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Abstract

We construct the first homomorphic signature scheme that is capable of evaluating multivariate
polynomials on signed data. Given the public key and a signed data set, there is an efficient algorithm
to produce a signature on the mean, standard deviation, and other statistics of the signed data. Previous
systems for computing on signed data could only handle linear operations. For polynomials of constant
degree, the length of a derived signature only depends logarithmically on the size of the data set.

Our system uses ideal lattices in a way that is a “signature analogue” of Gentry’s fully homomorphic
encryption. Security is based on hard problems on ideal lattices similar to those in Gentry’s system.

Keywords. Homomorphic signatures, ideals, lattices.

1 Introduction

While recent groundbreaking work has shown how to compute arbitrary functions on encrypted data [16, 35,
41], far less is known about computing functions on signed data.

Informally, the problem of computing on signed data is as follows. Alice has a numerical data set
m1, . . . ,mk of size k (e.g., final grades in a course with k students). She independently signs each da-
tum mi, but before signing she augments mi with a tag and an index. More precisely, Alice signs the
triple (“grades”,mi, i) for i = 1, . . . , k and obtains k independent signatures σ1, . . . , σk. Here the string
“grades” is the tag used in all signatures and i is the index of mi in the data set. For convenience, write
~σ := (σ1, . . . , σk). The data set and the k signatures are stored on some untrusted remote server.

Later, the server is asked to compute authenticated functions of the data, such as the mean or standard
deviation of subsets of the data. To compute a function f , the server uses an algorithm Evaluate(pk, ·, f, ~σ)
that uses ~σ and f to derive a signature σ on the triple(

“grades”, m := f(m1, . . . ,mk), 〈f〉
)

(1.1)

where 〈f〉 is an encoding of the function f , i.e. a string that uniquely describes the function. Note that
Evaluate does not need the original messages — it only acts on signatures. Now, (m,σ) can be published
and anyone can check that the server correctly applied f to the data set by verifying that σ is a signature on
the triple (1.1). The pair (m,σ) can then be used to derive further signatures on functions of m and other
signed data. We give precise definitions of the syntax and security in the next section.
∗Supported by NSF.
†Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
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Our focus here is on functions that perform arithmetic operations on the data set, such as mean, standard
deviation, and other data mining algorithms. Current methods for computing on signed data can handle only
linear functions [24, 10, 42, 6, 15, 5]. In these systems, given k independently signed vectors v1, . . . ,vk
defined over some finite field Fp, anyone can compute a signature on any vector v in the Fp-linear span of
{v1, . . . ,vk}, and no one without the secret key can compute a signature on a vector v outside this span. The
original motivation for these linear schemes comes from network coding [13].

In this paper we present the first signature system that supports computing polynomial functions on signed
data. Specifically, our system supports multivariate polynomials of bounded degree. For a constant-degree
polynomial with bounded coefficients, the length of a derived signature only depends logarithmically on
the size of the data set. Thus, for example, given a signed data set as input, anyone can compute a short
signature on the mean, standard deviation, least squares fit, and other functions of subsets of the data. Note
that computing standard deviation requires only a quadratic multivariate polynomial while other applications,
discussed in Section 2.4, may require cubic or higher degree polynomials. While our system intrinsically
computes on data defined over a finite field Fp, it can be used to compute on data defined over the integers by
choosing a sufficiently large field size p.

As a “warm-up” to our main result, we describe in Section 4 a linearly homomorphic scheme that is
built using the same underlying ideas as our polynomial scheme. Interestingly, this construction gives a
homomorphic system over F2 that allows linear functions of many more inputs than the best previous such
system [5]. In Section 6 we show how replacing the random lattices in the linear scheme with ideal lattices
leads to a polynomially homomorphic scheme — our main result. In Section 7 we describe an abstract
signature scheme that incorporates the properties of both of these instantiations. We prove the security of our
abstract scheme and show how our proof specializes to the concrete instantiations.

We note that a trivial solution to computing on signed data is to have the server send the entire data set to
the client along with all the signatures, and have the client compute the function itself. With our constructions
only the output of the function is sent to the client along with a short signature. Beyond the bandwidth
savings, this also limits the amount of information revealed to the client about the data set, as formalized in
the next section.

Related work. Before delving into the details, we mention the related work on non-interactive proofs [27,
40, 19] where the prover’s goal is to output a certificate proving that a certain statement is correct. Micali’s
computationally sound (CS) proofs [27] can solve the problem discussed above as follows: Alice signs the
data set D and sends the data set and the signature σ to the server. Later, for some function f , the server
publishes a triple

(
σ, t := f(D), π

)
where π is a short proof that there exists a D for which σ is a valid

signature and for which t = f(D). This triple convinces anyone that t is the result of applying f to the data
set D provided by Alice. The construction of π uses the full machinery of the PCP theorem and soundness is
in the random oracle model. By allowing interaction Kilian [23] achieves the same without the random oracle
model. Note that computational soundness is sufficient in these settings since the server is given signed data
and is therefore already assumed to be computationally bounded.

Our approach eliminates the proof π. The server only publishes a pair (σ′, t := f(D)
)

where σ′ is
derived from σ and authenticates both t and f . Constructing σ′ is straight forward and takes about the same
work as computing f(D). Moreover, anyone can further compute t′ := g(t) = g(f(D)) for some function g
and use σ′ to derive a signature on t′ and the function g(f(·)). While further computation can also be done
with CS proofs [40] it is much simpler with homomorphic signatures.

More recently Goldwasser et al. [19] and Gennaro et al. [14] show how to outsource computation securely.
In both [14] and [19] (in the non-interactive settings) the interaction between the server and the client is
tailored to the client and the client uses a secret key to verify the results. In our settings the server constructs
a publicly verifiable signature on the result and anyone can verify that signature using Alice’s public key.
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We also mention another line of related work that studies “redactable” signatures [38, 22, 20, 4, 31, 30, 9,
8, 7, 1]. These schemes have the property that given a signature on a message, anyone can derive a signature
on subsets of the message. Our focus here is quite different — we look at computing arithmetic functions on
independently authenticated data, rather than computing on a subset of a single message.

1.1 Overview of our techniques

The intersection method. Our system uses two n-dimensional integer lattices Λ1 and Λ2. The lattice Λ1

is used to sign the data (e.g., a student’s grade or the result of a computation), while the lattice Λ2 is used to
sign a description of the function f applied to the data. The message space for these signatures is Zn/Λ1,
which for the lattices we consider is simply a vector space over Fp for some prime p.

A signature in our system is a short vector σ in Zn in the intersection of Λ1 + u1 and Λ2 + u2 for some
u1,u2 ∈ Zn. In other words, we have σ = u1 mod Λ1 and σ = u2 mod Λ2. Loosely speaking, this single
signature σ “binds” u1 and u2 — an attacker cannot generate a new short vector σ′ from σ such that σ = σ′

mod Λ1 but σ 6= σ′ mod Λ2. We refer to this method of jointly signing two vectors u1 and u2 as the
intersection method.

More precisely, let τ be a tag, m be a message, and 〈f〉 be an encoding of a function f . A signature σ
on a triple (τ,m, 〈f〉) is a short vector in Zn satisfying σ = m mod Λ1 and σ = ωτ (〈f〉) mod Λ2. Here
ωτ is a hash function defined by the tag τ that maps (encodings of) functions to vectors in Zn/Λ2. This ωτ
not only must preserve the homomorphic properties of the system, but also must enable simulation against
a chosen-message adversary. Note that the Λ1 component of the signature σ is essentially the same as a
Gentry-Peikert-Vaikuntanathan [18] signature on the (unhashed) message m.

It is not difficult to see that these signatures are additively homomorphic. That is, let σ1 be a signature on
(τ,m1, 〈f1〉) and let σ2 be a signature on (τ,m2, 〈f2〉). With an appropriate hash function ωτ we can ensure
that σ1 + σ2 is a signature on

(
τ, m1 +m2, 〈f1 + f2〉

)
. If we set Λ1 = (2Z)n, we obtain a more efficient

linearly homomorphic signature over F2 than previously known [5].
Now let g ∈ Z[x] be a polynomial of degree n and let R be the ring Z[x]/(g). Then R is isomorphic to

Zn and ideals in R correspond to integer lattices in Zn under the “coefficient embedding.” We choose our
two lattices Λ1 and Λ2 to be prime ideals p and q in R and a signature on the triple (τ,m, f) to be a short
element in R such that σ = m mod p and σ = ωτ (〈f〉) mod q. With this setup, let σ1 and σ2 be signatures
on (τ,m1, 〈f1〉) and (τ,m2, 〈f2〉) respectively. Then for an appropriate function ωτ ,

σ1 + σ2 is a signature on
(
τ, m1 +m2, 〈f1 + f2〉

)
and

σ1 · σ2 is a signature on
(
τ, m1 ·m2, 〈f1 · f2〉

)
.

More generally, we can evaluate any bounded degree polynomial with small coefficients on signatures. In
particular, the quadratic polynomial v(m1, . . . ,mk) :=

∑k
i=1(kmi −

∑k
i=1mi)

2 that computes a fixed
multiple of the variance can easily be evaluated this way. Anyone can calculate the standard deviation from
v(m1, . . . ,mk) and k by taking a square and dividing by k.

Our use of ideal lattices is a signature analogue of Gentry’s somewhat homomorphic system [16]. Ideal
lattices also appear in the lattice-based public key encryption schemes of Stehle et al. [37] and Lyubashevsky,
Peikert, and Regev [26] and in the hash functions of Lyubashevsky and Micciancio [25].

Unforgeability. Loosely speaking, a forgery under a chosen message attack is a valid signature σ on
(τ,m, 〈f〉) such that m 6= f(m1, . . . ,mk), where m1, . . . ,mk is the data set signed using tag τ . We show
that a successful forger can be used to solve the Small Integer Solution (SIS) problem in the lattice Λ2, which
for random q-ary lattices and suitable parameters is as hard as standard worst case lattice problems [29]. For
ideal lattices we use the ideal structure to obtain a solution to the Shortest Independent Vectors Problem
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(SIVP) for the (average case) distribution of lattices produced by our key generation algorithm. As with
other linearly homomorphic signature schemes, our security proofs are set in the random oracle model. The
random oracle is used to simulate signatures for a chosen message attacker.

Privacy. For some applications it is desirable that derived signatures be private. That is, if σ is a signature
on a message m derived from signatures on messages m1, . . . ,mk, then σ should reveal no information about
m1, . . . ,mk beyond what is revealed by m. Using similar techniques to those in [5], it is not difficult to show
that our linearly homomorphic signatures satisfy a privacy property called weak context hiding defined in [5].
This amounts to proving that the distribution obtained by summing independent discrete Gaussians depends
only on the coset of the sum as shown in [5].

Interestingly, we are currently unable to show that our polynomially homomorphic signature is private.
The fundamental problem is that there are fewer ways for a signature σ ∈ R to factor into a product of two
elements in R than there are ways for a message m ∈ Fp to factor into two elements of Fp. Therefore, the
product σ = σ1 · σ2 ∈ R leaks information about the constituents σ1 and σ2 and thus also about the original
messages. It is an open problem either to design a polynomially homomorphic signature scheme that is also
private, or to show that our scheme is private under some reasonable computational assumption.

Length efficiency. We require that derived signatures are not much longer than the original signatures from
which they were derived (we state this precisely in the next section). All of our constructions are length
efficient.

2 Homomorphic Signatures: Definitions and Applications

Informally, a homomorphic signature scheme consists of the usual algorithms KeyGen, Sign,Verify as well
as an additional algorithm Evaluate that “translates” functions on messages to functions on signatures. If ~σ is
a valid set of signatures on messages ~m, then Evaluate(f, ~σ) should be a valid signature for f(~m).

To prevent mixing of data from different data sets when evaluating functions, the Sign, Verify, and
Evaluate algorithms take an additional “tag” as input. The tag serves to bind together messages from the
same data set. One could avoid the tag by requiring that a new public key be generated for each data set, but
simply requiring a new tag for each data set is more convenient.

Formally, a homomorphic signature scheme is as follows:

Definition 2.1. A homomorphic signature scheme is a tuple of probabilistic, polynomial-time algorithms
(Setup, Sign,Verify,Evaluate) with the following functionality:

• Setup(1n, k). Takes a security parameter n and a data set size k. Outputs a public key pk and a secret
key sk. The public key pk defines a message spaceM, a signature space Σ, and a set F of “admissible”
functions f : Mk →M.

• Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ M and an index i ∈
{1, . . . , k}, and outputs a signature σ ∈ Σ.

• Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}n, a message m ∈M, a signature σ ∈ Σ,
and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

• Evaluate(pk, τ, f, ~σ). Takes a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F , and a tuple of
signatures ~σ ∈ Σk, and outputs a signature σ′ ∈ Σ.
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Let πi : Mk →M be the function that projects onto the ith component; i.e., πi(m1, . . . ,mk) = mi. We
require that for every pk output by Setup(1n, k), we have πi ∈ F for i = 1, . . . , k.

For correctness, we require that for each (pk, sk) output by Setup(1n, k), the following hold:

1. For all tags τ ∈ {0, 1}n, all m ∈M, and all i ∈ {1, . . . , k},
if σ ← Sign(sk, τ,m, i), then Verify(pk, τ,m, σ, πi) = 1.

2. For all τ ∈ {0, 1}n, all tuples ~m = (m1, . . . ,mk) ∈Mk, and all functions f ∈ F ,
if σi ← Sign(sk, τ,mi, i), then

Verify
(
pk, τ, f(~m), Evaluate

(
pk, τ, f, (σ1, . . . , σk)

)
, f
)

= 1.

We say that a signature scheme as above is F-homomorphic, or homomorphic with respect to F .

While the Evaluate algorithm in our schemes can take as input derived signatures themselves produced
by Evaluate, doing so for a large number of iterations may eventually reach a point where the input signatures
to Evaluate are valid, but the output signature is not. Therefore, to simplify the discussion we limit the
correctness property to require only that Evaluate produce valid output when given as input signatures ~σ
produced by the Sign algorithm.

2.1 Unforgeability

The security model for homomorphic signatures allows an adversary to make adaptive signature queries on
data sets of his choosing, each containing (up to) k messages, with the signer randomly choosing the tag τ
for each data set queried. Eventually the adversary produces a message-signature pair (m∗, σ∗) as well as an
admissible function f and a tag τ∗. The winning condition captures the fact that there are two distinct types
of forgeries. In a type 1 forgery, the pair (m∗, σ∗) verifies for some data set not queried to the signer; this
corresponds to the usual notion of signature forgery. In a type 2 forgery, the pair (m∗, σ∗) verifies for some
data set that was queried to the signer, but for which m∗ does not equal f applied to the messages queried; in
other words, the signature authenticates m∗ as f(~m) but in fact this is not the case.

Our security model requires that all data in a data set be signed at once; that is, the adversary cannot
request signatures on new messages m after seeing signatures on other messages in the same data set.

Definition 2.2. A homomorphic signature scheme S = (Setup, Sign,Verify,Evaluate) is unforgeable if
for all k and all probabilistic polynomial-time adversaries A, the advantage of A in the following game is
negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk to A. The public key defines a
message spaceM, a signature space Σ, and a set F of admissible functions f : Mk →M.

Queries: Proceeding adaptively, A specifies a sequence of data sets ~mi ∈ Mk. For each i, the challenger
chooses τi uniformly from {0, 1}n and gives to A the tag τi and the signatures σij ← Sign(sk, τi,mij , j) for
j = 1, . . . , k.

Output: A outputs a tag τ∗ ∈ {0, 1}n, a message m∗ ∈M, a function f ∈ F , and a signature σ∗ ∈ Σ.

The adversary wins if Verify(pk, τ∗,m∗, σ∗, f) = 1, and either

(1) τ∗ 6= τi for all i (a type 1 forgery), or

(2) τ∗ = τi for some i but m∗ 6= f(~mi) (a type 2 forgery).

The advantage of A is defined to be the probability that A wins the security game.
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2.2 Privacy

Privacy in this settings means that given signatures on a data set ~m ∈Mk, the derived signatures on messages
f1(~m), . . . , fs(~m) do not leak any information about ~m beyond what is revealed by f1(~m), . . . , fs(~m). Note
that we are not trying to hide the fact the derivation took place; we are merely hiding the original data set ~m.

More precisely, as in [5] we define privacy for homomorphic signatures using a variation of a definition
from [8]. The definition captures the idea that given signatures on a number of messages derived from two
different data sets, the attacker cannot tell which data set the derived signatures came from and this holds
even if the secret key is leaked. The concept is similar to witness indistinguishability [12] where we treat the
original data set as the witness. We call signatures with this privacy property weakly context hiding. The
reason for “weak” is that we are not hiding the fact that derivation took place and we assume the original
signatures are not public. Ahn et al. [1] define a stronger notion of privacy, called strong context hiding, that
requires that derived signatures be distributed as independent fresh signatures on the same message; this
requirement ensures privacy even if the original signatures are exposed.

Definition 2.3. A homomorphic signature scheme S = (Setup,Sign,Verify,Evaluate) is weakly context
hiding if for any fixed value of k, the advantage of any probabilistic, polynomial-time adversary A in the
following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk and sk to A. The public key defines
a message spaceM, a signature space Σ, and a set F of admissible functions f : Mk →M.

Challenge: A outputs (~m∗0, ~m
∗
1, f1, . . . , fs) where ~m∗0, ~m

∗
1 ∈ Mk. The functions f1, . . . , fs are in F and

satisfy
fi
(
~m∗0
)

= fi
(
~m∗1
)

for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag τ ∈ {0, 1}n. It signs the
messages in ~m∗b using the tag τ to obtain a vector ~σ of k signatures. Next, for i = 1, . . . , s the challenger
derives a signature σi on fi(~m∗b) from ~σ. It sends σ1, . . . , σs to A. Note that the functions f1, . . . , fs can be
output adaptively after ~m∗0, ~m

∗
1 are output.

Output: A outputs a bit b′.

The adversary A wins the game if b = b′. The advantage of A is the probability that A wins the game.

Winning the context hiding game means that the attacker was able to determine whether the challenge
signatures were derived from signatures on ~m∗0 or from signatures on ~m∗1. We say that the signature scheme
is s-weakly context hiding if the attacker cannot win the privacy game after seeing s signatures derived from
~m∗0 or ~m∗1.

2.3 Length efficiency

We say that a homomorphic signature scheme is length efficient if for a fixed security parameter n, the length
of derived signatures depends only logarithmically on the size k of the data set. More precisely, we have the
following:

Definition 2.4. Let S = (Setup,Sign,Verify,Evaluate) be a homomorphic signature scheme. We say that
S is length efficient if there is some function µ : N→ R such that for all (pk, sk) output by Setup(1n, k), for
all m̄ = (m1, . . . ,mk) ∈Mk

pk, for all tags τ ∈ {0, 1}n, and all functions f ∈ F , if

σi ← Sign(pk, τ,mi, i) for i = 1, . . . , k, and σ̄ := (σ1, . . . , σk)

6



then the derived signature σ output by Evaluate(pk, τ, f, ~σ) has bit length at most

len(σ) ≤ µ(n) · log k

with overwhelming probability for all k > 0.1

A trivial scheme. A trivial construction is one where algorithm Evaluate outputs the function f along with
all of the message-signature pairs in the source data set.2 The recipient can then evaluate the function f for
himself from the originally signed data. Unlike our constructions, this scheme is not length efficient since the
length of derived signatures is linear in the data set size. Moreover, the scheme is not context hiding since a
derived signature reveals everything about the original data set.

2.4 Applications

Before describing our constructions we first examine a few applications for computing on signed data. In the
Introduction we discussed applications to computing statistics on signed data, and in particular the examples
of mean and standard deviation. Here we discuss more complex data mining algorithms on data sets.

Least squares fit. Recall that given an integer d ≥ 0 and a data set {(xi, yi)}ki=1 consisting of k pairs of
real numbers, the degree d least squares fit is a polynomial f ∈ R[x] of degree d that minimizes the quantity∑k

i=1(yi − f(xi))
2. The vector of coefficients of f is denoted by ~f and is given by the formula

~f = (XTX)−1XT~y ∈ Rd+1,

where X ∈ Rk×(d+1) is the Vandermonde matrix of the xi, whose jth column is the vector (xj−1
1 , . . . , xj−1

k )
and ~y is the column vector (y1, . . . , yk). The degree d is usually small, e.g. d = 1 for a least squares fit with
a line.

Using homomorphic signatures, a server can be given a signed data set, where each data point is
individually signed, and derive from it a signature on the least squares fit f (or more precisely, a signature on
the vector of coefficients ~f ). The length of the derived signature is proportional to the degree d, which is
much smaller than the number of data points k. If the signatures are private, then the derived signature on f
reveals nothing about the original data set beyond what is revealed by f .

We consider two types of data sets. In the first type, the x-coordinates are universal constants in Z and
need not be signed. For example, the data set might contain the temperature on each day of the year, in which
case the x-coordinates are simply the days of the year and need not be explicitly included in the data. Only
the y-coordinates are signed. Then the least squares fit is simply a linear function of ~y, namely ~f := A · ~y
for some fixed matrix A. The signature on ~f can be derived using any linearly homomorphic signature
scheme. One complication is that our schemes sign integer values, while the matrix A will in general contain
non-integer values even if the data are pairs of integers. However, if we factor out the denominator and write
A = A′/c for some integer matrix A′ and scalar c, then the linearly homomorphic signature enables the
server to derive a signature on A′~y, and anyone can divide A′~y by c to obtain ~f .

The second type of data set is where both the x-coordinate and the y-coordinate are signed. More precisely,
an integer data set {(xi, yi)}ki=1 is signed by signing all 2k values separately to obtain 2k signatures. The
server is given the data set and these 2k signatures. Using a homomorphic signature scheme for polynomials
of degree d2 + d+ 1 over the integers, the server can derive a signature on the least squares fit as follows.

1See Section 3 for a technical definition of “overwhelming.”
2Strictly speaking, Evaluate is not given the source messages as input. However, the signing algorithm in a trivial construction

can embed a message inside the signature on that message so that Evaluate obtains all the source messages from their signatures.
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First, the server derives signatures on the entries of the integer matrix B := XTX ∈ Z(d+1)×(d+1). A
straightforward computation shows that the degrees of the entries of B in the variables xi are

deg(Bij) =


0 1 · · · d
1 2 · · · d+ 1
...

...
. . .

...
d d+ 1 · · · 2d

 , (2.1)

Now let c := det(B). It follows from (2.1) that each term in the computation of c has degree d(d+ 1) in the
variables xi, and thus the server can compute a signature on c if the signature scheme is homomorphic for
polynomials of degree d2 + d.

Next, the matrix cB−1, known as the adjugate of B [36, p. 117], is an integer matrix whose (i, j)th
entry is (−1)i+j times the determinant of the (j, i)th minor of B. The degrees of the entries of cB−1 in the
variables xi are thus

deg((cB−1)ij) =


d2 + d d2 + d− 1 · · · d2

d2 + d− 1 d2 + d− 2 · · · d2 − 1
...

...
. . .

...
d2 d2 − 1 · · · d2 − d

 .

Since the jth row of XT has degree j − 1 in the xi, we see that the entries of the matrix cB−1XT have
degree at most d2 + d in the xi. Thus if the signature scheme is homomorphic for polynomials of degree
d2 + d+ 1, the server can compute a signature on each entry of the integer vector v := cB−1XT~y ∈ Zd+1.

The signature on the least squares fit consists of the signature on c and the signatures on the entries of v.
Anyone can then compute ~f := v/c to obtain the least squares fit ~f . The server ends up publishing a vector
v ∈ Zd+1 and a scalar c ∈ Z along with these d+ 2 signatures. In particular, for a least squares fit using a
line it suffices for the signature to be homomorphic for cubic polynomials; the final signature is a signature
on three integer scalars. Note that this method is not private since it reveals c, which is more information
about the original data set than is revealed by ~f

In summary, linearly homomorphic signatures are sufficient when the x-coordinates are absolute constants
and polynomially homomorphic signatures are needed for general data sets.

More advanced data mining. If we had fully homomorphic signatures (i.e., supporting arbitrary com-
putation on signed data) then an untrusted server could run more complex data mining algorithms on the
given data set. For example, given a signed data set, the server could publish a signed decision tree (e.g., as
generated by the ID3 algorithm [33]). Length efficiency means that the length of the resulting signature is
proportional to the size of the decision tree rather than the size of the data set. If the signatures were private,
then publishing the signed decision tree would leak no other information about the original data set.

3 Preliminaries

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. When q is prime, Zq is a
field denoted Fq. We let Z`×nq denote the set of `× n matrices with entries in Zq.We say a function f(n) is
negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We say f(n)
is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of n. We
say an event occurs with overwhelming probability if its probability is 1− negl(n). The function lg x is the
base 2 logarithm of x.
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Lattices. An n-dimensional lattice Λ is a full-rank discrete subgroup of Rn. We will often be interested
in integer lattices Λ, i.e., those whose points have coordinates in Zn. Among these lattices are the “q-ary”
lattices defined as follows: for any integer q ≥ 2 and any A ∈ Z`×nq , we define3

Λ⊥q (A) :=
{
e ∈ Zn : A · e = 0 mod q

}
Λu
q (A) :=

{
e ∈ Zn : A · e = u mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥q (A); namely, Λu

q (A) = Λ⊥q (A) + t for any t such that A · t = u mod q.

