and a
knowledge one (q-PKE).

Our Contributions. By using a lowerbound on the size of the maximum cardinality of a progression-
free set in [n], we improve on [Gro10], by proposing a NIZK argument for circuit satisfiability with
common reference string of size O(|C|1+ε). This, in particular, also improves somewhat the computa-
tional complexity of all new arguments. Moreover, the new NIZK argument for circuit satisfiability is
slightly simpler (requiring one less commitment and one less basic argument) than the on in [Gro10].
Thus, in the new argument, prover’s computational complexity is Θ(|C|2) multiplications in Zp and
O(|C|1+ε) exponentiations in the bilinear group, the communication complexity is Θ(1), and verifier’s
computational complexity is Θ(|C|) offline multiplications and Θ(1) online pairings. (See Tbl. 1.) Finally,
our contribution is also conceptual, by clarifying the ideas in [Gro10], and taking them one step further.
The connection to progression-free sets is interesting in its own right.

As our underlying observation, we note that Groth’s basic arguments are constructed by making use
of Θ(n2) generators of the underlying group, where n is the input size. Of those possible generators, only
≤ 2n generators are really needed in the description of the arguments, while the rest of the generators
are inherit to the proof technique. When constructing the NIZK argument for circuit satisfiability, this
results in Θ(|C|2) used generators that are all part of the common reference string.

Product Argument. In a element-wise product argument, the prover argues that given (multi-
)commitments, he knows how to open them to three length-n vectors aij , i ∈ {1, 2, 3}, such that
a3j = a1ja2j . The description of Groth’s element-wise product argument [Gro10] uses 2n generators

gi = gx
i

and gi+n = gx
i(n+1)

, for i ∈ [n]. Here, a1 and a3 are committed to by using the first n genera-
tors, and a2 is committed to by using the last n generators. Soundness of the product argument is based
on inequalities k(n+2) 6= i, k(n+2) 6= i(n+1) and k(n+2) 6= i+j(n+1) for any i, j, k ∈ [n], where i 6= j.

However, while constructing the actual argument, one needs Θ(n2) different products gigj = gx
i+j(n+1)

of all n× n generator pairs gi and gj+n.
Intuitively, the first question was whether either the statement of the argument and the soundness

condition can be simplified. For example, can one just use n generators gi = gx
λi

for some well-chosen

powers λi, so that all a1, a2, and a3 are committed to by using the same generators gx
λi

? Indeed, it turns
out that one can. As we show in Sect. 4, we can do it so that the soundness conditions are simplified:
now it is just required that 2λk 6= λi and 2λk 6= λi + λj for any i 6= j. That is, in this “simplified case”,

it suffices that the set of Λ = {λi} of exponents λi used in generators gx
λi

1) does not contain even
numbers, and 2) is progression-free (that is, does not contain arithmetic progressions of length three).

Next, we use some deep results from additive combinatorics. Let r3(x) be the cardinality of maximal
progression-free subset of [x]. According to [Beh46,Elk10], r3(x) = Ω(x1−ε) for any ε > 0. Thus, there
exists a y = O(n1+ε) for any ε > 0, such that [y] contains a size-n progression-free subset Λ = {λi}i∈[n].
We show that this is even true when Λ is required to only contain odd numbers. (See Thm. 1.)

In Sect. 4, we describe the new element-wise product argument. It uses n generators gλi ← gx
λi

, where
i ∈ [n], for committing to the vectors a1, a2, and a3. While we still need all the “product” generators
gλi ·gλj , due to the choice of Λ, there is only O(n1+ε) of different product generators. Thus, the new entry-
wise product argument uses a common reference string of length O(n1+ε), and is otherwise asymptotically
as efficient as Groth’s (with constant communication and verifier’s online computation, and with Θ(n2)
prover’s computation). However, in concrete terms, while in [Gro10], prover’s computation was dominated
by Θ(n2) multiplications in Zp and Θ(n2) exponentiations in underlying bilinear group, in the new
argument, the number of exponentiations can be also reduced to O(n1+ε).

Finally, we observe that Groth used different generators to commit to a1 and a3 than to a2, while we
use the same n generators to commit to all three different vectors. Thus, the new element-wise product
argument can be used more easily in several applications, like recursive element-wise product argument
of 2m elements for some m > 1. This is the second reason why the new argument for circuit satisfiability
is slightly more efficient than the one from [Gro10].

Permutation Argument. The second basic argument in [Gro10] is for permutation. In the permutation
argument, given two (multi-)commitments, the prover aims to convince the verifier that he knows to



Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments 3

CRS size Argument size Prover comp. Verifier comp. Assumption

Gentry [Gen09] O(1)G |w| poly(κ)G |C| poly(κ)M |C|poly(κ)M lattice + random oracle

Groth [Gro09] O(|C|1/2G O(|C|1/2)G O(|C|)M O(|C|)M random oracle
Groth [Gro10] O(|C|2)G O(1)G O(|C|2)M O(|C|)M PKE and CPDH

Groth [Gro10] O(|C|2/3)G O(|C|2/3)G O(|C|4/3)M O(|C|)M PKE and CPDH

This paper O(|C|1+ε)G O(1)G O(|C|2)M O(|C|)M PKE and CPDH

This paper O(|C|1/3+ε)G O(|C|2/3)M O(|C|4/3)G O(|C|)M PKE and CPDH

This paper O(|C|1/2+ε)G O(|C|1/2)M O(|C|3/2)G O(|C|)M PKE and CPDH

Table 1. Comparison of NIZK arguments with sublinear argument size. |C| is the size of circuit, |w| is the length
of witness, κ is security parameter, G is the length of group elements and M is the time of single multiplication.
For verifier, we count here the total (offline + online) computation

open the commitments to a1 = (a1j)j∈[n] and to a2 = (a2j)j∈[n] respectively, such that for a fixed
public permutation % of [n], a2j = a1,ρ(j) for all j ∈ [n]. Similarly to the case of product argument,
Groth’s permutation argument makes use of 2n basic generators and of Θ(n2) “product” generators,
while we show that one can limit the number of “product” generators to O(n1+ε). The basic idea of our
modification is the same as in the case of element-wise product. That is, we commit to a1j and a2j by
using generators gλj . Additionally, generators gλρ(i)−λi are used in the verification.We show that also in
this case, it is sufficient that the set Λ = {λi} is progression-free and does not contain even numbers.
This argument is described in Sect. 5.

