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Abstract. The random oracle model and the ideal cipher model were
proven equivalent after Coron et al. (CRYPTO ’08) showed that six Feis-
tel rounds are indifferentiable from an ideal cipher. This result, however,
does not imply the inexistence of superpolynomial-time attacks outper-
forming generic (exponential-time) attacks. The finding of such attacks
was left open by Coron et al., and is of utmost importance to evaluate
the security of concrete fixed-parameters systems, as deployed in prac-
tice, for which the superpolynomial guarantee is an insufficient security
argument. In addressing this issue, this paper proposes an exponential
attack on six Feistel rounds, thus showing that at least seven rounds
are necessary for optimal security guarantees. We then consider the Lai-
Massey construction, as used in the block ciphers IDEA and FOX, for
which we present an efficient attack on four rounds and an exponential
attack on five. As a consequence, at least five Lai-Massey rounds are
necessary to achieve indifferentiability in the general model.
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1 Introduction

The Luby-Rackoff scheme is with the substitution-permutation network the most
common block cipher construction. Examples of Luby-Rackoff ciphers (hence-
forth LR ciphers) are DES, CAST5, KASUMI, RC5, or Twofish. LR ciphers
transform an internal state (L,R) through r rounds that set

(L,R)← (R,L⊕ Fi(R)), i = 1, . . . , r ,

where the Fi’s are distinct key-dependent functions. A less common construction
is the Lai-Massey (LM) scheme, whose round function transforms the state by
doing S ← Fi(L⊕R) followed by

(L,R)←
(
σ(L⊕ S), R⊕ S

)
,

where σ is a function that breaks the scheme’s symmetry. Note that LM can
achieve full diffusion in one round, against two for LR. Examples of LM ciphers
are IDEA [1] and FOX [2].



From PRPs to (super-) indifferentiability. Luby and Rackoff showed [3]
that three Feistel rounds are sufficient to construct a pseudorandom permu-
tation (PRP) and that four suffice to construct a strong PRP (sPRP) if the
Fi’s are pseudorandom. Vaudenay proved similar results for three and four LM
rounds [4]. The PRP and sPRP notions, however, fail to model the ability of
the cipher to instantiate an ideal cipher. The “right” notion for this—and more
generally, to substitute and ideal primitive by a construction based on another
ideal primitive—is that of indifferentiability [5], wherein attackers interact with
the subprimitives rather than with the main primitive.

The notion of indifferentiable construction is best illustrated by the 2005
result of Coron et al. [6], who showed that certain block cipher-based construc-
tions of hash functions can securely replace a random oracle if the block cipher
is ideal. This result implies that schemes proven secure in the random oracle
model (ROM) remain secure in the ideal cipher model (ICM).

A major progress was presented at CRYPTO 08 with Coron et al.’s proof [7]
that 6-round LR is indifferentiable from an ideal cipher. This showed that the
ROM and the ICM model rely on equivalent assumptions, and so that they are
asymptotically of equal strength.

Six Feistel rounds were proven to be necessary [7] by showing an attack on
5-round LR. Attacks with respect to indifferentiability generalize attacks under
the classical notion of indistinguishability. Roughly speaking, attacks specific
to indifferentiability efficiently find input/output pairs satisfying some “eva-
sive” property, i.e., a property provably difficult to satisfy for an ideal cipher.
Here, “efficiently” and “difficult” respectively stand for “polynomial-time” and
“superpolynomial-time”.

Nevertheless, investigating superpolynomial-time attacks that outperform
generic methods is of great practical interest, for asymptotic bounds are irrel-
evant to fixed-parameters algorithms. For example, meet-in-the-middle attacks
are exponential in nature, yet they reduce the security of three-keys Triple DES
from 168 to 112 bits, or the preimage resistance of the SHA-3 candidate hash
function CubeHash from 512 to 384 bits. Also, the devastating attacks on MD5
have complexity essentially exponential, but with a dangerously low exponent.
Exponential distinguishing attacks also significantly assist the security evalua-
tion of SHA-3 candidates. The problem of finding such exponential attacks on
6-round LR was left open by Coron et al. [7, §5].