The Gram-Schmidt norm of a basis. Let S be a set of vectors S = {s1, . . . , sk} in Rm. We use the
following standard notation:

• ‖S‖ denotes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖.

• S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S. Micciancio and Goldwasser [28] showed that a full-rank set
S in a lattice Λ can be converted into a basis T for Λ with an equally low Gram-Schmidt norm:

Lemma 3.1 ([28, Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a deterministic polynomial-time
algorithm that, given an arbitrary basis of Λ and a full-rank set S = {s1, . . . , sm} in Λ, returns a basis T of
Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√
m/2.

Ajtai [2] and later Alwen and Peikert [3] showed how to sample an essentially uniform matrix A ∈ Zn×mq

along with a basis S of Λ⊥q (A) with low Gram-Schmidt norm.

Theorem 3.2 ([3, Theorem 3.2] with δ = 1/3.). Let q, `, n be positive integers with q ≥ 2 and n ≥ 6` lg q.
There is a PPT algorithm TrapGen(q, `, n) that outputs a pair (A ∈ Z`×nq , S ∈ Zn×n) such that A is
statistically close to a uniform in Z`×nq and S is a basis for Λ⊥q (A), satisfying

‖S̃‖ ≤ O(
√
` log q ) and ‖S‖ ≤ O(` log q)

with all but negligible probability in `.

Gaussian distributions. Let L be a subset of Zn. For any vector c ∈ Rn and any positive parameter
σ ∈ R>0, let ρσ,c(x) := exp

(
−π‖x− c‖2/σ2

)
be a Gaussian function on Rn with center c and parameter

σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c overL, and letDL,σ,c be the discrete Gaussian
distribution over L with center c and parameter σ. In particular, for all y ∈ L, we have DL,σ,c(y) =

ρσ,c(y)
ρσ,c(L) .

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ, respectively.
Gentry, Peikert, and Vaikuntanathan [18] construct algorithms for sampling from discrete Gaussians.

Theorem 3.3.

(a) [18, Theorem 4.1] There is a probabilistic polynomial-time algorithm SampleGaussian that, given
a basis T of an n-dimensional lattice Λ, a parameter σ ≥ ‖T̃‖ · ω(

√
log n), and a center c ∈ Rn,

outputs a sample from a distribution that is statistically close to DΛ,σ,c.

3We use matrices of dimension `× n, rather than the more common n×m, in order to ensure that all of the lattices we discuss
are n-dimensional, as well as to reserve the variable m for messages being signed.
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(b) [18, Theorem 5.9] There is a probabilistic polynomial-time algorithm SamplePre that, given a basis
T of an n-dimensional lattice Λ, a parameter σ ≥ ‖T̃‖ · ω(

√
log n), and a vector t ∈ Rn, outputs a

sample from a distribution that is statistically close to DΛ+t,σ.

Algorithm SamplePre(A,T, t, σ) simply calls SampleGaussian(T, σ,−t) and adds t to the result. For
Gaussians centered at the origin, we use SampleGaussian(T, σ) to denote SampleGaussian(T, σ,0). We
use the notation SampleGaussian(Zn, σ) to denote sampling from the lattice Zn with a basis consisting of
the m unit vectors.

The smoothing parameter. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parame-
ter ηε(Λ) of Λ is defined to be the smallest positive s such that ρ1/s(Λ

∗ \ {0}) ≤ ε [29]. The key property of
the smoothing parameter is that if σ > ηε(Λ), then every coset of Λ has roughly equal mass. The following
lemma bounds the smoothing parameter:

Lemma 3.4 ([18, Lemma 3.1]). For any n-dimensional lattice Λ and any basis B of Λ, there is a negligible
ε(n) for which ηε(Λ) ≤ ‖B̃‖ · ω(

√
log n).

For random q-ary lattices Λ⊥q (A) (with q prime) there is a much better bound:

Lemma 3.5 ([18, Lemma 5.3]). Let q be a prime and `, n integers such that n ≥ 2` lg q. Let f be some
ω(
√

log n) function. Then there is a negligible function ε(n) such that for all but at most a q−` fraction of A
in Z`×nq we have ηε(Λ⊥q (A)) < f(n).

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian. The
result follows from [29, Lemma 4.4], using Lemma 3.4 to bound the smoothing parameter.

Lemma 3.6 ([29, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose
σ ≥ ‖T̃‖ · ω(

√
log n). Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

The privacy property of our linearly homomorphic scheme will depend on the fact that the distribution of
a linear combination of samples from a discrete Gaussian is itself a discrete Gaussian. The following theorem
makes this statement precise.

Theorem 3.7 ([5, Theorem 4.13]). Let Λ ⊆ Zm be a lattice and σ ∈ R. For i = 1, . . . , k let ti ∈ Zm and let
Xi be mutually independent random variables sampled from DΛ+ti,σ. Let c = (c1, . . . , ck) ∈ Zk, and define

g := gcd(c1, . . . , ck), t :=
∑k

i=1 citi.

Suppose that σ > ‖c‖ ·ηε(Λ) for some negligible ε. Then Z =
∑k

i=1 ciXi is statistically close toDgΛ+t,‖c‖σ.

We will also need a generalization of Theorem 3.7 to multivariate distributions. For a matrix A ∈ Zs×k
of rank s, define

µ(A) :=
√

det(AAT) .

If A has rank less than s then to define µ(A) we first define a matrix Ā as follows: scan the rows of A from
first to last adding a row to Ā only if it is linearly independent of the rows already in Ā. Then Ā is a maximal
subset of linearly independent rows of A, and we define µ(A) := µ(Ā).
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Theorem 3.8 ([5, Theorem 4.14]). Let Λ be an m-dimensional lattice, A ∈ Zs×k and T ∈ Zk×m. Let X be
a k ×m random matrix whose rows are mutually independent and whose ith row is distributed as DΛ+ti,σ

where ti is the ith row of T . Furthermore, suppose that σ > µ(A) ηε(Λ) for some negligible ε.

Then the random variable AX is statistically close to a distribution parametrized by Λ, σ, A, and AT .

Theorem 3.8 shows that AX depends on the matrix T only via the quantity AT . Consequently, if X1

and X2 are random variables defined as X in the theorem, but using matrices T1 and T2 respectively, then
AX1 is statistically close to AX2 whenever AT1 = AT2. Theorem 3.7 is a special case where s = 1.

Uniformity of discrete Gaussians. Let Λ1 and Λ2 be two lattices in Zn such that Λ1 + Λ2 = Zn. We will
need the following fact which shows that a discrete Gaussian sampled from Λ1 is close to uniform in Zn/Λ2.

Lemma 3.9. Let Λ1,Λ2 be n-dimensional lattices. Then for any ε ∈ (0, 1
2), and σ ≥ νε(Λ1 ∩ Λ2), and any

c ∈ Rn, the distribution (DΛ1,σ,c mod Λ2) is within statistical distance at most 2ε of the uniform distribution
over (Λ1 + Λ2)/Λ2.

Proof. By [18, Corollary 2.8], the distribution of (DΛ1,σ,c mod Λ1 ∩ Λ2) is within statistical distance at
most 2ε of uniform over Λ1/(Λ1 ∩ Λ2). By the Second Isomorphism Theorem for abelian groups [11, Ch. 3,
Theorem 18], Λ1/(Λ1 ∩ Λ2) ∼= (Λ1 + Λ2)/Λ2. Hence, there is a one-to-one correspondence between cosets
of Λ1 ∩ Λ2 in Λ1 and cosets of Λ2 inside of Λ1 + Λ2.

Now, for some v ∈ Λ1 let Iv ⊆ Λ1 be the coset (Λ1 ∩ Λ2) + v in Λ1. Let Jv ⊆ Zn be the coset Λ2 + v
of Λ2 in Λ1 + Λ2. Then

Jv ∩ Λ1 = Iv (3.1)

To see why this is true, first observe that all u ∈ Iv are in Λ1 and in Λ2 + v = Jv by definition, proving
containment in one direction. Second, observe that since v ∈ Λ1, all w ∈ (Λ2 + v) ∩ Λ1 satisfy w − v ∈
Λ1 ∩ Λ2. Therefore w ∈ Iv, proving containment in the other direction, and (3.1) follows.

By definition we know that {Iv}v∈Λ1 contains all the cosets of Λ1 ∩ Λ2 in Λ1. Therefore, by the one-
to-one correspondence, {Jv}v∈Λ1 must contain all the cosets of Λ2 in Λ1 + Λ2. By (3.1), the distribution
DΛ1,σ,c assigns the same weight to Jv as to Iv. But then, since DΛ1,σ,c is statistically close to uniform over
{Iv}v∈Λ1 , it follows that DΛ1,σ,c is also statistically close to uniform over {Jv}v∈Λ1 , as required.

Complexity assumption. We define a generalization of the now-standard Small Integer Solution (SIS)
problem, which is to find a short nonzero vector in a certain class of lattices.

Definition 3.10. Let L = {Ln} be a distribution ensemble of integer lattices, where lattices in Ln have
dimension n. An instance of the L-SISn,β problem is a lattice Λ ← Ln. A solution to the problem is a
nonzero vector v ∈ Λ with ‖v‖ ≤ β.

IfB is an algorithm that takes as input a lattice Λ, we define the advantage ofB, denotedL-SIS-Adv[B, (n, β)],
to be the probability that B outputs a solution to an L-SISn,β problem instance Λ chosen according to the
distribution Ln.

We say that the L-SISn,β problem is infeasible if for all polynomial-time algorithms B, we have
L-SIS-Adv[B, (n, β)] = negl(n).

When Ln consists of Λ⊥q (A) for A ∈ Z`×nq , the L-SISn,β problem is the standard SISq,n,β problem defined
by Micciancio and Regev [29]. For this distribution of lattices, an algorithm that solves the L-SISn,β problem
can be used to solve worst-case problems on arbitrary lattices [29, §5].
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4 Homomorphic Signatures for Linear Functions over Small Fields

As a “warm-up” to our polynomially homomorphic scheme, we describe a signature scheme that can
authenticate any linear function of signed vectors defined over small fields Fp. Previous constructions can
only achieve this functionality for vectors defined over large fields [10, 6] or for a small number of vectors [5].
In particular, our scheme easily accommodates binary data (p = 2). Linearly homomorphic signatures over
F2 are an example of a primitive that can be built from lattices, but cannot currently be built from discrete-log
or RSA-type assumptions (see e.g. the discussion in [5]). In Appendix A we describe a variant of the scheme
in which the data can take values in large fields Fp.

Security is based on the SIS problem on q-ary lattices for some prime q; this problem reduces to standard
worst-case problems on arbitrary lattices [29]. The system in this section is only secure for small p, specifically
p = poly(n) with p ≤ √q/(nk) for data sets of size k.

Overview of the scheme. Since our system builds on the “hash-and-sign” signatures of Gentry, Peikert,
and Vaikuntanathan [18], let us recall how GPV signatures work in an abstract sense. The public key is a
lattice Λ ⊂ Zn and the secret key is a short basis of Λ. To sign a message m, the secret key holder hashes m
to an element H(m) ∈ Zn/Λ and samples a short vector σ from the coset of Λ defined by H(m). To verify
σ, one checks that σ is short and that σ mod Λ = H(m).

Recall that in a homomorphic signature scheme we wish to authenticate triples (τ,m, 〈f〉), where τ is a
“tag” attached to a data set, m in Fnp is a message, and 〈f〉 is an encoding of a function f acting on k-tuples
of messages. We encode a linear function f : (Fnp )k → Fnp defined by f(m1, . . . ,mk) =

∑k
i=1 cimi by

interpreting the ci as integers in (−p/2, p/2] and defining 〈f〉 := (c1, . . . , ck) ∈ Zk.
To authenticate both the message and the function as well as bind them together, we compute a single

GPV signature that is simultaneously a signature on the (unhashed) message m ∈ Fnp and a signature on a
hash of 〈f〉.