NIZK for Circuit Satisfiability. Groth [Gro10] proposed an efficient NIZK argument for circuit satis-
fiability that crucially used the product and permutation arguments. The circuit satisfiability argument
inherits the length-Θ(|C|2) common reference string of the subarguments, where |C| is the circuit size.
By using the new basic arguments, in Sect. 6 we construct a NIZK argument for circuit satisfiability
with common reference string of length O(|C|1+ε). Moreover, that argument has constant communica-
tion complexity, while prover’s computational complexity is Θ(|C|2) multiplications in Zp and O(|C|1+ε)
exponentiations in the bilinear group, and verifier’s offline computational complexity Θ(|C|) and online
computational complexity Θ(1) bilinear pairings. The new NIZK argument for circuit satisfiability is also
slightly more efficient than Groth’s argument (omitting one commitment and one element-wise product
argument) due to the simpler construction of the element-wise product argument of Sect. 4.

Balancing. As shown by Groth [Gro10], to achieve both sublinear common reference string length
and communication, one can apply the same base protocols on length-n1/3 inputs n2/3 times in par-
allel. Groth’s balanced circuit satisfiability argument has common reference string length Θ(n2/3) and
communication Θ(n2/3). Note that prover’s computational complexity is decreased to Θ(n4/3) while the
verifier’s online computational complexity is increased to Θ(n2/3). We refer to [Gro10] for details.

We can use the same balancing with the new argument (though the resulting common reference string
will be shorter). In addition, we can balance the new argument by applying the same base protocols on
length-n1/2 inputs n1/2 times in parallel. When balanced like that, the new circuit satsifiability argument
has common reference string length O(|C|1/2+ε) and communication Θ(|C|1/2). Prover’s computational
complexity is Θ(|C|3/2) and verifier’s online computational complexity is Θ(|C|1/2). Full comparison is
given in Tbl. 1.

Perfect Zaps. The presented NIZK argument is in the common reference string model, and thus
requires some trusted third party to construct the common reference string. If trusted setup model is not
available, then one can instead construct a sublinear-size zap [DN00] (a 2-move publicly-verifiable witness-
indistinguishable argument, where verifier’s first message can be reused many times), just by letting the
common reference string to be verifier’s first message σ, and then letting the prover to verify the well-
formedness of the common reference string and then send his argument (polynomially many times). It is
straightforward to see, that all common reference strings in this paper are publicly verifiable. This zap
will be perfectly witness-indistinguishable. Due to the balancing, the new zap for circuit satisfiability
has total communication O(|C|1/2+ε), while Groth’s zap from [Gro10] has communication complexity
Θ(|C|2/3).
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2 Preliminaries

Notation. Let [n] = {1, . . . , n}. Let Matm,n(R) be the ring of m × n matrices over ring R. We denote
matrices by capital letters (like A), and their elements by corresponding lowercase letters (like a). Thus
A = (aij). We denote the ith row of matrix A as Ai. If y = hx then logh y := x. For any set A and
n > 1, let n.A = {a1 + · · ·+ an : aj ∈ A} [TV06]. Let 2Z + 1 be the set of odd integers. Let κ be the
security parameter. We write (y; z)← (A||XA)(x) if A on input x outputs y, and XA on the same input
(including the random tape of A) outputs z.

Bilinear groups. Let Gbp(1
κ) be a bilinear group generator, that outputs a description of a bilinear

group (p,G,GT , e) ← Gbp(1
κ) such that p is a κ-bit prime, G and GT are cyclic groups of order p,

e : G×G → GT is a bilinear map (pairing) such that ∀a, b, e(ga, gb) = e(g, g)ab. If g generates G, then
e(g, g) generates GT . Moreover, it is efficient to decide the membership in G and GT , group operations
and the pairing e are efficiently computable, generators are efficiently sampleable, and the descriptions
of the groups and group elements each have length O(κ) bits. For the sake of simplicity, we will use
symmetric notation. However, with only some extra effort all new arguments can be modified to work
together with an asymmetric bilinear map e : G1 ×G2 → GT .

q-Computational Power Diffie-Hellman Assumption [Gro10]. We say that a bilinear group
generator Gbp is q(κ)-CPDH secure, if for any non-uniform polynomial-time adversary A,

max
i

Pr

[
(p,G,GT , e)← Gbp(1

κ), g ← G \ {1} , (x, α)← Z2
p :

A(p,G,GT , e, g, gx, . . . , gx
q

, gα, gαx, . . . , gαx
i−1

, gαx
i+1

, . . . , gαx
q

) = gαx
i

]

is negligible in κ. As shown in [Gro10], q-CPDH holds in generic group model for any polynomial q. We
recall the next lemma from [Gro10].

Lemma 1 (Groth [Gro10]). If Gbp is q-CPDH secure, then given a random common reference
string, no non-uniform probabilistic polynomial-time adversary can find a non-trivial linear combina-
tion (a0, . . . , aq), such that

∑q
i=0 aix

i = 0, except with a negligible probability.

q-Power Knowledge of Exponent Assumption (q-PKE). Abe and Fehr showed in [AF07] that no
statistically zero-knowledge NIZK argument for an NP-complete language can have a “direct black-box”
security reduction to a standard cryptographic assumption unless NP ⊆ P/poly. Since then, several other
authors have shown related impossibility results, see, e.g., [GW10]. (The best known related result is by
Di Crescenzo and Lipmaa [DL08], who construct a 2-message zero-knowledge argument for NP under a
knowledge assumption, but without using a common reference string.) Therefore, Groth [Gro10] based
his NIZK argument for circuit satisfiability on the next knowledge assumption.