To study that problem, we propose the term super-indifferentiability to de-
note the practice-oriented version of indifferentiability, in the spirit of Bellare
and Rogaway’s provable security framework (such a “concrete” version of indif-
ferentiability was previously defined in [8, §2]). In the super-indifferentiability
model, any method achieving a goal more efficiently than generic methods con-
stitutes an attack, and thus refutes the super-indifferentiability of the scheme
considered1

1Admittedly, the notion of super-indifferentiability (which has been previously de-
fined, but not named) is of modest theoretical interest and prone to cause technical



To our best knowledge, the most related works are the series of papers by
Patarin [9–11], which report exponential attacks on up to six LR rounds, using
the “coefficients H” technique [12]. However, these results are in the black-box
model and rely on statistical arguments rather than on the construction of eva-
sive relations in a white-box setting, as in the present work. These works thus
study the security of LR in a different attack model but reach conclusions similar
to ours.

Our results. This paper presents an algorithm that finds many solutions to
the 4-sum problem—an instance of the generalized birthday problem [13]—with
respect to 6-round LR more efficiently than the best known method [13, 14]
and that any generic attack. It follows that seven LR rounds are necessary to
achieve super-indifferentiability. As the attack runs in exponential time, it does
not contradict the indifferentiability of 6-round LR.

We then present an efficient attack on 4-round LM, and an exponential attack
on 5-round LM. Therefore, at least five (resp., six) rounds are necessary to
achieve (resp., super-) indifferentiability. To the best of our knowledge, this is
the first published analysis of the LM scheme with respect to indifferentiability.

The strategy of exponential attacks is to precompute collisions for a sub-
primitive of the construction, then to exploit freedom degrees available from
intermediate state values so as to construct multiple input/output pairs satisfy-
ing some evasive property. For 6-round LR, this property is a set of 4-sums, and
for LM a linear relation satisfied by one input/output pair.

Table 1 summarizes necessary and sufficient number of rounds to achieve
each security notion, and Fig. 1 depicts the constructions considered. We do not
claim that our attacks on LR and LM are optimal, nor that no such shortcut
attacks exist for higher number of rounds.

Table 1. Necessary and sufficient number of rounds to achieve pseudorandom-
ness (PRP), strong pseudorandomness (sPRP), indifferentiability (IND), and super-
indifferentiability (sIND). The three lower bounds are results from this paper.

Construction PRP sPRP IND sIND

Luby-Rackoff 3 [3] 4 [3] 6 [7] ≥ 7
Lai-Massey 3 [4, 15] 4 [4, 15] ≥ 5 ≥ 6

2 Attacks on Luby-Rackoff

This section presents an attack on 6-round LR. To expose our strategy, we first
show a simple attack on 5-round LR in §2.2, which we generalize in §2.3 to

difficulties when constructing security proofs. Nonetheless, it is more relevant in prac-
tice, in particular for the analysis of hash function algorithms (see, e.g., [8]).
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Fig. 1. 5-round Luby-Rackoff, 6-round Luby-Rackoff, and 5-round Lai-Massey.

attack six rounds. Note that a better, constant-time attack on 5-round LR was
described in [7].

2.1 Notations

We consider an LR construction processing 2n-bit values, thus with two n-bit
branches, with inner functions Fi : {0, 1}n → {0, 1}n. We denote the n-bit
intermediate values using the same notations as Coron et al. [7], namely L‖R for
the input values, then X, Y , Z, S for the subsequent inputs for the Fi functions,
and the output is S‖T (as depicted on Fig. 1).

2.2 Exponential attack on 5-round LR

This attacks starts by finding a collision for F3, which is done in O(2n/2) queries
to F3. One obtains Y and Y ′ such that

F3(Y ) = F3(Y ′), Y 6= Y ′ .

Let ∆ := Y ⊕ Y ′, and let X = X ′ be an arbitrary value. We denote L,R, . . . , T
the intermediate values of the (X,Y ) instance and L′, R′, . . . , T ′ those of the
(X ′, Y ′) instance (see Fig. 1). We thus have

R⊕R′ =
(
F2(X)⊕ Y

)
⊕
(
F2(X ′)⊕ Y ′

)
= ∆ .



Since Z = X ⊕ F3(Y ) = X ′ ⊕ F3(Y ′) = Z ′, we also have

S ⊕ S′ =
(
F4(Z)⊕ Y

)
⊕

(
F4(Z ′)⊕ Y ′

)
= ∆ .