This dual-role signature is computed via what we call the “intersection method,” which works as follows.
Let Λ1 and Λ2 be n-dimensional integer lattices with Λ1 + Λ2 = Zn. Suppose m ∈ Zn/Λ1 is a message and
ωτ is a hash function (depending on the tag τ ) that maps encodings of functions f to elements of Zn/Λ2.
Since the message m defines a coset of Λ1 in Zn and the hash ωτ (〈f〉) defines a coset of Λ2 in Zn, by the
Chinese remainder theorem the pair

(
m, ωτ (〈f〉)

)
defines a unique coset of Λ1 ∩ Λ2 in Zn. We can thus

use a short basis of Λ1 ∩ Λ2 to compute a short vector in this coset; i.e., a short vector σ with the property
that σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉). The vector σ is a signature on (τ,m, 〈f〉).

The Sign(sk, τ,m, i) algorithm uses the procedure above to generate a fresh signature on the triple
(τ,m, 〈πi〉) where πi is the ith projection function defined by πi(m1, . . . ,mk) = mi and encoded as
〈πi〉 = ei, the ith unit vector in Zk.

The homomorphic property is now obtained as follows. To authenticate the linear combination m =∑k
i=1 cimi for integers ci, we compute the signature σ :=

∑k
i=1 ciσi. If k and p are sufficiently small, then σ

is a short vector. Furthermore, we have

σ mod Λ1 =
∑k

i=1 cimi = m and σ mod Λ2 =
∑k

i=1 ciωτ (〈πi〉) =
∑k

i=1 ciωτ (ei).

Now suppose that ωτ is linearly homomorphic, namely
∑k

i=1 ciωτ (ei) = ωτ ((c1, . . . , ck)) for all c1, . . . , ck
in Z. Then since (c1, . . . , ck) is exactly the encoding of the function f defined by f(m1, . . . ,mk) =∑k

i=1 cimi, the signature σ authenticates both the message m and the fact that it was computed correctly
(i.e., via f ) from the original messages m1, . . . ,mk.

We now describe the construction concretely. Let p and q be distinct primes, let Λ1 = pZn, and let
Λ2 = Λ⊥q (A) for some A ∈ F`×nq . Messages are elements of Zn/Λ1

∼= Fnp , with the isomorphism given
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explicitly by the map x 7→ (x mod Λ1) that reduces the coefficients of x modulo p. The hash function ωτ
takes values in Zk and outputs elements in Zn/Λ2

∼= F`q. Now given vectors m ∈ Fnp and ωτ (〈f〉) ∈ F`q, it is
easy for anyone to compute an element t ∈ Zn of the corresponding coset of Λ1 ∩ Λ2, namely

t mod Λ1 = m and t mod Λ2 = ωτ (〈f〉) .

If we have a short basis of Λ1 ∩ Λ2, then we sign (τ,m, f) by using SamplePre to sample a short vector
from the coset (Λ1 ∩ Λ2) + t.

Finally, we define the hash function ωτ . LetH : {0, 1}∗ → (F`q) be a hash function, and set αi := H(τ‖i)
for i = 1, . . . , k. Then for a function f encoded as 〈f〉 = (c1, . . . , ck) ∈ Zk, we define

ωτ (〈f〉) :=
k∑
i=1

ciαi ∈ F`q ∼= Zn/Λ2 .

In particular, we have ωτ (ei) = αi, and
∑
ciωτ (ei) = ωτ ((c1, . . . , ck)), which is the property we needed to

ensure that the scheme is homomorphic.

The linearly homomorphic scheme. We now give a formal description of the scheme.

Setup(1n, k). On input a security parameter n and a data set size k, do the following:
1. Choose two primes p, q = poly(n) with q ≥ (nkp)2. Define ` := bn/6 log qc.
2. Set Λ1 := pZn.
3. Use TrapGen(q, `, n) to generate a matrix A ∈ F`×nq along with a short basis Tq of Λ⊥q (A).

Define Λ2 := Λ⊥q (A) and T := p ·Tq. Note that T is a basis of Λ1 ∩ Λ2 = pΛ2.
4. Set ν := p ·

√
n log q · log n.

5. Let H : {0, 1}∗ → (F`q) be a hash function (modeled as a random oracle).
6. Output the public key pk := (Λ1,Λ2, ν, k,H) and the secret key sk = T.

The public key pk defines the following system parameters:
• The message space is Fnp and signatures are short vectors in Zn.
• The set of admissible functions F is all Fp-linear functions on k-tuples of messages in Fnp .
• For a function f ∈ F defined by f(m1, . . . ,mk) =

∑k
i=1 cimi, we encode f by interpreting the ci as

integers in (−p/2, p/2] and defining 〈f〉 = (c1, . . . , ck) ∈ Zk.
• To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , ck) ∈ Zk, do the following:

(a) For i = 1, . . . , k, compute αi ← H(τ‖i) in F`q.
(b) Define ωτ (〈f〉) :=

∑k
i=1 ciαi ∈ F`q.

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp , and an index i, do:
1. Compute αi := H(τ‖i) ∈ F`q. Then, by definition, ωτ (〈πi〉) = αi.
2. Compute t ∈ Zn such that t mod p = m and A · t mod q = αi.
3. Output σ ← SamplePre(Λ1 ∩ Λ2,T, t, ν) ∈ (Λ1 ∩ Λ2) + t .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp , a signature σ ∈ Zn,
and a function f ∈ F , do:

1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):
(a) ‖σ‖ ≤ k · p2 · ν

√
n.

(b) σ mod p = m.
(c) A · σ mod q = ωτ (〈f〉).
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Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, . . . , ck) ∈ Zk, and a tuple of signatures σ1, . . . , σk ∈ Zn, output σ :=

∑k
i=1 ciσi.

Lemma 4.1. The linearly homomorphic signature scheme defined above is correct with overwhelming
probability.

Proof. Let τ ∈ {0, 1}n, m ∈ Fnp , and i ∈ {1, . . . , k}, and set σ ← Sign(sk, τ,m, i). We check the three
verification conditions relative to the projection function πi defined by πi(m1, . . . ,mk) = mi and encoded
as 〈πi〉 = ei.

(a) By Theorem 3.2, we have ‖T̃‖ ≤ O(p ·
√
` log q), and therefore ν ≥ ‖T̃‖ ·ω(

√
log `). By Lemma 3.6,

we have ‖σ‖ ≤ ν
√
n with overwhelming probability.

(b) By correctness of SamplePre, we have σ ∈ (Λ1∩Λ2)+t, and thus σ mod p = t mod p. By definition
of t, we have t mod p = m.

(c) As above, we have σ ∈ (Λ1∩Λ2)+t. Since Λ2 = Λ⊥q (A), we have A ·σ mod q = A ·t mod q = αi.
By our definition of ωτ , we have ωτ (〈πi〉) = αi.

Now let τ ∈ {0, 1}n, ~m = (m1, . . . ,mk) ∈ (Fnp )k, and f ∈ F encoded as 〈f〉 = (c1, . . . , ck) ∈ Zk. Let
~σ = (σ1, . . . , σk) with σi ← Sign(sk, τ,mi, i). Then by our definition of Evaluate, we have

σ′ := Evaluate(pk, τ, f, ~σ) =
∑

i ciσi

We check the three verification conditions for the signature σ′ on the message f(~m), relative to the function f .

(a) Since |ci| ≤ p/2 for all i, we have that with overwhelming probability,

‖σ′‖ ≤ k · p
2
·max{‖σi‖ : σi ∈ ~σ} ≤ k · p

2
· ν
√
n,

where the second inequality follows from Lemma 3.6.

(b) By correctness of individual signatures, we have σi mod p = mi for i ∈ {1, . . . , k}. We thus have

σ′ mod p =
∑
i

ciσi mod p =
∑
i

cimi = f(~m).

(c) By correctness of individual signatures, we have A · σi mod q = αi for i ∈ {1, . . . , k}. It follows that

A · σ′ mod q =
∑
i

A · ciσi mod q =
∑
i

ciαi mod q = ωτ (〈f〉).

4.1 Length efficiency

With overwhelming probability, signatures output by Sign(sk, ·, ·, ·) have norm at most ν
√
n and therefore

bit length at most n lg(ν
√
n). As we saw in the proof of Lemma 4.1, applying Evaluate to a linear function

f : (Fnp )k → Fnp and k signatures generated by Sign outputs a signature σ whose norm is at most k · p2 · ν
√
n

with high probability. Therefore, the bit length of the derived signature σ satisfies

len(σ) ≤ n lg k + n lg
(p

2
· ν
√
n
)
.

Since the bit length of the derived signature depends logarithmically on k, we conclude that the scheme is
length efficient.
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4.2 Unforgeability

We will show that an adversary that forges a signature for the linearly homomorphic scheme can be used to
compute a short vector in the lattice Λ2 computed in Step 3. By Theorem 3.2, the distribution of matrices A
used to define Λ2 is statistically close to uniform over F`×nq . Thus the distribution of lattices Λ2 output by
Setup is statistically close to the distribution of challenges for the SISq,n,β problem (for any β). Our security
theorem is as follows.

Theorem 4.2. If SISq,m,β is infeasible for β = k ·p2 ·n log n
√

log q, then the linearly homomorphic signature
scheme defined above is unforgeable.

The proof of this theorem is given in Section 7.3. In particular, Theorem 4.2 is a special case of Theorem 7.4
which proves unforgeability of an abstract homomorphic signature system.

Worst-case connections. By [18, Proposition 5.7], if q ≥ β · ω(
√
n log n), then the SISq,m,β problem is

as hard as approximating the SIVP problem in the worst case to within β · Õ(
√
n) factors. Our requirement

in the Setup algorithm that that q ≥ (nkp)2 guarantees that q is sufficiently large for this theorem to apply.
While the exact worst-case approximation factor will depend on the parameters k and p, it is polynomial in n
in any case.

Comparison with prior work. Boneh and Freeman [5] describe a linearly homomorphic signature scheme
that can authenticate vectors over Fp for small p, with unforgeability also depending on the SIS problem.
However, for their system to securely sign k messages, the SISq,m−k,β problem must be difficult for β =
Õ(k3/2k!nk/2+1), and therefore their system is designed to only sign a constant number of vectors per data
set (k = O(1)) while maintaining a polynomial connection to worst-case lattice problems. On the other hand,
for the same value of q our system remains secure when signing k = poly(n) vectors per data set.

4.3 Privacy

We now show that our linearly homomorphic signature scheme is weakly context hiding. Specifically, we
use Theorem 3.7 to show that a derived signature on a linear combination m′ =

∑k
i=1 cimi depends (up to

negligible statistical distance) only on m′ and the ci, and not on the initial messages mi. Consequently, even
an unbounded adversary cannot win the privacy game in Definition 2.3. To prove privacy when multiple
derived signatures are revealed we need the generalization of Theorem 3.7 given in Theorem 3.8.

Theorem 4.3. Suppose that ν defined in the Setup algorithm satisfies ν > p(pk)s ω(
√

log n). Then the
linearly homomorphic signature scheme described above is s-weakly context hiding for data sets of size k.

Proof. We follow the argument of [5, Theorem 5.4] which is an unconditional argument for weak context
hiding. In the privacy game, let (~m∗0, ~m

∗
1, f1, . . . , fs) be the adversary’s output in the challenge phase, where

~m∗0 and ~m∗1 contain k messages each. For convenience we treat ~m∗b as a matrix in Fk×np whose j’th row is
message number j in ~m∗b . We know that

mi := f
(
~m∗0) = f

(
~m∗1) ∈ Fnp for all i = 1, . . . , s. (4.1)

Let Λ := Λ1 ∩ Λ2 and let τ be the tag used to answer the challenge. For j = 1, . . . , k, let σ(0)
j and σ(1)

j be
the challenger’s signatures (in Zn) on the vectors in ~m∗0 and ~m∗1, respectively. We arrange these signatures in
two matrices E(0), E(1) ∈ Zk×n so that row j of E(b) is (σ

(b)
j )T ∈ Zn.
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For i = 1, . . . , s let d(b)
i be a derived signature on mi computed using the Evaluate algorithm applied

to the signatures {σ(b)
j }1≤j≤k and the function fi. Again, we arrange these derived signatures in two

matrices D(0), D(1) ∈ Zs×n so that row i of D(b) is (d
(b)
i )T ∈ Zn. The challenger chooses a bit b and gives

the adversary the signatures D(b). We show that the derived signatures D(0) and D(1) are sampled from
statistically close distributions so that the adversary cannot guess b with non-negligible advantage.

By definition of algorithm Evaluate there is a matrix F ∈ Zs×k such that D(b) = FE(b) for b = 0, 1.
Row i of F is determined by the function fi and is equal to ωτ (〈fi〉) so that all the entries of F are in
(−p/2, p/2]. By (4.1) we know that F ~m∗0 = F ~m∗1 (where we identify Z ∩ (−p/2, p/2] with Fp).