The bilinear group generator Gbp is q-PKE secure if for any non-uniform probabilistic polynomial-
time adversary A there exists a non-uniform probabilistic polynomial-time extractor XA, such that

Pr


(p,G,GT , e)← Gbp(1

κ), g ← G \ {1} , (α, x)← Z∗p,

σ ← (p,G,GT , e, g, gx, . . . , gx
q

, gα, gαx, . . . , gαx
q

),

(c, ĉ; a0, . . . , aq)← (A||XA)(σ) : ĉ = cα ∧ c 6=
n∏
i=0

gaix
i


is negligible. Groth [Gro10] proved that the q-PKE assumption holds in the generic group model. We
emphasize that while knowledge assumptions are non-falsifiable, they seem to be more realistic than the
random oracle assumption.

Trapdoor Commitment Schemes. A commitment scheme (Gcom,Com,Open) consists of three prob-
abilistic polynomial-time algorithms: a randomized key generation algorithm Gcom, a randomized com-
mitment algorithm Com and an opening algorithm Open (that may output ⊥ in the case of failure).
It is required that for any ck ← Gcom(1κ) and for any valid m and r, if (c, d) = Comck(m; r) then
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Openck(c, d) = m. Here, c is the commitment value and d is the opening value. For the sake of simplicity,
we often denote c ← Comck(m; r). In the case of a doubt, we write c ← Com1

ck(m; r). In the current
paper, ck is a part of the common reference string.

Commitment scheme is computationally binding, if no non-uniform polynomial-time adversary A
can produce a triple (c, d1, d2), such that ⊥ 6= Openck(c, d1) 6= Openck(c, d2) 6= ⊥, with non-negligible
probability. The probability is taken over the choice of ck and the private coins of A. Commitment
scheme is statistically hiding, if for any commitment key ck ∈ Gcom(1κ), the statistical distance between

distributions Com1
ck(m1; ·) and Com1

ck(m2; )̇ is negligible in κ.
We use the same commitment scheme as Groth [Gro10] but with a generalized choice of generators.

That is, given a group G of prime order p, a generator g ∈ G, and random α, x← Zp, the commitment-

key is ck ← (g, g1, . . . , gn, ĝ, ĝ1, . . . , ĝn), where gi = gx
λi

and ĝi = gαx
λi

for some fixed integers λi such
that 0 < λi < λi+1. To commit to a = (a1, . . . , an) ∈ Znp , the committing party chooses a random
r ← Zp, and defines

Comck(a1, . . . , an; r) := (gr ·
n∏
i=1

gaii , ĝ
r ·

n∏
i=1

ĝaii ) .

The opening value is just (a1, . . . , an; r). As shown by Groth [Gro10], this commitment scheme is com-
putationally binding and statistically hiding under the q-CPDH assumption. Note that Comck(a; r) =

(gr+
∑n
i=1 aix

i

, gα(r+
∑n
i=1 aix

i)), thus by the q-PKE assumption, for every committer A there exists an
extractor XA that can open the commitment, given access to A’s inputs and random tape. Since the
commitment scheme is computationally binding, then the extracted opening has to be the same that
A used. Clearly, this commitment scheme is also perfectly trapdoor, with the trapdoor being τ = x:
after trapdoor committing A ← Comck(0, . . . , 0; r) = gr for r ← Zp, the committer can open it to any
(a1, . . . , an; r′) where r′ is chosen so that r′ +

∑
aix

i = r.

Non-Interactive Zero-Knowledge. Let R = {(C,w)} be an efficiently computable binary relation.
Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n
be some fixed concrete input length n = |C|. For fixed n, we have relation Rn and language Ln. A
non-interactive argument for R consists of the next probabilistic polynomial-time algorithms: a common
reference string generator Gcrs, a prover P and a verifier V . For σ ← Gcrs(1

κ, n), P (σ,C,w) produces an
argument π. The verifier V (σ,C, π) outputs 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs, P, V ) is perfectly complete, if for all n = poly(κ), all σ ← Gcrs(1
κ, n)

and all (C,w) ∈ Rn, it holds that V (σ,C, P (σ,C,w)) = 1.
A non-interactive argument (Gcrs, P, V ) is computationally sound, if for all non-uniform probabilistic

polynomial-time adversaries A and all n = poly(κ),

Pr[σ ← Gcrs(1
κ, n), (C, π)← A(σ) : C 6∈ L ∧ V (σ,C, π) = 1]

is negligible.
A non-interactive argument (Gcrs, P, V ) is perfectly witness-indistinguishable, if (given that there

are several possible witnesses) it is impossible to tell which witness the prover used. That is, for all
all n = poly(κ), if σ ∈ Gcrs(1

κ, n) and (C,w0), (C,w1) ∈ Rn, then the distributions P (σ,C,w0) and
P (σ,C,w0) are equal.

A non-interactive argument (Gcrs, P, V ) is perfectly zero-knowledge, if there exists a polynomial-time
simulator S = (S1, S2), such that for all stateful interactive non-uniform probabilistic polynomial-time
adversaries A and n = poly(κ),∣∣∣∣∣∣∣Pr

σ ← Gcrs(1
κ, n), (C,w)← A(σ),

π ← P (σ,C,w) :

(C,w) ∈ Rn ∧ A(π) = 1

− Pr

 (σ, τ)← S1(1κ, n), (C,w)← A(σ),

π ← S2(σ,C, τ) :

(C,w) ∈ Rn ∧ A(π) = 1


∣∣∣∣∣∣∣

is negligible. Here, τ is the simulation trapdoor.

3 Progression-Free Sets

A set of positive integers u1, u2, . . . is progression-free [TV06], if no three of the numbers are in arithmetic
progression, so that ui + uj = 2uk only if i = j = k. Let r3(n) denote the cardinality of the largest
progression-free set that belongs to [n].
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It is well known that that for any n > 1, the next subset is progression-free:

T (n) = {1 ≤ i ≤ n : no ternary digit of i is equal to 2} .

Clearly, if n = 3k, then ]T (n) = 2k − 1, and thus r3(n) = Ω(nlog3 2). The set T (n) can also be efficiently
constructed. As shown by Behrend [Beh46], this idea can be generalized to non-ternary bases, with

r3(n) = Ω

(
n

22
√
2
√

log2 n · log
1/4
2 n

)
.

Recently, Elkin [Elk10] improved upon Behrend’s construction, by showing that

r3(n) = Ω

(
n

22
√
2
√

log2 n
· log

1/4
2 n

)
.