Therefore, the two input/outputs (L,R)/(S, T ) and (L′, R′)/(S′, T ′) satisfy R⊕
R′ = S ⊕ S′. The complexity of our method is essentially that of finding a
collision for F3, i.e., O(2n/2).

Clearly, finding such values for an ideal cipher has complexity Θ(2n/2), using
a birthday search. Indeed, the problem is equivalent to that of finding a collision
for the function R 7→ R ⊕ E(L‖R), where E is the 5-round LR block cipher
with output truncated to S (this construction is similar to the Davies-Meyer
construction of compression functions).

We now generalize the above method: by choosing 1 < m ≤ 2n/2 distinct
values of X = X ′, one can find m pairs of input/outputs

(
(Li, Ri), (L

′
i, R
′
i)
)
,

i = 0, . . . ,m− 1, such that

R0⊕R′0 = S0⊕S′0 = R1⊕R′1 = S1⊕S′1 = · · · = Rm−1⊕R′m−1 = Sm−1⊕S′m−1 .

Since the cost of the search is dominated by that of the collision search for F3

(which needs be done only once), the complexity of finding those m pairs remains
in O(m+2n/2), whereas the complexity for an ideal cipher is inΩ(m2n/2) (tighter
bounds can be found). Our method thus sets 5-round LR apart from an ideal
cipher.

2.3 Exponential attack on 6-round LR

The attack on 6-round LR is based on the attack on five rounds, but it exploits
multiple internal collisions for two internal functions, rather than one collision
for one function. We first describe the method when exploiting one collision for
F3 and one for F4. We then generalize to p ≥ 1 collisions for F3 and q ≥ 1 for
F4, in order to attack 6-round LR

Exploiting 1+1 collisions. Let (Y, Y ′) be a collision for F3 and (Z,Z ′) a
collision for F4, with nonzero Y ⊕ Y ′ = ∆ and Z ⊕ Z ′ = ∇:

F3(Y ) = F3(Y ′)

F4(Z) = F4(Z ′) .

For each of the four (Y, Z), (Y, Z ′), (Y ′, Z), and (Y ′, Z ′), one can determine the
corresponding input to the LR construction, which we denote (L0, R0), (L1, R1),
(L2, R2), (L3, R3), respectively. Similarly, we denote outputs (Si, Ti), and other
intermediate values Xi and Ai, i = 0, . . . , 3.

Note that, for all four pairs, both F3 and F4 return the same four values:

F3(Y0) = F3(Y1) = F3(Y2) = F3(Y3)

F4(Z0) = F4(Z1) = F4(Z2) = F4(Z3) .

We thus distinguish two cases:



1. Collision for F3 with a constant Z (instances 0 and 2, 1 and 3).
2. Collision for F4 and a constant Y (instances 0 and 1, 2 and 3).

In the first case, no difference propagates to X (i.e., X0 = X2, X1 = X3), thus

R0 ⊕R2 = R1 ⊕R3 = ∆ .

In the second case, no difference propagates to A (i.e., A0 = A1, A2 = A3), thus

S0 ⊕ S1 = S2 ⊕ S3 = ∇ .

To summarize, we have four input/output pairs (Li, Ri)/(Si, Ti), i = 0, . . . , 3,
such that

R0 ⊕R1 ⊕R2 ⊕R3 = S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0 .

Note that for an ideal cipher, finding such values is equivalent to the 4-sum
problem, as considered by Wagner in [13] (see also [16]). It has previously been
shown that truncated pseudorandom permutation behave (to some extent) as
pseudorandom function [8, 17], thus the analysis made for random functions
in [13] is applicable: the generalized birthday method has complexity in O(2n/3)
time and space. Note that a lower bound for the 4-sum problem is Ω(2n/4) [13,
Th.1].

Our method is thus less efficient than Wagner’s method for finding a single
4-sum, as it runs in O(2n/2). However, we will show that it outperforms generic
methods when finding many 4-sums.

Exploiting p+q collisions. Suppose that we precompute more than one col-
lision for both F3 and F4; let p be the number of distinct colliding pairs for F3,
and q the number of colliding pairs for F4. We assume that all 2p (resp., 2q)
inputs to F3 (resp., F4) are distinct, which can be guaranteed by adapting the
generic collision search with negligible computation overhead. Note that we only
search for collisions, not multicollisions.