Suppose b = 0. By definition of algorithm Sign every signature σ(0)
i is sampled from a distribution

statistically close to DΛ+ti,ν where ti is the vector computed in Step (2) of the Sign algorithm, namely
ti mod Λ1 = m∗0,i and ti mod Λ2 = ωτ (〈πi〉). All these signatures are mutually independent and therefore,
by Theorem 3.8, the derived signatures D(0) = FE(0) are statistically close to a distribution parametrized
by Λ, σ, F, F ~m∗0 (note that the rows of m∗0 describe cosets of Λ so that m∗0 plays the same role as the
matrix T in Theorem 3.8). Since the same holds for b = 1 and since F ~m∗0 = F ~m∗1 we see that D(0) and
D(1) are statistically close. Consequently, even an unbounded adversary cannot win the privacy game with
non-negligible advantage.

It remains to argue that ν is sufficiently large to apply Theorem 3.8 to FE(b), namely that ν > µ(F )ηε(Λ)
for some negligible ε and where µ(F ) is defined in Theorem 3.8. First, recall that the determinant of a matrix
is less than the product of the norms of its rows. Therefore, since the entries of F are in (−p/2, p/2], it is not
difficult to see that µ(F ) ≤ (pk)s.

Second, since Λ = Λ1 ∩ Λ2 = pZn ∩ Λ2 = pΛ2, Lemma 3.5 shows that with overwhelming probability
we have ηε(Λ) = p ηε(Λ2) < p ω(

√
log n) for negligible ε. Combining these two bounds and the bound on ν

we obtain
µ(F )ηε(Λ) ≤ p(pk)s ω(

√
log n) < ν

as required for Theorem 3.8.

Remark 4.4. The exponential dependence on s in Theorem 4.3 shows that for the parameter ν defined in
the Setup algorithm, the scheme is private only when few derived signatures are revealed. If instead we
require Setup to use a ν such that ν > p(pk)k ω(

√
log n) then the scheme is weakly context hiding when an

arbitrary number of derived signatures are revealed. Of course, making ν so large forces us to increase the
parameter β in Theorem 4.2 thus weakening the unforgeability property.

5 Background on Ideal Lattices

A number field is a finite-degree algebraic extension of the rational numbers Q. Any number field K can
be represented as Q[x]/(f(x)) for some monic, irreducible polynomial f(x) with integer coefficients (and
there are infinitely many such f ). The degree of a number field K is its dimension as a vector space over Q,
and is also the degree of any polynomial f defining K. For any given f , the set {1, x, x2, . . . , xdeg f−1} is
a Q-basis for K, and we can therefore identify K with Qn by mapping a polynomial of degree less than n
to its vector of coefficients. By identifying K with Qn using this “coefficient embedding,” we can define a
length function ‖·‖ on elements of K simply by using any norm on Qn. This length function is non-canonical
— it depends explicitly on the choice of f used to represent K. (Here all norms will be the `2 norm unless
otherwise stated.)

Our identification of K = Q[x]/(f(x)) with Qn induces a multiplicative structure on Qn in addition to
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the usual additive structure. We define a parameter

γf := sup
u,v∈K

‖u · v‖
‖u‖ · ‖v‖

.

This parameter bounds how much multiplication can increase the length of the product, relative to the product
of the length of the factors. For our applications we will need to have γf = poly(n). If n is a power of 2,
then the function f(x) = xn + 1 has γf ≤

√
n (cf. [16, Lemma 7.4.3]). We will think of this f(x) as our

“preferred” choice for applications.

Number rings and ideals. A number ring is a ring whose field of fractions is a number field K. A survey
of arithmetic in number rings can be found in [39]; here we summarize the key points.

Every number field has a subring, called the ring of integers and denoted by OK , that plays the same role
with respect to K as the integers Z do with respect to Q. The ring of integers consists of all elements of K
whose characteristic polynomials have integer coefficients. Under the identification of K with Qn, the ring
OK forms a full-rank discrete subgroup of Qn; i.e., a lattice. Inside OK is the subring R = Z[x]/(f(x)).
Under our identification of K with Qn, the ring R corresponds to Zn. In general R is a proper sublattice
of OK .

An (integral) ideal of R is an additive subgroup I ⊂ R that is closed under multiplication by elements
of R. By our identification of R with Zn, the ideal I is a sublattice of R and is therefore also called an ideal
lattice. Note that this usage of “ideal lattice” to refer to a rank one R-module differs from that of [37, 25],
which use the terminology to refer to R-modules of arbitrary rank.

An ideal I ⊂ R is prime if for x, y ∈ R, xy ∈ I implies either x ∈ I or y ∈ I . If p is a prime ideal,
then R/p is a finite field Fpe ; the integer e is the degree of p and the prime p is the characteristic of p. An
ideal I is principal if it can be written as α ·R for some α ∈ R. In general most ideals are not principal; the
proportion of principal ideals is 1 over the size of the class group of R, which is exponential in n. The norm
of an ideal I is the size of the (additive) group R/I .

If p is a prime ideal of R, then by a theorem of Kummer and Dedekind [39, Theorem 8.2] we can
write p = p · R + h(x) · R for some polynomial h(x) whose reduction mod p is an irreducible factor of
f(x) mod p. Writing p in this “two-element representation” makes it easy to compute the corresponding
quotient map Z[x]/(f(x)) → Fpe ; we simply reduce a polynomial in Z[x] modulo both p and h(x). In
particular, if p is a degree-one prime, then h(x) = x− α for some integer α and the quotient map is given by
z(x) 7→ z(α) mod p.

Generating ideals with a short basis. If we are to use ideals as the lattices Λ1 and Λ2 in our abstract
signature scheme, we will need a method for generating ideals p and q in R along with a short basis for p ∩ q
(which is equal to p · q if p and q are relatively prime ideals). Furthermore, our security proof requires that
given q without a short basis, we can still compute a prime p with a short basis.

In our initial construction, we generate the ideals using an algorithm of Smart and Vercauteren [35].
This algorithm generates a principal prime ideal p along with a short generator g of p. We can multiply g
by powers of x to generate a full-rank set of vectors {g, xg, x2g, . . . , xn−1g} that spans a sublattice of p.
Since ‖x‖ = 1, we have ‖xig‖ ≤ γf · ‖g‖, so if γf is small then these vectors are all short. We can then use
Lemma 3.1 to produce a short basis for p.

Theorem 5.1 ([35, §3.1]). There is an algorithm PrincGen that takes input a monic irreducible polynomial
f(x) ∈ Z[x] of degree n and a parameter δ, and outputs a principal degree-one prime ideal p = (p, x− a)
in K := Q[x]/(f(x)), along with a generator g of p satisfying ‖g‖ ≤ δ

√
n.
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The algorithm works by sampling a random g with low norm and seeing if it generates a prime ideal
inOK . Smart and Vercauteren do not give a rigorous analysis of the algorithm’s running time, but heuristically
we expect that by the number field analogue of the Prime Number Theorem [32, Theorem 8.9], we will find a
prime ideal after trying O(n log n log δ) values of g.

6 Homomorphic Signatures for Polynomial Functions

In this section we describe our main construction, a signature scheme that authenticates polynomial functions
on signed messages.

Recall the basic idea of our linearly homomorphic scheme from Section 4: messages are elements of
Zn mod Λ1, functions are mapped (via the hash function ωτ ) to elements of Zn mod Λ2, and a signature on
(τ,m, 〈f〉) is a short vector in the coset of Λ1 ∩ Λ2 defined by m and ωτ (〈f〉). To verify a signature σ, we
simply confirm that σ is a short vector and that

σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉).

Our polynomial system is based on the following idea: what if the lattice Zn has a ring structure and the
lattices Λ1,Λ2 are ideals? Then the maps x 7→ (x mod Λi) are ring homomorphisms, and therefore adding
or multiplying signatures corresponds to adding or multiplying the corresponding messages and functions.
Since any polynomial can be computed by repeated additions and multiplications, adding this structure to our
lattices allows us to authenticate polynomial functions on messages.

Concretely, we let F (x) ∈ Z[x] be a monic, irreducible polynomial of degree n. We define the number
field K = Q[x]/(F (x)) and let OK be the lattice in Qn corresponding (via the coefficient embedding) to
the ring of integers of K. We now let Λ1 and Λ2 be (degree one) prime ideals p, q ⊂ OK of norm p, q
respectively. We fix an isomorphism from OK/p to Fp by representing p as pOK + (x− a)OK and mapping
h(x) ∈ OK to h(a) mod p ∈ Fp, and similarly for OK/q ∼= Fq. We can now sign messages exactly as in
the linearly homomorphic scheme.

In our linearly homomorphic scheme we used the projection functions πi as a generating set for admissible
functions, and we encoded the function f =

∑
ciπi by its coefficient vector (c1, . . . , ck) (with the ci

interpreted as integers in (−p/2, p/2]). When we consider polynomial functions on Fp[x1, . . . , xk], the
projection functions πi are exactly the linear monomials xi, and we can obtain any polynomial function by
adding and multiplying monomials. If we fix an ordering on all monomials of the form xe11 · · ·x

ek
k , we can

encode any polynomial function as its vector of coefficients, with the unit vectors ei representing the linear
monomials xi for i = 1, . . . , k.

The hash function ωτ is defined exactly as in our linear scheme: for a function f in Fp[x1, . . . , xk] whose
encoding is 〈f〉 = (c1, . . . , c`) ∈ Z`, we define a polynomial f̂ ∈ Z[x1, . . . , xk] that reduces to f mod p. We
then define ωτ (〈f〉) = f̂(α1, . . . , αk), where αi ∈ Fq are defined to be H(τ, i) for some hash function H .

We use the same lifting of f to f̂ ∈ Z[x1, . . . , xk] to evaluate polynomials on signatures; specifically,
given a polynomial f and signatures σ1, . . . , σk ∈ K on messages m1, . . . ,mk ∈ Fp, the signature on
f(m1, . . . ,mk) is given by f̂(σ1, . . . , σk).

Recall that for v1,v2 ∈ OK , the length of v1 · v2 is bounded by γF · ‖v1‖ · ‖v2‖. Thus if we choose
F (x) so that γF is polynomial in n, then multiplying together a constant number of vectors of length poly(n)
produces a vector of length poly(n). It follows that the derived signature f(σ1, . . . , σk) is short as long as the
degree of f is bounded and the coefficients of f are small (when lifted to the integers). The system therefore
can support polynomial computations on messages for polynomials with small coefficients and bounded
degree.
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The polynomially homomorphic scheme. We now give a formal description of the scheme.

Setup(1n, k). On input a security parameter n and a data set size k, do the following:
1. Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree n with γF = poly(n).

Let K := Q[x]/(F (x)) be embedded in Qn via the coefficient embedding.
Let R = Zn be the lattice corresponding Z[x]/(F (x)) ⊂ OK .

2. Run the PrincGen algorithm twice on inputs F, n to produce distinct principal degree-one prime ideals
p = (p, x− a) and q = (q, x− b) of R with generators gp, gq, respectively.

3. Apply the algorithm of Lemma 3.1 to the set {gpgq, gpgqx, . . . , gpgqxn−1} to produce a basis T of p ·q.
4. Define ν := γ2

F · n3 log n. Choose positive integers y = poly(n) and d = O(1).
5. Let H : {0, 1}∗ → Fq be a hash function (modeled as a random oracle).
6. Output the public key pk = (F, p, q, a, b, ν, y, d,H) and the secret key sk = T.

The public key pk defines the following system parameters:
• The message space is Fp and signatures are short vectors in R.
• The set of admissible functions F is all polynomials in Fp[x1, . . . , xk] with coefficients in {−y, . . . , y},

degree at most d, and constant term zero. The quantity y is only used in algorithm Verify.
• Let ` =

(
k+d
d

)
− 1. Let {Yj}`j=1 be the set of all non-constant monomials xe11 · · ·x

ek
k of degree∑

ei ≤ d, ordered lexicographically.4 Then any polynomial function f ∈ F is defined by f(~m) =∑`
j=1 cjYj(~m) for cj ∈ Fp. We interpret the cj as integers in [−y, y] and encode f as 〈f〉 =

(c1, . . . , c`) ∈ Z`.
• To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , c`) ∈ Z`, do the following:

(a) For i = 1, . . . , k, compute αi ← H(τ‖i).
(b) Define ωτ (〈f〉) :=

∑`
j=1 cjYj(α1, . . . , αk) ∈ Fq.