While both constructions employ the pigeonhole principle, Elkin’s methodology can be used to compute
the latter progression-free set in quasi-linear time O(n2O(

√
logn)) [Elk10].

On the other hand, Bourgain [Bou98] showed that r3(n) = O(n · (log n/ log log n)1/2), and very
recently Sanders [San10] showed that r3(n) = O(n · (log log n)5/ log n). Thus, according to Behrend and
Elkin, the minimal y such that r3(y) = n is y = O(n1+ε) for any ε > 0, while according to Sanders,
y = Θ(n/ log n1−o(1)).

We need all members of the progression-free subset also to be odd. For this, we prove the next
theorem, which achieves Behrend’s bound even in this case. (We can also achieve Elkin’s bound, but the
corresponding proof is much longer and thus omitted from the submitted version.)

Theorem 1. For any fixed N , there exists y = O(N1+ε), such that [y]∩ (2Z+1) contains a progression-
free subset Λ of cardinality N .

Proof. Let rodd3 (N) be the size of the largest progression-free set in [N ] that only consists of odd numbers.
Assume first that d is an integer.

Let us consider n independent random variables Y1, . . . , Yn, such that Y1 ∈ [0, d− 1] ∩ (2Z + 1) and
Yi ∈ [0, d− 1] for i > 1. Let Zi = Y 2

i and Z =
∑n
i=1 Zi. Let C = ([0, d− 1] ∩ (2Z + 1))× [0, d− 1]n−1 be

the domain of Y1 × · · · × Yn. Clearly, E(Z1) = 2
d−1 ·

∑(d−1)/2−1
j=0 (2j + 1)2 = d2

3 −
2d
3 = d2

3 + Θ(d) if d is

odd, and E(Z1) = 2
d ·
∑d/2−1
j=0 (2j + 1)2 = d2

3 −
1
3 = d2

3 +Θ(1) if d is even. Analogously,

E(Zi) =
1

d
·
d−1∑
j=0

j2 =
d2

3
+Θ(d)

for i > 0. Let µZ denote the expectation of the random variable Z. Then µZ = nd2

3 +Θ(nd). Moreover,
the variance of Zi is

var(Zi) = E(Z2
i )− E(Zi)

2 =
d4

5
+O(d3)−

(
d4

9
+O(d3)

)
=

4d4

45
+O(d3)

for i ∈ [n]. Thus,

var(Z) =
4nd4

45
+O(nd3) =

4nd4

45
· (1 +O(1/d)) ,

and the standard deviation of Z is

σZ =
2
√
n · d2

3 ·
√

5
· (1 +O(1/d)) .

Now, according to Chebyshev’s inequality, for any t > 0, Pr[|Z − µZ ] > t · σZ) ≤ 1
t2 . Thus, for a

fixed value of t > 0, at least (1− 1
t2 )-fraction of all vectors a ∈ C have squared `2-norm ||a||22 such that

µZ − t · σZ ≤ ||a||22 ≤ µZ + t · σZ .
Since every a ∈ C has an integer squared norm, then by the pigeonhole principle, there exists a value

k = K such that µZ − t · σZ ≤ K ≤ µZ + t · σZ , such that at least(
1− 1

t2

)
· 1

2tσZ + 1
· d− 1

2
· dn−1
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vectors from C have squared norm K. Let Λ′ be this set. Thus,

|Λ′| ≥
(

1− 1

t2

)
· 1

2t
√
n · d2 + 1

· 3
√

5

2
· (1−O(1/d)) · d− 1

2
· dn−1 ≥ dn−2√

n
· c

for a fixed positive small constant c = c(t).
Setting c = c(2) and d = N1/n/2, we get |Λ′| = Ω(N1−2/n/(2n

√
n)). Let us fix n =

⌈√
2 · log2N

⌉
.

Then
|Λ′| = Ω(N/(22

√
2·
√

log2N · log
1/4
2 N)) .

Since all vectors in Λ′ have the same norm
√
K, then for any three vectors a, a′, a′′′ ∈ Λ′, a+ a′ 6= a′′.

Next, we consider the coordinates of vectors from Λ′ ⊂ C as (2d)-nary digits of an integer. That is,

for a = (a1, . . . , an) ∈ Λ′, let â =
∑n−1
i=0 ai+1(2d)i. Define Λ = {â : a ∈ Λ}. Due to the choice of C, Λ

clearly only contains odd numbers. Since Λ′ ⊂ [0, d − 1]n, the mapping a 7→ â is one-to-one. Since for
every a ∈ Λ′, 0 < a′ ≤ (2d)n − 1 = N − 1, we have

|Λ| = Ω

(
N

22
√
2·
√

log2N · log
1/4
2 N

)
.

Finally, Λ is progression-free. If it were not, for some â, b̂, ĉ ∈ Λ, 2c = a+b. But then c =
∑n−1
i=0 (ai+1+

bi+1/2) · (2d)i =
∑n−1
i=0 ci+1 · (2d)i. Since all coordinates ai, bi, ci ∈ [0, d− 1], then 2ci = ai + bi for every

i. Thus also 2c = a+ b, which contradicts the assumption that ||a|| = ||b|| = ||c||. Thus, Λ is the required
progression-free set.

Finally, if d is not integer, then one considers the same construction with d replaced with b d c. The
claim holds. ut

4 New Product Argument

In an element-wise product argument, the prover aims to convince the verifier that for given three commit-
ments A1, A2 and A3, he knows how to open them as Ai = Comck(ai1, . . . , ain; ri), such that a3j = a1j ·a2j
for j ∈ [n]. In [Gro10], Groth constructed an element-wise product argument where the communication
and the verifier’s online computation are Θ(1), the verifier’s offline computation is Θ(n), and the prover’s
computation and the length of the common reference string are Θ(n2). In this section, we propose a new
argument that is closely related to that of Groth in [Gro10], but with the common reference string of
length O(n1+ε) for any ε > 0. In addition, prover’s concrete computation will be improved.