We now have pq distinct quadruplets (Y, Y ′, Z, Z ′) such that

F3(Y ) = F3(Y ′)

F4(Z) = F4(Z ′) .

Thus, the above method can be used to find pq distinct 4-sums in O((p+q)2n/2).
This should be compared with the best generic method known (pq applications
of the generalized birthday), with complexity O(pq2n/3) in time and O(2n/3) in
space.

The dedicated method is thus faster than the generalized birthday when

pq

p+ q
≥ 2n/6 .

In particular, if p = q our method runs in O(p2n/2), against O(p22n/3) for the
generalized birthday; it thus has lower complexity when p is greater than 2n/6.



Furthermore, when
pq

p+ q
≥ 2n/4 ,

for example when p = q = 2n/4, then our method outperform any generic attack
on an ideal cipher, as finding pq 4-sums has complexity Ω(pq2n/4). Our method
thus constitutes an attack on 6-round LR with respect to super-indifferentiability.

For example, if n = 32 as in DES, our attack outperforms the generalized
birthday if one finds 1024 collisions for F3 and F4 and exploits them to find
10242 = 220 4-sums, with complexity approximately 227, instead of approxi-
mately 230.66 with the standard method and of 228 as per the O(pq2n/4) lower
bound (note that these estimates ignore constant multiplicative factors).

3 Attacks on Lai-Massey

This section presents attacks on 4- and 5-round LM: §3.2 shows how to attack
4-round LM in O(1), then §3.3 describes an exponential attack on 5-round LM,
exploiting a collision for an inner function.

3.1 Notations

We consider a LM construction processing 4n-bit values, with inner functions
Fi : {0, 1}2n → {0, 1}2n. We view each branch as a two n-bit subbranches, and
we consider the function σ : {0, 1}n × {0, 1}n → {0, 1}n, such that

σ : (X,Y ) 7→ (Y,X ⊕ Y ) .

A similar σ function is used, e.g., in the block cipher FOX [2]. The only criterion
is that σ be an orthomorphism [4]. Note that no σ is made after the final round,
for σ is key-independent.

The initial state is denoted A = (A1, A2, A3, A4), from left to right, and
subsequent intermediate states are denoted B, C, etc. (see Fig. 1).

3.2 Efficient attack on 4-round LM

This attack starts by selecting an arbitrary intermediate state C = (C1, C2, C3, C4),
and an arbitrary nonzero n-bit value ∆. We then consider the four states

C1 = (C1, C2, C3, C4)

C2 = C1 ⊕ (∆, 0, ∆, 0)

C3 = C1 ⊕ (0, ∆,∆, 0)

C4 = C1 ⊕ (∆,∆, 0, 0) .

These states thus satisfy

C1 ⊕ C2 = C3 ⊕ C4 = (∆, 0, ∆, 0)

C1 ⊕ C3 = C2 ⊕ C4 = (0, ∆,∆, 0) .



Hence, the value entering F3 is (C1 ⊕ C3)‖(C2 ⊕ C4) for both C1 and C2, and
is (C1 ⊕ C3 ⊕∆)‖(C2 ⊕ C4 ⊕∆) for both C3 and C4. It follows that, after the
third round, the four respective states D1, . . . , D4 satisfy

D1 ⊕D2 = D3 ⊕D4 = (0, ∆,∆, 0) .

Since the fourth round adds a same difference to the first and to the third n-bit
component of the state, we have

E1
1 ⊕ E1

3 ⊕ E2
1 ⊕ E2

3 = E1
2 ⊕ E1

4 ⊕ E2
2 ⊕ E2

4 = ∆

E3
1 ⊕ E3

3 ⊕ E4
1 ⊕ E4

3 = E3
2 ⊕ E3

4 ⊕ E4
2 ⊕ E4

4 = ∆ .

Going backwards from C, the value entering F2 is (C1⊕C2⊕C3)‖(C1⊕C4) for
both C1 and C3, and is (C1 ⊕ C2 ⊕ C3)‖(C1 ⊕ C4 ⊕ ∆) for both C2 and C4.
Thus, the states B1, . . . , B4 before the second round satisfy

B1 ⊕B3 = B2 ⊕B4 = (∆, 0, ∆, 0) .