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fp, and an index i, do:
1. Compute αi := H(τ‖i) ∈ Fq.
2. Compute h = h(x) ∈ R such that h(a) mod p = m and h(b) mod q = αi.
3. Output σ ← SamplePre(p · q,T, h, ν) ∈ (p · q) + h .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fp, a signature σ =
σ(x) ∈ R, and a function f ∈ F , do:

1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):
(a) ‖σ‖ ≤ ` · y · γd−1

F · (ν
√
n)d.

(b) σ(a) mod p = m.
(c) σ(b) mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, . . . , c`) ∈ Z`, and a tuple of signatures σ1, . . . , σk ∈ Zn, do:

1. Lift f ∈ Fp[x1, . . . , xk] to K[x1, . . . , xk] by setting f̂ :=
∑`

j=1 cjYj(x1, . . . , xk).
2. Output f̂(σ1, . . . , σk).

Lemma 6.1. The polynomially homomorphic signature scheme defined above is correct with overwhelming
probability.

Proof. Let τ ∈ {0, 1}n, m ∈ Fp, and i ∈ {1, . . . , k}, and set σ ← Sign(sk, τ,m, i). We check the three
verification conditions relative to the projection function πi, which in this context is the monomial xi. (Note
that 〈xi〉 = ei.)

4Specifically, we identify a monomial xe11 · · ·xekk with the non-decreasing sequence (0, . . . , 0, 1, . . . , 1, . . . . . . , k, . . . , k) of
length d that has the integer i appearing ei times (and 0 appearing d−

∑
ei times), and use the lexicographic ordering on Zd. In

particular, under this ordering all monomials of degree e appear before any monomial of degree e+ 1.
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(a) By Theorem 5.1 the generators gp, gq have norm at most n1.5, and therefore ‖gpgqxi‖ ≤ γ2
F · n3

for i = 0, . . . , n − 1. It follows from Lemma 3.1 that the basis T has ‖T̃‖ ≤ γ2
Fn

3, and therefore
ν ≥ ‖T̃‖ · ω(

√
log n). By Lemma 3.6, we have ‖σ‖ ≤ ν

√
n with overwhelming probability.

(b) By correctness of SamplePre, we have σ ∈ p · q + h(x), and thus σ(a) mod p = h(a) mod p. By
definition of h(x), we have h(a) mod p = m.

(c) As above, we have σ ∈ p · q + h(x) and therefore σ(b) mod q = h(b) mod q = αi.

Now let τ ∈ {0, 1}n, ~m = (m1, . . . ,mk) ∈ Fkp , and f ∈ F encoded as 〈f〉 = (c1, . . . , c`) ∈ Z`. Let
~σ = (σ1, . . . , σk) with σi ← Sign(sk, τ,mi, i). Interpret the cj as integers in [−y, y]. Then by our definition
of Evaluate, we have

σ′ := Evaluate(pk, τ, f, ~σ) =
∑

j cjYj(~σ)

(Recall that {Yj} is the set of non-constant monomials xei1 · · ·x
ek
k of degree at most d.) We check the three

verification conditions for the signature σ′ on the message f(~m), relative to the function f .

(a) Since evaluating Yj(σ) consists of multiplying together at most d of the σi, we have

‖Yj(~σ)‖ ≤ γd−1
F · (max{‖σi‖ : σi ∈ ~σ})d .

Since f is admissible we have |cj | ≤ y for all j. Thus we have

‖σ′‖ ≤ ` · y · γd−1
F · (max{‖σi‖ : σi ∈ ~σ})d ≤ ` · y · γd−1

F · (ν
√
n)d,

where the second inequality follows from Lemma 3.6.

(b) The fact that the map from R to Fp given by h(x) 7→ h(a) mod p is a ring homomorphism means that
for each monomial Yj , we have

(Yj(σ1, . . . , σk))(a) mod p = Yj(σ1(a), . . . , σk(a)) mod p.

By correctness of individual signatures, we have σi(a) mod p = mi for i ∈ {1, . . . , k}. It follows that

σ′(a) mod p =
∑
j

cj(Yj(σ1, . . . , σk))(a) mod p

=
∑
j

cjYj(σ1(a), . . . , σk(a)) mod p =
∑
j

cjYj(m1, . . . ,mk) = f(~m).

(c) By correctness of individual signatures, we have σi(b) mod q = αi for i ∈ {1, . . . , k}. The same
analysis as in part (b) above, using the ring homomorphism h(x) 7→ h(b) mod q, shows that

σ′(b) mod q =
∑
j

cjYj(α1, . . . , αk) mod q = ωτ (〈f〉).

6.1 Length efficiency

With overwhelming probability, signatures output by Sign(sk, ·, ·, ·) have norm at most ν
√
n and therefore bit

length at most n lg(ν
√
n). As shown in the proof of Lemma 6.1 above, applying Evaluate to a polynomial

function f : Fkp → Fp and k signatures generated by Sign outputs a signature σ whose norm is at most
` · y · γd−1

F · (ν
√
n)d with overwhelming probability. Since ` ≤ kd, the bit length of this derived signature σ

satisfies
len(σ) ≤ n · d lg k + n lg

(
y · γd−1

F · ν
√
n
)
.

Since we require γF = poly(n), y = poly(n), and d = O(1), it follows that the bit length of the derived
signature depends logarithmically on k, and thus we conclude that the scheme is length efficient.
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6.2 Unforgeability

As in our linearly homomorphic scheme from Section 4, an adversary that can forge a signature in the above
system can be used to find a short vector in the lattice used to authenticate functions, which in this case is the
ideal q. Our security theorem is as follows.

Theorem 6.2. For fixed n, let Fn be the polynomial chosen in Step (1) of the Setup algorithm above, and let
Ln be the distribution of ideals q output by the Smart-Vercauteren algorithm when given input polynomial
Fn(x) and parameter δ = n. Let LF be the ensemble {Ln}. If LF -SISβ is infeasible for

β = 2 ·
(
k+d
d

)
· y · γ3d−1

F

(
n3 log n

)d
,

then the polynomially homomorphic signature scheme defined above is unforgeable.

The proof of this theorem will follow from the security of our abstract system that generalizes the polynomially
homomorphic scheme; see Section 7.4 for details.

While Theorem 6.2 gives a concrete security result for our system, the distribution LF of prime ideals
output by the Smart-Vercauteren algorithm is not well understood. It is an open problem to modify the system
to use ideals sampled from a distribution that admits a random self-reduction.

6.3 Privacy

For sufficiently large p, the homomorphic signature scheme described above is not weakly context hiding in
the sense of Definition 2.3 against an unbounded adversary. Consequently, we cannot prove weak context
hiding using an information theoretic argument as we did for the linearly homomorphic signature.

To see why, let m0 and m1 be two messages in R/p ∼= Fp and let σ0 and σ1 be their signatures in R,
namely σb ← Sign(sk, τ,mb, b). Now, let m := m0 ·m1 ∈ Fp and let σ := σ0 · σ1 ∈ R be the derived
signature on m.

The problem is that σ leaks more information about m0,m1 than is leaked by m. While there are p
pairs (x, y) ∈ F2

p such that xy = m there can be far fewer pairs (σx, σy) ∈ R2 such that σx · σy = σ where
‖σx‖, ‖σy‖ are sufficiently small. In other words, let S be the set of pairs

S :=
{

(σx mod p, σy mod p) where σxσy = σ, and 0 < ‖σx‖, ‖σy‖ < B
}

where B is the bound used in algorithm Verify. Then when p is sufficiently large, S be can much smaller
than p, thus revealing more information about m0,m1 than what is revealed by m.

6.4 Using small fields

The signature scheme described above signs messages defined over a finite field Fp, where p is exponential
in n. In some cases we may wish to authenticate polynomial functions of data defined over a smaller field, as
we can for linear computations using the scheme of Section 4.

To do this, instead of generating the ideal p using the algorithm of Smart and Vercauteren, we simply
select any prime ideal p of characteristic p < n1.5. For example, for our “preferred” choice of field defined
by F (x) = xn + 1 with n a power of 2, the ideal p = (1 + x)OK is a degree one prime of characteristic 2.
This choice of F (x) and p can therefore be used to authenticate polynomial computations on bits, i.e., AND
and XOR.

We now consider how our new choice of p affects the system. Note that we place no restriction on the
degree e of p, so in particular the residue field OK/p = Fpe that defines the message space need not be of
prime cardinality. (We generate the prime q as before.)
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• Representation of p: We require that p be relatively prime to the conductor of R = Z[x]/(F (x)) in
OK . By Kummer-Dedekind, we can represent p as (p, g(x)), where g(x) mod p is one of the factors
of F (x) mod p.

• Short basis of p · q: We can apply the algorithm of Lemma 3.1 to the set {pgq, pgqx, . . . , pgqxn−1} to
produce a basis T of p · q. Since ‖gq‖ < n1.5 and p < n1.5, we have ‖T̃‖ ≤ γF · n3.

• Message space: the message space is the field Fpe , where e is the degree of p. (Of course it is possible
to restrict to the subfield Fp.)

• Admissible functions: If we set y = p/2, then the set of admissible functions F consists of all
polynomials in Fp[x1, . . . , xk].

• Signing and verifying: In Step (2) of Sign we choose h(x) so that h(x) mod p = m, and in Step (1b)
of Verify we check that σ(x) mod p = m.

The proofs of Lemma 6.1 and Theorem 6.2 can easily be adapted to show that the statements hold for this
modified system.

7 An Abstract Construction

In this section we describe an abstract homomorphic signature scheme that captures the key properties of both
the linearly homomorphic scheme of Section 4 and the polynomially homomorphic scheme of Section 6. We
prove that the abstract scheme is correct and unforgeable, and we prove unforgeability of our two concrete
schemes by showing that they are special cases of the abstract scheme.

The abstract signature scheme uses two n-dimensional integer lattices Λ1 and Λ2. The message space in
Zn/Λ1 and signatures are short vectors σ ∈ Zn that live in a particular coset of Λ1 ∩ Λ2.

In our concrete schemes we constructed the Evaluate algorithm by “lifting” admissible functions on
messages (defined over Fp) to functions on signatures (defined over Z). To formalize this lifting for our
abstract scheme, we first fix quotient maps

φ1 : Zn → Zn/Λ1
∼= Frp and φ2 : Zn → Zn/Λ2

∼= Fsq

(for some r, s). To “lift” a function f ∈ F , we fix a set F0 = {fj} whose Fp-linear span contains
all functions in F . We can then write f =

∑
cjfj for unique cj ∈ Fp, interpret the ci as integers in

(−p/2, p/2], and use the vector (c1, . . . , c`) ∈ Z` as the encoding 〈f〉 of f . We also choose a set of functions
H0 = {hj : (Zn)k → Zn} that operate on signatures and are “compatible” with the fj via φ1, in the sense
that

for all ~x ∈ (Zn)k : φ1(hj(x1, . . . , xk)) = fj(φ1(x1), . . . , φ1(xk)) .

Since we interpret the coefficients cj in Fp as integers in (−p/2, p/2], there is a well-defined lifting of
functions f ∈ F to functions on signatures, given by

∑
cjfj 7→

∑
cjhj .

In addition, in the concrete schemes we verified signatures using the hash function ωτ , which at its core
“translates” a function f ∈ F to a function on the αi ∈ Zn/Λ2 used to sign messages. In our abstract scheme
we achieve this functionality by defining a third set of functions G0 = {gj} on Zn/Λ2 that are compatible
with the hj via φ2 in the same sense as described above. We can now map functions f ∈ F to functions on
the αi by mapping

∑
cjfj 7→

∑
cjgj , and use the resulting function in the verification algorithm.

For the Evaluate function to be correct we must obtain a short vector as output. In particular, we must
bound the amount that the functions hi “expand” their inputs. The following definition gives us a framework
for measuring this “expansion.”
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Definition 7.1. Let Λ,Λ′ ⊂ Rn be lattices. We say that a function f : Λk → Λ′ is homogeneous of degree d
if f(λ~x) = λdf(~x) for all λ ∈ Z and ~x ∈ Λk.

For a homogeneous function of degree d, we define the expansion factor of f to be

|f | := sup
~x∈Λk

‖f(~x)‖
maxi‖xi‖d

. (7.1)

For any given f , it is possible that |f | is infinite; however, in our construction we will use only functions
f with finite expansion factor. In particular, for the projection functions πi defined by πi(x1, . . . ,xk) = xi,
we have |πi| = 1.

7.1 The abstract scheme

We now describe our abstract scheme. It encompasses both our linearly homomorphic system over random
q-ary lattices and our polynomially homomorphic system over ideal lattices.

Setup(1n, k). On input a security parameter n and a data set size k, do the following:

1. Choose two primes p, q (not necessarily distinct). Generate two lattices Λ1,Λ2 ⊂ Zn, such that
pZn ⊂ Λ1 and qZn ⊂ Λ2, along with a short basis T of Λ1 ∩ Λ2. Choose ν ≥ ‖T̃‖ · ω(

√
log n).