The full argument is given by Prot. 1. Intuitively, the discrete logarithm (on basis h = e(g, g)) of the
left side of the verification equation Eq. (1) in Prot. 1 is a degree-2n formal polynomial in x. That formal
polynomial has a monomial cxd with non-zero b exactly if either

1. d = 0, d = λi for some i ∈ [n], or d = λi + λj for some i, j ∈ [n] such that i 6= j, or
2. d = 2λi for some i ∈ [n].

In the first case, we say that d is a type 1 power, in the second case we say that d is a type 2 power.
The coefficients corresponding to the type 2 powers (d = 2λi for some i ∈ [n]) cancel out if and only if
a3j = a1ja2j for j ∈ [n].

The prover creates a short argument π that contains all type 1 monomials of the formal polynomial,
and the verifier checks that those two formal polynomials are equal via Eq. (1). For soundness, it is
required that the type 1 and type 2 powers do not intersect, that is, given the set Λ = {λi} of all possible
powers, 2λi 6= 0, 2λi 6= λi + λj for i 6= j, and λi 6= 0. As we show, for this it is sufficient that Λ is
a progression-free set of odd integers. To achieve soundness, the common reference string contains a

different generator ĝ, and the values ĝx
d

for type 1 powers d. If also the the second verification equation
holds, then the verifier is convinced that the π is correctly formed (i.e., the prover knows a representation
of logg π as a formal polynomial in x that has only type 1 powers), and then via the first verification
equation, the verifier is convinced that a3j = a1j · a2j for all j ∈ [n].

Theorem 2. Let Gbp be a |2.Λ|-CPDH secure bilinear group generator. Then Prot. 1 is a perfectly
complete, computationally sound, and perfectly witness-indistinguishable element-wise product argument.
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1. CRS generation Gcrs(1
κ): Let (p,G,GT , e) ← Gbp(1

κ). Choose λi > 0, i ∈ [n], such that (a) λi + λj 6=
2λk if i 6= j, and (b) 2λi 6= λj for any i, j. Let Λ = {λi}i∈[n], 2.Λ := {i+ j : i, j ∈ Λ}, and Ŝ := Λ ∪
{i+ j ∈ 2.Λ : i 6= j}. For 1 ≤ i ≤ |2.Λ|, let gi ← gx

i

. Here and in what follows, let h ← e(g, g). Choose a
random generator ĝ, and α← Zp. The common reference string is

σ =

(
p,G,GT , e, g,

{
gi
}

2≤i≤|2.Λ|
, ĝ,
{
ĝi ← ĝi

}
i∈Ŝ

)
,

moreover, ck← σ.

2. Argument generation: Given commitments Ai ← Comck(ai1, . . . , ain; ri) = (gri ·
∏n
j=1 g

aijx
λj
, ĝri ·∏n

j=1 ĝ
aijx

λj
) for i ∈ [3], the prover defines

π ←gr1r2 ·
n∏
i=1

gr1a2i+r2a1i−r3λi
·
n∏
i=1

n∏
j=1:j 6=i

g
a1ia2j−a3i
λi+λj

,

π̂ ←ĝr1r2 ·
n∏
i=1

ĝr1a2i+r2a1i−r3λi
·
∏
i

n∏
j=1:j 6=i

ĝ
a1ia2j−a3i
λi+λj

.

The prover sends (π, π̂) to the verifier as the NIZK argument.
3. Verification: the verifier accepts iff

e(A1,A2)/e(A3,
n∏
i=1

gi) =e(g, π) , and (1)

e(g, π̂) =e(ĝ, π) .

Protocol 1: New argument for element-wise product.

Proof. Completeness. The second verification is straightforward. For the first one, note that

logh e(A1,A2) =(r1 +

n∑
i=1

a1ix
λi)(r2 +

n∑
i=1

a2ix
λi) = r1r2 +

n∑
i=1

(r1a2i + r2a1i)x
λi +

n∑
i=1

n∑
j=1

a1ia2jx
λi+λj

=r1r2 +

n∑
i=1

(r1a2i + r2a1i)x
λi +

n∑
i=1

a1ia2ix
2λi +

n∑
i=1

n∑
j=1:j 6=i

a1ia2jx
λi+λj

while

logh e(A3,

n∏
i=1

gi) =(r3 +

n∑
i=1

a3ix
λi)(

n∑
i=1

xλi) = r3

n∑
i=1

xλi +

n∑
i=1

a3ix
2λi +

n∑
i=1

n∑
j=1:j 6=i

a3ix
λi+λj .

Thus

logh(e(A1,A2)/e(A3,

n∏
i=1

gi)) =r1r2 +

n∑
i=1

(r1a2i + r2a1i − r3)xλi+

n∑
i=1

(a1ia2i − a3i)x2λi +

n∑
i=1

n∑
j=1:j 6=i

(a1ia2j − a3i)xλi+λj .

If the prover is honest and a3i = a1ia2i, then

logh e(A1,A2)/e(A3,

n∏
i=1

gi) = r1r2 +

n∑
i=1

(r1a2i + r2a1i − r3)xλi +

n∑
i=1

n∑
j=1:j 6=i

(a1ia2j − a3i)xλi+λj ,

and thus

e(A1,A2)/e(A3,

n∏
i=1

gi) = hr1r2 ·
n∏
i=1

hr1a2i+r2a1i−r3λi
·
n∏
i=1

n∏
j=1:j 6=i

h
a1ia2j−a3i
λi+λj

= e(g, π) .
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Thus, if a3i = a1ia2i for i ∈ [n], then the first verification succeeds.
Soundness. For the soundness, we need that π can be represented as a product of only type 1 powers,

that is, as some powers of gλi and gλi+λj , with i 6= j. The choice of set Λ guarantees that type 1 and
type 2 powers do not intersect. The value π̂ is used to verify that the latter is true. Now, the common
reference string only contains values ĝi only for such generators. If a1j 6= a2j · a2j for some j, then there
is a non-trivial linear combination of 1, x, . . . , x|2.Λ|, and thus by Lem. 1 one has breached the q-CPDH
assumption.