After inverting the orthomorphism following the first round, we reach differences
(∆,∆,∆, 0) between the intermediate states of instances 1 and 3, and of instances
2 and 4. After inverting the first round, we thus obtain initial states A1, . . . , A4

such that

A1
1 ⊕A1

3 ⊕A3
1 ⊕A3

3 = A2
1 ⊕A2

3 ⊕A4
1 ⊕A4

3 = 0

A1
2 ⊕A1

4 ⊕A3
2 ⊕A3

4 = A2
2 ⊕A2

4 ⊕A4
2 ⊕A4

4 = ∆ .

To summarize, we found four input/output pairs that satisfy 8n bit condi-
tions, on both their inputs and their outputs. Clearly, realizing such a property
for an ideal cipher requires exponential time, whereas our method runs in con-
stant time. Note that the difference ∆ can be chosen, contrary to the attacks on
LR presented in §2.

3.3 Exponential attack on 5-round LM

For some arbitrary B = (B1, B2, B3, B4), let ∆ and ∇ be nonzero values and
define

B′ = B ⊕ (∆,∇, ∆,∇) .

We thus have after the second round C and C ′ such that

C ′ = C ⊕ (∇, ∆⊕∇, ∆,∇) .

The difference entering F3 is thus (∆⊕∇, ∆). The attack consists in searching
for values of ∆ and ∇ such that

F3

(
(C1 ⊕ C3)‖(C2 ⊕ C4)

)
⊕ F3

(
(C ′1 ⊕ C ′3)‖(C ′2 ⊕ C ′4)

)
= (∆⊕∇, ∆) ,

which implies that a same input enters F4 for both D and D′, since

D ⊕D′ = (∆,∆⊕∇, ∆,∆⊕∇) .



By the birthday paradox, finding ∆ and ∇ satisfying the 2n bit conditions on
F3’s output needs Ω(2n) queries to F3. Indeed, the problem is equivalent to that
of finding a collision for the function X 7→ F3(X)⊕X, which can be done with
standard (memoryless) collision search techniques.

Observe that, once a solution is found, one can determine 22n distinct values
of B such that B and B′ have the desired difference (∆,∇, ∆,∇), and such that
a collision occurs for F3.

Once B, ∆, and ∇ have been chosen, we have after the fourth round

E ⊕ E′ = (∇, ∆,∆,∆⊕∇) .

The final states F and F ′ after the fifth round thus satisfy

F1 ⊕ F ′1 ⊕ F3 ⊕ F ′3 = ∆⊕∇
F2 ⊕ F ′2 ⊕ F4 ⊕ F ′4 = ∇ .

Going backwards from B and B′, we obtain difference (∆ ⊕ ∇, ∆,∆,∇) after
inverting σ. It follows that A and A′ satisfy

A1 ⊕A′1 ⊕A3 ⊕A′3 = ∇ = F2 ⊕ F ′2 ⊕ F4 ⊕ F ′4
A2 ⊕A′2 ⊕A4 ⊕A′4 = ∆⊕∇ = F1 ⊕ F ′1 ⊕ F3 ⊕ F ′3

We thus found two input/ouput pairs A/F and A′/F ′ satisfying the above
relation. Clearly, finding such pairs for an ideal cipher is in Θ(2n), thus our
O(2n) method does not constitute an attack. However, observe that by exploit-
ing 1 ≤ m ≤ 22n distinct values of B and a single collision for X 7→ F3(X)⊕X,
our method can be used to find m distinct input/output pairs satisfying the
relation in O(m+ 2n). For comparison, for an ideal cipher, the optimal strategy
is to reiterate the generic attack and thus finding m such input/output pairs
costs Θ(m2n).

4 Conclusion

We showed that six Feistel rounds admit an exponential-time attack, which does
not contradict the result of indifferentiability in the general model, but shows
that this scheme is unideal, and thus may not provide optimal security. A same
result was found for five Lai-Massey rounds, which were proven necessary (but
not sufficient nor insufficient) for general indifferentiability. Our work thus leaves
the following questions unanswered:

– Are there better exponential attacks on 6-round LR and 5-round LM (e.g.,
exploiting 3-collisions [18] for the inner functions)?

– How many LM rounds are necessary and sufficient to achieve indifferentia-
bility?

– How many LM and LR rounds are necessary and sufficient to achieve super-
indifferentiability (i.e., the “concrete” version of indifferentiability, not based
on the polynomial vs. superpolynomial dichotomy)?

We plan to address those issues in a sequel to this work.
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