2. Let r = dimFp(Zn/Λ1), and define a linear map φ1 : Zn → Frp with kernel Λ1.
Let s = dimFq(Zn/Λ2), and define a linear map φ2 : Zn → Fsq with kernel Λ2.
The maps φ1 and φ2 project from Zn onto Zn/Λ1 and Zn/Λ2 respectively.
We require that for any x ∈ Frp, we can efficiently compute an (arbitrary) element of φ−1

1 (x) in Zn, and
similarly for any y ∈ Fsq with respect to φ2. (This property holds trivially for all of our instantiations.)

3. Choose an integer ` ≥ k and define three sets of functions of cardinality `:

• F0 = {f1, . . . , f`} is a linearly independent set of functions from (Frp)k to Frp. These functions
operate on k-tuples of messages in Frp and linearly span the set of admissible functions F .
• G0 = {g1, . . . , g`} is a set of functions from (Fsq)k to Fsq. These functions will be used to define

the hash ωτ .
• H0 = {h1, . . . , h`} is a set of homogeneous functions from (Zn)k to Zn. These functions operate

on signatures. We let d := max{deg hj}, and we require that |hj | <∞ for all j.

We require that the functions fj , gj , hj be compatible with the quotient maps φ1, φ2. Specifically, for
j = 1, . . . , `, we require

fj ◦ (φ1)k = φ1 ◦ hj and gj ◦ (φ2)k = φ2 ◦ hj . (7.2)

We also require that for i = 1, . . . , k, the functions fi, gi, hi are the projection functions πi on (Frp)k,
(Fsq)k, and (Zn)j , respectively.5

4. Define a set C ⊂ Z with {0, 1} ∈ C such that the map c 7→ (c mod p) is injective on C.

5. Let H : {0, 1}∗ → (Fsq)k be a hash function (modeled as a random oracle).

6. Output the public key pk = (Λ1,Λ2, φ1, φ2, C,F0,G0,H0, H, ν, d) and the secret key sk = T.

The public key pk defines the following system parameters:

• The message spaceM is Frp and signatures are short vectors in Zn.

5By abuse of notation, we call all of these projection functions πi.
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• The set of admissible functions is F :=
{∑`

j=1 cjfj : cj ∈ C, fj ∈ F0

}
.

• The encoding of a function f =
∑
cjfj is the vector 〈f〉 := (c1, . . . , c`) ∈ C`.

The fact that the mod p map is injective on C implies that every function in F has a unique encoding.

• To evaluate the hash function ωτ on an encoding 〈f〉 = (c1, . . . , c`) ∈ C`, do the following:

(a) For i = 1, . . . , k, compute αi ← H(τ‖i).
(b) Define a function g on (Fsq)k by g :=

∑`
j=1 cjgj .

(c) Define ωτ (〈f〉) := g(α1, . . . , αk) ∈ Fsq.

• The public key also defines a parameter λ := ` ·max{|c| : c ∈ C} ·max{|hj | : hj ∈ H0}.
Since 1 ∈ C and πi ∈ H0, we have λ ≥ 1.

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈M, and an index i, do:
1. Compute (α1, . . . , αk)← H(τ).
2. Compute t ∈ Zn such that φ1(t) = m and φ2(t) = αi.
3. Output σ ← SamplePre(Λ1 ∩ Λ2,T, t, ν) ∈ (Λ1 ∩ Λ2) + t .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Frp, a signature σ ∈ Zn,
and a function f ∈ F , do:

1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):
(a) ‖σ‖ ≤ λ · (ν

√
n)d.

(b) φ1(σ) = m ∈ Zn/Λ1 = Frp.
(c) φ2(σ) = ωτ (〈f〉) ∈ Zn/Λ2 = Fsq.

Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, . . . , c`) ∈ C`, and a tuple of signatures ~σ ∈ (Zn)k, do:

1. Define a function h on (Zn)k by h :=
∑
cjhj .

2. Output h(~σ).

Lemma 7.2. The homomorphic signature scheme defined above is correct with overwhelming probability.

Proof. Let τ ∈ {0, 1}n, m ∈ M, and i ∈ {1, . . . , k}, and set σ ← Sign(sk, τ,m, i). We check the three
verification conditions.

(a) By Lemma 3.6, we have ‖σ‖ ≤ ν
√
n with overwhelming probability.

(b) By correctness of SamplePre, we have σ ∈ (Λ1 ∩ Λ2) + t. By definition of t, we have φ1(t) = m.
Since φ1 is linear and Λ1 ⊂ kerφ1, we see that φ1(σ) = m.

(c) By our requirement in Step (3) of Setup and our definition of ωτ , we have ωτ (〈πi〉) = αi. As above,
we have σ ∈ (Λ1∩Λ2) + t. By definition of t, we have φ(t) = αi. Since φ2 is linear and Λ2 ⊂ kerφ2,
we see that φ2(σ) = πi(~α).

Now let τ ∈ {0, 1}n, ~m = (m1, . . . ,mk) ∈ Mk, and f ∈ F encoded as (c1, . . . , c`) ∈ C`. Let ~σ =
(σ1, . . . , σk) with σi ← Sign(sk, τ,mi, i). Then by our definition of Evaluate, we have

σ′ := Evaluate(pk, τ, f, ~σ) =
∑`

j=1 cjhj(~σ).

We check the three verification conditions for the signature σ′ on the message f(~m).
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(a) By the definition of expansion factor (7.1), we have ‖hj(~σ)‖ ≤ |hj |deg hj maxi(‖σi‖deg hj ). Multiply-
ing by cj and adding up ` terms, we obtain

‖σ′‖ ≤ ` ·max{c : c ∈ C} ·max{|hj | : hj ∈ H0} ·max{‖σi‖d : σi ∈ ~σ}

By Lemma 3.6 and the definition of λ, the right hand side is less than λ · (ν
√
n)d with overwhelming

probability.

(b) By correctness of individual signatures, we have φ1(σi) = mi for all i ∈ {1, . . . , k}. It follows that

φ1(σ′) = φ1

(∑
j

cjhj(~σ)

)
=
∑
j

cj · φ1 ◦ hj(~σ) =
∑
j

cj · fj ◦ φk1(~σ)

=
∑
j

cj · fj(φ1(σ1), . . . , φ1(σk)) =
∑
j

cjfj(m1, . . . ,mk) = f(~m).

Note that the last equality on the first line follows from the compatibility condition (7.2).

(c) By correctness of individual signatures, we have φ2(σi) = αi for all i ∈ {1, . . . , k}. An analysis
identical to that in part (b) above, also using (7.2), shows that φ2(σ′) = g(~α) = ωτ (〈f〉).

7.2 Unforgeability of the abstract scheme

Unforgeability of our abstract scheme (in the random oracle model) is based on the difficulty of finding a
short nonzero vector in Λ2; specifically, a vector of length at most 2λ · (ν

√
n)d.

The proof of security needs that functions in F do not map too many inputs to one output. In particular,
F contains no constant functions. This property, defined next, is easily shown to hold for the families of
functions considered in this paper.

Definition 7.3. Let V be a finite-dimensional vector space over a finite field Fq, and let f : V k → V be a (not
necessarily linear) function. We say f is d-solution-bounded for an integer d if for every x ∈ V , the number
of solutions in V k to f(~y) = x is at most d · |V |k−1. We say that a set F of functions is d-solution-bounded
if every nonzero f ∈ F is d-solution-bounded.

We can now prove our security theorem. Our reduction is tight; in particular, we can use the same
challenge lattice to answer all queries, and thus we do not need to guess which data set the adversary will
forge a signature on.

Theorem 7.4. Let L1 and L2 be the distribution ensembles of lattices sampled in Step 1 of the Setup
algorithm. Let ν be a parameter such that for Λ1 ← L1 and Λ2 ← L2, with overwhelming probability we
have ν > ηε(Λ1 ∩ Λ2) for negligible ε, and assume that this ν is the value chosen in Step 1 of the Setup
algorithm for all Λ1,Λ2. Suppose furthermore that for Λ1 ← L1 and Λ2 ← L2, we have Λ1 + Λ2 = Zn with
overwhelming probability. Finally, suppose that F is bq/2c-solution-bounded.

Suppose that there is an efficient algorithm G that samples a lattice Λ1 from a distribution ensemble
statistically close to L1, along with a basis T1 of Λ1 with ‖T̃1‖ ≤ ν/ω(

√
log n). If the L2-SIS2λ·(ν

√
n)d

problem is infeasible, then the abstract homomorphic signature scheme described above is unforgeable in the
random oracle model.

Proof. LetA be a polynomial-time adversary that plays the security game of Definition 2.1. Given a challenge
lattice Λ2 ← L2, we construct an algorithm B that solves the L2-SIS2λ·(ν

√
n)d problem. Algorithm B

simulates the Setup and Sign algorithms and the hash function H as follows:
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Setup: Use the algorithm G to generate a lattice Λ1 along with a short basis T1 of Λ1. Choose all other
parameters as in the real Setup algorithm, using the challenge lattice for Λ2.

Hash function H: On input τ , if τ has already been queried to H then return H(τ). Otherwise choose
σ1, . . . , σk ← DZn,ν and set H(τ) := (φ2(σ1), . . . , φ2(σk)).

Signing queries: When A queries the data set (m1, . . . ,mk) ∈ (Frp)k, do the following:

1. Choose a random τ
R← {0, 1}n. If τ has already been queried to the hash function H , then abort.

(The simulation has failed.)

2. For i = 1, . . . , k, choose ti ∈ φ−1
1 (mi), and compute σi ← SamplePre(Λ1,T1, ti, ν).

3. Define H(τ) := (φ2(σ1), . . . , φ2(σk)).

4. Give to A the tag τ and the signatures σ1, . . . , σk.

Eventually A outputs a tag τ∗, a message m∗, a function f encoded as 〈f〉 = (c1, . . . , c`) ∈ C`, and a
signature σ∗. We may assume without loss of generality that τ∗ has already been queried to the hash function;
let ~σ = (σ1, . . . , σk) be the values chosen when programming H(τ). Let σf :=

∑
i cihi(~σ). Algorithm B

outputs σ∗ − σf .
We first show that the output of the simulator is distributed (up to negligible statistical distance) as in the

real signature scheme. To begin, since the simulator chooses random tags from {0, 1}n when signing and A
runs in polynomial time, the probability that the simulator aborts is negligible in n, so we may assume that the
simulator does not abort. Next, since ν > ηε(Λ1 ∩ Λ2) for negligible ε, by Lemma 3.9 the vectors σi chosen
in both hashing and signing queries are statistically close to uniform modulo Λ2, and thus the output of the
hash function is indistinguishable from random. By Theorem 3.3, the σi in the real scheme are distributed as
DΛ1∩Λ2+t,ν for t ∈ φ−1

1 (mi) ∩ φ−1
2 (αi). The simulated σi, on the other hand, are distributed as DΛ1+t,ν for

t ∈ φ−1
1 (mi), conditioned on φ2(σi) = αi. By a straightforward generalization of [18, Lemma 5.2], these

two distributions are identical.
We now show that if A outputs a valid forgery, then with probability at least 1/2, the vector σ∗ − σf

output by B is a nonzero vector in Λ2 of length at most 2λ · (ν
√
n)d.

Suppose A outputs a type 2 forgery, so the simulator has generated signatures ~σ = (σ1, . . . , σk) on
messages ~m = (m1, . . . ,mk) with the tag τ∗. First observe that the verification condition (1a) implies that
‖σ‖ and ‖σf‖ are both less than λ · (ν

√
n)d, and therefore ‖σ − σf‖ ≤ 2λ · (ν

√
n)d. Next observe that

if the forgery is valid, then m∗ 6= f(~m). The verification condition (1b) implies that φ1(σ∗) − φ1(σf ) =
m∗ − f(~m) 6= 0, and thus linearity of φ1 implies that σ∗ − σf 6= 0. On the other hand, verification condition
(1c) implies that φ2(σ) = φ2(σf ) =

∑
cigi(~α), and thus σ − σf ∈ Λ2.

Now suppose A outputs a type 1 forgery, so the adversary has not obtained signatures on messages with
tag τ∗. Without loss of generality, we can assume that τ∗ was queried to the hash function at some point.
Let ~σ = (σ1, . . . , σk) be the vectors chosen by the simulator when computing H(τ∗). Define mi = φ1(σi);
by Lemma 3.9 the mi are uniformly random in (Frp)k. If f(~m) 6= m∗, then by the same reasoning as above
the vector σ − σf is a nonzero vector in Λ2 of the required length. Finally, we observe that since f is
bq/2c-solution-bounded, the number of solutions in (Fsq)k to f(~m) = m∗ is at most qsk−s+1/2. Since the
total number of elements ~m ∈ (Fsq)k is qsk, the probability that a random ~m is a solution to f(~m) = m∗ is at
most 1/2.