Witness-Indistinguishability: follows straightforwardly from the fact that there is exactly one
possible argument (π, π̂) that satisfies the verification equations. ut

Theorem 3. Let Λ be as described in Thm. 1. Let ε > 0. The communication (argument size) of the
argument in Prot. 1 is two group elements. Prover’s computational complexity is Θ(n2) multiplications in
Zp and O(n1+ε) exponentiations in G. Verifier’s computational complexity is dominated by n− 1 offline
multiplications and 5 online bilinear pairings. The common reference string has length O(n1+ε) for any
ε > 0.

Proof. It is clear that with this choice of Λ, the size of the common reference string is Θ(|Ŝ|) = O(n1+ε).
For prover’s computation, note that π can be defined as

π ← gr1r2 ·
n∏
i=1

gr1a2i+e2a1i−r3λi
·
|2.Λ|∏
k=1

g

∑
i,j 6=i:λi+λj=k

a1ia2j−a3i
k ,

and similarly for π̂. Other statements are straightforward to prove. ut

Comparison to [Gro10]. In Groth’s product argument [Gro10], A1 and A2 are committed to by
using two different tuples of generators ((gi)i∈[n] and (gi(n+1))i∈[n], respectively). Since by multiplying
those generators together, one gets Θ(n2) intermediate generators that all have to be present in the
common reference string, Groth’s product argument requires the common reference string to be Θ(n2)
bits long. Secondly, the fact that we use the same n generators to commit to all A1, A2, and A3 means
that we can more readily reuse these commitments in different arguments. This will be seen in the new
NIZK argument for circuit satisfiability, where Groth needed an additional argument to show that some
commitments A and A′ commit to the same values but under two different generator tuples. Finally, in
Groth’s argument, the prover performed Θ(n2) exponentiations in G and Θ(n2) multiplications in Zp.
Depending on the concrete implementation, prover’s computation in the new product argument may be
significantly more efficient. The same comment applies for the new permutation argument of Sect. 5 and
also for the new argument for circuit satisfiability in Sect. 6.

5 New Permutation Argument

Assume A1 = Comck(a11, . . . , a1n; r1) = gr1 ·
∏n
j=1 g

a1j
λj

and A2 = Comck(a21, . . . , a2n; r2) = gr2 ·
∏n
j=1 g

a2j
λj

.
In a permutation argument, the prover aims to convince the verifier that for a publicly known permutation
%, a2j = a1,%(j). In [Gro10], Groth proposed a permutation argument that had similar complexity as his
product argument, including a Θ(n2)-bit long common reference string. In this section, we propose a
permutation argument that has a O(n1+ε)-bit common reference string, for any ε > 0.

The proposed permutation argument, see Prot. 2, follows the same outline as described in the begin-
ning of Sect. 4. The logarithm of the left side of the first verification equation in Prot. 2 is a degree-2n
formal polynomial in x. The set of powers of x that are present in this formal polynomial are divided
into the following two types: 1) d = λi, d = λ%(i)−λi, d = λi +λj , and d = 2λ%(j) +λi−λj for i, j ∈ [n],
i 6= j and % being an arbitrary permutation, and 2) d = 2λi. For soundness, it is thus required that those
to sets do not intersect for any permutation %; we will achieve this by choosing the set Λ carefully (in
fact, the same choice as in Sect. 4 suffices), and then including only elements g̃d, where d is a type 1
power, to the common reference string. The full argument is given in Prot. 2.

Theorem 4. Let Gbp be a |4.Λ|-CPDH secure bilinear group generator. Then Prot. 2 is a perfectly
complete, computationally sound and perfectly witness-indistinguishable non-interactive permutation ar-
gument.
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1. Common reference string generation: Set (p,G,GT , e) ← Gbp(1
κ). Let Λ = {λi} be defined exactly as

in the NIZK argument of Sect. 4, and let 3.Λ = {i+ j + k : i, j, k ∈ Λ}. Define

S̃ ← Λ ∪ {λi − λj : i, j ∈ [n]} ∪ {λi + λj : i, j ∈ [n] : i 6= j} ∪ {2λk + λi − λj : i, j, k ∈ [n], i 6= j} .

Denote β ← Zp, gi ← gx
i

, g̃i ← gβx
i

and g̃ ← g̃1. The common reference string is equal to

σ ←
(
p,G,GT , e, g, {gi}−|Λ|<i<|3.Λ| , g̃, {g̃i}i∈S̃

)
.

Moreover, ck← σ.

2. Argument generation: Given commitments Ai ← Comck(ai1, . . . , ain; ri) = (gri ·
∏n
j=1 g

aijx
λj
, g̃ri ·∏n

j=1 g̃
aijx

λj
) for i ∈ [2], and a permutation % on [n], the prover defines

π ←
n∏
i=1

gr1λi ·
n∏
i=1

gr2λ%(i)−λi ·
n∏
i=1

n∏
j=1:j 6=1

ga1iλi+λj
·
n∏
i=1

n∏
j=1:j 6=1

ga2i2λ%(j)+λi−λj
,

π̃ ←
n∏
i=1

g̃r1λi ·
n∏
i=1

g̃r2λ%(i)−λi ·
n∏
i=1

n∏
j=1:j 6=1

g̃a1iλi+λj
·
n∏
i=1

n∏
j=1:j 6=1

g̃a2i2λ%(j)+λi−λj
.

The prover sends (π, π̃) to the verifier as the argument.
3. Verification: the verifier accepts if

e(A1,

n∏
j=1

gλj )/e(A2,

n∏
j=1

gλ%(j)−λj ) = e(g, π)

and e(g, π̃) = e(g̃, π).

Protocol 2: New argument for permutation

Proof. Completeness. The second verification is straightforward. For the first verification, note that

logh e(A1,

n∏
i=1

gλi) =(r1 +

n∑
i=1

a1ix
λi)(

n∑
i=1

xλi) = r1

n∑
i=1

xλi +

n∑
i=1

a1ix
2λi +

n∑
i=1

n∑
j=1:j 6=i

a1ix
λi+λj ,

and

logh e(A2,

n∏
i=1

g2λ%(i)−λi) =(r2 +

n∑
i=1

a2ix
λi)(

n∑
i=1

x2λ%(i)−λi)

=r2

n∑
i=1

xλ%(i)−λi +

n∑
i=1

a2ix
2λ%(i) +

n∑
i=1

n∑
j=1:j 6=i

a2ix
2λ%(j)+λi−λj .

Thus,

logh

(
e(A1,

n∏
i=1

gλi)/e(A2,

n∏
i=1

gλ%(i)−λi)

)
=r1

n∑
i=1

xλi − r2
n∑
i=1

xλ%(i)−λi+

n∑
i=1

(a1,%(i) − a2i)x2λ%(i)+

n∑
i=1

n∑
j=1:j 6=i

a1ix
λi+λj −

n∑
i=1

n∑
j=1:j 6=i

a
2λ%(j)+λi−λj
2i .

If the prover is honest, that is, a2i = a1,%(i) for i ∈ [n], then

logh(e(A1,

n∏
i=1

gλi)/e(A2,

n∏
i=1

gλ%(i)−λi)) =r1

n∑
i=1

xλi − r2
n∑
i=1

xλ%(i)−λi+

n∑
i=1

n∑
j=1:j 6=i

a1ix
λi+λj −

n∑
i=1

n∑
j=1:j 6=i

a
2λ%(j)+λi−λj
2i .
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Thus, with the choice of π as in Prot. 2, the first verification equation holds.
Soundness. As long as

λi 6= 2λk ∧ λi 6= λ%(k) − λk ∧ λi 6= 2λ%(j) − λj ∧ λi 6= λj (2)

for i, j, k ∈ [n] and i 6= j, we can use a similar argument to the previous section. The first inequality
holds because Λ does not contain even numbers. For the second inequality, we need that λρ(k) 6= λk +λi.
For the third inequality, we need that 2λk 6= λi+λj for any i 6= j and any k. Both inequalities hold since
the set {λi} is progression-free. The fourth inequality holds automatically.

Thus, similarly to the previous section, we need to show that

e(A1,

n∏
j=1

gλj )/e(A2,

n∏
j=1

gλ%(j)−λj )

can be expressed as a product of some powers of gλi , gλ%(i)−λi , gλi+λj and g2λ%(j)+λi−λj . For this we
have defined a value π that cancels out all other powers of x in the exponents. Finally, π̃ is used to check
that no other powers of x are used at all. This follows from the fact that the common reference string
contains only values g̃` where either ` = λi+λj or ` = 2λk+λi−λj for some k and i 6= j. The statement
follows from Lem. 1.

Witness-Indistinguishability: follows straightforwardly from the fact that there is exactly one
possible argument (π, π̃) that satisfies the verification equations. ut

Theorem 5. Let Λ be the set from Thm. 1. Let ε > 0. The communication complexity (i.e., the argu-
ment size) of the argument in Prot. 2 is 2 group elements. Prover’s computational complexity is Θ(n2)
multiplications in Zp and O(n1+ε) exponentiations in G. Verifier’s computational complexity is domi-
nated by n − 1 offline multiplications and 5 online bilinear pairings. The common reference string has
length O(n1+ε).

Proof. Similar to the proof of Thm. 3. ut

Comparison to [Gro10]. he main difference is that instead of n generators gλi , i ∈ [n], Groth used 2n
generators gi ∈ [n] and gi(n+1) ∈ [n] and this time also their their products in the verification equations.
Since there are Θ(n2) such products that have to be given in the common reference string, the common
reference string length is Θ(n2). In the new permutation argument, there are only O(n1+ε) such products,
and thus the common reference string is also O(n1+ε). Finally, in Groth’s argument, prover’s computation
was dominated by Θ(n2) exponentiations in G.

6 New NIZK Argument for Circuit Satisfiability

In a NIZK argument for circuit satisfiability (which is well-known to be NP-complete), the prover and
the verifier share a circuit C. The prover aims to prove in non-interactive zero-knowledge that she knows
an assignment of input values that makes the circuit output 1.

We have to take some special care about the used trapdoor commitment scheme. Namely, in the
element-wise product argument and the permutation argument, the commitment keys were different,
depending on different generators ĝ and g̃, respectively. Since here we use both types of arguments with
the same commitment keys, we cannot allow it here. Similarly to Groth [Gro10], we instead introduce a
new generator g′, and use that in the commitment scheme. We will also change the element-wise product
argument and the permutation argument. In say the element-wise product argument, the common refer-
ence string now also contains (g′,

{
g′i ← (g′)i

}
i≤|2.Λ|), the argument contains an additional value π′ = πγ

(which is computed by the prover like π, but using generators g′i), and the verifier additionally checks
that e(g, π′) = e(g′, π). It is clear that this version of the element-wise product also remains secure. The
permutation argument is changed in the same way.

For the sake of simplicity, assume that the circuit is only composed of the NAND gates. Let the circuit
have n−1 gates. Assuming that the output gate of the circuit is n−1, we add on top of the circuit another
output gate n, which just NAND’s the output of the n − 1th gate with itself, Un = ¬(Un−1 ∧ Un−1).
Note that then Un = ¬Un−1 = 1− Un−1. For every gate j ∈ [n] of the resulting circuit C, let the input
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1. Common reference string generation: Set (p,G,GT , e) ← Gbp(1
κ). Define Λ, 3.Λ and Ŝ as in Prot. 1,

and S̃ as in Prot. 2. Generate random α, β, γ ← Zp. Set ĝ ← gα, g̃ ← gβ , and g′ ← gγ . Denote ĝi ← gαx
i

,

g̃i ← gβx
i

, and g′i ← gγx
i

. The common reference string is

σ ← (p,G,GT , e, g, {gi}−|Λ|<i<|3.Λ| , ĝ, {ĝi}i∈Ŝ , g̃, {g̃i}i∈S̃ , g
′,
{
g′i
}
−|Λ|<i<|3.Λ|) .

Set ck ← (p,G,GT , e, g, {gi}−|Λ|<i<|3.Λ| , g
′, {g′i}−|Λ|<i<|3.Λ|). In this argument, thus Comck(a1, . . . , an; r) :=

(gr ·
∏n
j=1 g

aj
j , (g

′)r ·
∏n
j=1(g′j)

aj ).
2. Argument:

(a) The prover generates corresponding random strings r1, . . . , r5 ← Zq, and then computes

LR←Comck(L1, . . . , Ln, R1, . . . , Rn; r1) , RL←Comck(R1, . . . , Rn, L1, . . . , Ln; r2) ,

RZ←Comck(R1, . . . , Rn, 0, . . . , 0; r3) , OZ←Comck(U1, . . . , Un, 0, . . . , 0; r4) ,

OX←Comck(U1, . . . , Un, X1, . . . , Xn; r5) .

He sends LR, RL, RZ, OZ, and OX to the verifier.
(b) The prover proves that he knows an opening of LR that consists of Boolean values, by using the element-

wise product argument, by showing that Openck(LR)2 = Openck(LR).
(c) The prover proves that LR, RL and RZ are mutually consistent:

i. Show that LR and RL are mutually consistent by a permutation argument.
ii. Show that RL and RZ are mutually consistent by showing that Openck(RZ) is an entry-wise product

of Openck(RL) and Openck(
∏n
i=1 gλi) = (1, . . . , 1, 0, . . . , 0).

(d) The prover proves that OX and OZ are mutually consistent by showing that Openck(OZ) is an entry-wise
product of Openck(OX) and Openck(

∏n−1
i=1 gλi).

(e) The prover proves that the opening of OZ is a NAND of the openings of LR and RZ, or more precisely
that Openck(

∏n−1
i=1 gλi ·OZ−1) = Openck(LR) ·Openck(RZ): by using the element-wise product argument.

(f) The prover shows that the values are internally consistent with the wires:
i. Create a permutation %′ on [2n], such that for any values Li1 , . . . , Lis , Rj1 , . . . , Rjt that correspond

to the same wire, %′ contains a cycle i1 → i2 → · · · → is → j1 + n→ · · · → jt + n→ i1.
ii. Give a permutation argumentation that Openck(LR) is related to itself by permutation %′. This shows

that Li1 = . . . Lis = Rj1 = Rjt .
(g) The prover gives a permutation argument that shows that the gate input values Openck(LR) and the

“output” values Openck(OX) are mutually consistent.

Protocol 3: New NIZK argument for circuit satisfiability

wire of its jth gate be Lj and Rj , and let Uj be one of its output wires. We let Xj be other values
that correspond to some Lk or Rk (e.g., inputs to the circuit, or duplicates of output wires). Note that
(U1, . . . , Un, X1, . . . , Xn) is chosen so that for some permutation %, (U,X) is a %-permutation of (L,R).
The argument is given by Prot. 3.

Theorem 6. Let Gbp be a |4.Λ|-CPDH and |4.Λ|-PKE secure bilinear group generator. Then Prot. 3 is
a perfectly complete, computationally sound and perfectly zero-knowledge non-interactive argument for
circuit satisfiability.

Proof. Perfect completeness: follows from the perfect completeness of the product and permutation
arguments.

Computational soundness: Let A be a non-uniform probabilistic polynomial-time adversary that
creates a circuit C and an accepting NIZK argument π. By the q-PKE assumption, there exists a non-
uniform probabilistic polynomial-time extractor XA that, running on the same input and seeing A’s
random tape, extracts all openings. From the soundness of he product and permutation arguments it
follows that by the q-CPDH assumption, the corresponding relations are satisfied between the opened
values. Moreover, by the q-CPDH assumption, the opened values belong to corresponding sets Ŝ and S̃.

Let (L1, . . . , Ln, R1, . . . , Rn) be the opening of LR and let (U1, . . . , Un, X1, . . . , Xn) be the opening of
OX. The first multiplication argument shows that Li, Ri ∈ {0, 1}. The second and the third argument
show that RZ commits to (R1, . . . , Rn, 0, . . . , 0) and is thus consistent with the opening of LR. The
fourth argument gives us that OZ commits to (U1, . . . , Un−1, Un = 0, 0, . . . , 0) which is consistent with
the opening of OX. The fifth argument proves that ¬(Li∧Ri) = Ui for i ∈ [n] while ¬(Ln∧Rn) = 0 which
shows that circuit outputs 0. The last two arguments show that the wiring of the circuit is consistent.



Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments 13

Perfect zero-knowledge: the simulator creates a correctly formed common reference string to-
gether with a simulation trapdoor, so as the trapdoor commitments can be opened to any values. When
simulating an argument, the simulator creates LR, RL, RZ, OZ and OX as commitments to (0, . . . , 0).
Due to the trapdoor, the simulator can simulate all product and permutation arguments. More precisely,
he uses Li = Ri = Ui = 1 to simulate all product and permutation arguments, except the one on step 2e
where he uses Ui = 0 instead. (Obviously, also RZ and OZ commit to (1, . . . , 1, 0, . . . , 0).) To show that
this argument π2 simulates the real argument π0, note that π0 is perfectly indistinguishable from the
simulated NIZK argument π1 where one makes trapdoor commitments but opens them to real witnesses
Li, Ri when making product and permutation arguments. On the other hand, also π1 and π2 are perfectly
indistinguishable, and thus so are π0 and π2. ut

Theorem 7. Let Λ be chosen as in Thm. 1. Let ε > 0. The communication (argument size) of the
argument in Prot. 3 is 31 group elements. Prover’s computational complexity is Θ(|C|2) multiplications
in Zp and Θ(|C|1+ε) exponentiations in G. Verifier’s computational complexity is dominated by Θ(|C|)
offline multiplications and 35 online bilinear pairings. The common reference string has length O(|C|1+ε).

Proof. Prot. 3 employs 4 element-wise product arguments, and 3 permutation arguments for knowledge
commitment. Due to Thm. 3 and Thm. 5, the argument size is 5 · 2 group elements (for commitments)
and (4 + 3)(2 + 1) = 21 group elements (for 4 + 3 basic arguments). Statements about computational
complexity and the length of the common reference string follow directly from Thm. 3 and Thm. 5. ut

Compared to Groth’s argument from [Gro10] we saved a commitment and a element-wise product
argument. This is since Groth needed to commit to (L1, . . . , Ln, R1, . . . , Rn) twice, by using two different

set of generators gx
i

and gx
i(n+1)

, needed for two multiplicands in his element-wise product argument.
Since we use the same set of generators for both multiplicands, we save also some computation.
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