7.3 Proof of unforgeability for linear scheme

In this section we prove that the linearly homomorphic signature scheme of Section 4 is unforgeable. We first
translate the concrete description of the scheme given in Section 4 into the abstract framework of Section 7.1.
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We then show that the scheme satisfies the hypotheses of Theorem 7.4, and unforgeability follows.
We begin by showing how the Setup algorithm in Section 4 instantiates the abstract Setup algorithm of

Section 7.1. The numbered items below correspond to the steps of the abstract Setup algorithm.

1. We choose two primes p, q ∈ poly(n) with p ≤ √q/n, and define ` := bn/6 log qc. The lattice Λ1 is
pZn and Λ2 is Λ⊥q (A) for a matrix A ∈ F`×nq generated by TrapGen. We set ν := p ·

√
n log q · log n.

2. Let r = n, and define the map φ1 : Zn → Fnp by v 7→ (v mod p).
Let s = `, and define the map φ2 : Zn → F`q by v 7→ (A · v mod q).

3. For an integer k = ` ≤ √q/np, the three sets F0,G0,H0 are the sets of projection maps πi on (Fnp )k,
(F`q)k, and (Zn)k, respectively. We have d = 1 and |hi| = 1 for all i.

4. The set C is integers in (−p/2, p/2].

The parameter λ is equal to k · p/2.

Proof of Theorem 4.2. By Theorem 3.2, the distribution of matrices A generated by TrapGen is statistically
close to uniform over F`×nq . Thus the distribution of challenges for the L2-SIS2λ·ν

√
n problem is statistically

close to the distribution of challenges for the SISq,n,k·p·ν
√
n problem.

We now verify the hypotheses of Theorem 7.4. First, since p and q are relatively prime, we have
Λ⊥q (A) + pZm = Zm and Λ⊥q (A) ∩ pZm = pΛ⊥q (A). By Lemma 3.5, with overwhelming probability we
have ηε(Λ2) < log n for negligible ε. Since ηε(Λ1 ∩ Λ2) = p · ηε(Λ2), with overwhelming probability we
have ν > ηε(Λ1 ∩ Λ2) for negligible ε. In addition, the standard basis of pZn has Gram-Schmidt norm
p, which is less than ν/ω(

√
log n). Finally, it is easy to see that for any Fq-vector space V , any nonzero

Fq-linear function f : V k → V is 1-solution-bounded.

7.4 Proof of unforgeability for polynomial scheme

In this section we prove that the polynomially homomorphic signature scheme of Section 6 is unforgeable.
We first translate the concrete description of the scheme given in Section 6 into the abstract framework of
Section 7.1. We then show that the scheme satisfies the hypotheses of Theorem 7.4, and unforgeability
follows.

We begin by showing how the Setup algorithm in Section 6 instantiates the abstract Setup algorithm of
Section 7.1. The numbered items below correspond to the steps of the abstract Setup algorithm.

1. The lattices Λ1 and Λ2 are ideals p = (p, x−a) and q = (q, x−b) in the number ringR = Z[x]/(F (x));
we identify R with Zn via the coefficient embedding. We generate p and q using PrincGen(F, n),
which also outputs generators gp, gq of p, q, respectively. We obtain a basis T of p · q by applying the
algorithm of Lemma 3.1 to the set {gpgq, gpgqx, . . . , gpgqxn−1}. We set ν = γ2

F · n3 log n.

2. Let r = s = 1. Define the quotient map φ1 : R→ Fp by z(x) 7→ z(a) mod p.
Define the quotient map φ2 : R→ Fq by z(x) 7→ z(b) mod q.

3. Choose integers k = poly(n) and d = O(1) and let ` :=
(
k+d
d

)
− 1. We define the sets F0,G0,H0 to

be sets of all ` monic, non-constant k-variable monomial functions of degree at most d on Fp, Fq, and
R, respectively.

4. Define C := {−y, . . . , y} for y = poly(n).
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To compute the parameter λ, we observe that for each monomial function hi on R, we have |hi| ≤ γdeg hi−1
F .

Thus we have λ ≤ ` · y · γd−1
F . Since we assumed that γF = poly(n), we have ν = poly(n).

Proof of Theorem 6.2. We verify the hypotheses of Theorem 7.4.
First, by Theorem 5.1 the generators gp, gq have norm at most n1.5, and therefore ‖gpgqxi‖ ≤ γ2

F · n3 for
i = 0, . . . , n− 1. It follows from Lemma 3.1 that the basis T has ‖T̃‖ ≤ γ2

Fn
3. Since ν ≥ ‖T̃‖ log n, by

Lemma 3.4 with overwhelming probability we have ν > ηε(p · q) for negligible ε. Since p and q are distinct
prime ideals, we have p + q = R.

Next, note that F consists of polynomial functions in k variables over Fp of degree at most d. By
Schwartz’s Lemma [34], for any such polynomial f and any y ∈ Fp there are at most d · pk−1 solutions
~x ∈ Fkp to f(~x)− y = 0, which is exactly the condition for F to be d-solution-bounded.

Finally if we use the PrincGen algorithm to sample an ideal p only, we again obtain a generator gp of
norm at most n1.5. Applying the algorithm of Lemma 3.1 to the set {gp, gpx, . . . , gpxn−1}, we obtain a basis
of p with Gram-Schmidt norm at most γF · n1.5, which is less than ν/ log n.

8 Conclusions and Open Problems

We have presented a homomorphic signature scheme that authenticates polynomial functions of bounded
degree on signed data.

There are many open problems that remain in this area. First, as we explained in the introduction, we
may desire that derived signatures not leak information about the original data set. This privacy property can
be achieved for linear functions (e.g. as in [5] and in this paper), but is an open problem for quadratic and
higher degree polynomials.

Second, the security of our scheme could be strengthened by removing the random oracle from our
construction. All current linear homomorphic signature schemes, including ours, use the random oracle to
simulate signatures during a chosen message attack. New techniques are needed to eliminate the random
oracle while preserving the homomorphic properties.

Third, it is an open problem to base the security of our system on worst case problems on ideal lattices. In
particular, we wish to generate ideals for our polynomially homomorphic signature scheme from a distribution
that admits a random self-reduction. While Gentry [17] has achieved this result for homomorphic encryption,
his key generation algorithm is not suitable for our scheme: it produces an ideal q and a short vector in q−1,
whereas we require a short vector in q. One direction for future work is to construct a homomorphic signature
scheme that uses Gentry’s key generation algorithm; another is to construct an algorithm that produces a
uniformly random ideal q along with a short vector in q.

Finally, our construction can be seen as a first step on the road to a fully homomorphic signature scheme,
which could authenticate the computation of any function on signed data. A fully homomorphic signature
scheme would be a useful parallel to existing fully homomorphic encryption systems. Current constructions
of fully homomorphic encryption are obtained by applying a “bootstrapping” process to a scheme that allows
a limited amount of computation on encrypted data. It is unclear whether Gentry’s bootstrapping process [16]
can be applied to signature schemes such as ours. We leave this as a beautiful open problem.

Even if a fully homomorphic signature scheme cannot be immediately realized, it is interesting to extend
the set of computable functions F . Perhaps randomized encodings [21] over finite fields of low characteristic
can be used for this purpose.
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A Homomorphic Signatures for Linear Functions over Large Fields

We now describe a variant of the linearly homomorphic scheme of Section 4 in which the data can be defined
over large fields Fp. In this version, both lattices in the scheme are of the form Λ⊥q (A) for the same prime q,
and thus their intersection is also of this form. We generate a short basis for Λ1 ∩ Λ2 by generating an A via
TrapGen and using half of its rows to define Λ1 and the other half to define Λ2.

This construction allows data to be defined over much larger fields than our first construction, including
fields Fp where p is exponential in n. However, we can only accommodate “small” Fp-linear functions on the
data; i.e., functions whose coefficients lift to small integers.

We now give a formal description of the scheme.

Setup(1n, k). On input a security parameter n and a data set size k, do the following:
1. Choose a prime q ≥ (nk)2. Define ` := bn/6 log qc.
2. Use TrapGen(q, 2`, 2n) to generate a matrix A ∈ F2`×2n

q along with a short basis T of Λ⊥q (A).
3. Let A1 ∈ F`×2n

q be the first ` rows of A and A2 ∈ F`×2n
q be the last ` rows. Define Λ1 := Λ⊥q (A1)

and Λ2 := Λ⊥q (A2).
4. Set ν :=

√
n log q · log n. Choose an integer y = poly(n) with y ≤ √q/nk.

5. Let H : {0, 1}∗ → (F`q) be a hash function (modeled as a random oracle).
6. Output the public key pk := (Λ1,Λ2, ν, k, y,H) and the secret key sk = T.

The public key pk defines the following system parameters:
• The message space is F`q and signatures are short vectors in Z2n.
• The set of admissible functions F is all Fq-linear functions on k-tuples of messages in F`q.
• For a function f ∈ F defined by f(m1, . . . ,mk) =

∑k
i=1 cimi, we encode f by writing the ci as

integers in (−q/2, q/2] and defining 〈f〉 = (c1, . . . , ck) ∈ Zk.
• To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , ck) ∈ Zk, do the following:
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(a) For i = 1, . . . , k, compute αi ← H(τ‖i).
(b) Define ωτ (〈f〉) :=

∑k
i=1 ciαi ∈ F`q.

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ F`q, and an index i, do:
1. Compute αi := H(τ‖i) ∈ F`q.
2. Compute t ∈ Zn such that A1 · t mod q = m and A2 · t mod q = αi.
3. Output σ ← SamplePre(Λ1 ∩ Λ2,T, t, ν) ∈ (Λ1 ∩ Λ2) + t .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ F`q, a signature σ ∈ Z2n,
and a function f ∈ F , do:

1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):
(a) ‖σ‖ ≤ k · y · ν

√
n.

(b) A1 · σ mod q = m.
(c) A2 · σ mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, . . . , ck) ∈ Zk, and a tuple of signatures σ1, . . . , σk ∈ Z2n, do:

1. Output
∑k

i=1 ciσi.

Relation to abstract scheme. We now show how the Setup algorithm above instantiates the abstract Setup
algorithm of Section 7.1. The numbered items below correspond to the steps of the abstract Setup algorithm.

1. We have p = q, Λ1 = Λ⊥q (A1), and Λ2 = Λ⊥q (A2), where A1 and A2 are the first ` and last ` rows of
the matrix A produced by TrapGen.

2. Let r = `, and define the map φ1 : Z2n → F`q by v 7→ (A1 · v mod q).
Let s = `, and define the map φ2 : Z2n → F`q by v 7→ (A2 · v mod q).

3. For an integer k = ` ≤ √q/n, the sets F0 and G0 are the set of projection maps πi on (F`p)k. The set
H0 is the set of projection maps on (Z2n)k. We have d = 1 and |hi| = 1 for all i.

4. The set C is integers in [−y, y].

The parameter λ is equal to k · y.

Lemma A.1. The linearly homomorphic signature scheme defined above is correct with overwhelming
probability.

Proof. This follows from correctness of the abstract scheme (Lemma 7.2). Alternatively, one could imitate
the proof of Lemma 4.1.

Theorem A.2. If SISq,2n,β is infeasible for β = 2k · y · n log n
√

log q, then the homomorphic signature
scheme described above is unforgeable.

Proof. By Theorem 3.2, the distribution of matrices A generated by TrapGen is statistically close to uniform
over F2`×2n

q . Since we take the last n rows of A to define Λ2, the distribution of challenges for the L2-
SIS2λ·ν

√
n problem is statistically close to the distribution of challenges for the SISq,2n,2λ·ν

√
n problem.

We now check the hypotheses of Theorem 7.4. First, note that Λ1 + Λ2 = Z2n if and only if kerA1 +
kerA2 = F2n

q (here we consider the matrices as maps from F2n
q to F`q). Since kerA1 and kerA2 are

independent random (2n− `)-dimensional subspaces of F2n
q and ` < n, by Lemma A.3 below the probability

that kerA1 + kerA2 is a proper subspace of F2n
q is negligible in n.

32



Next, since Λ1 ∩Λ2 = Λ⊥q (A), by Lemma 3.5, with overwhelming probability we have ηε(Λ1 ∩Λ2) < ν

for negligible ε. In addition, the algorithm TrapGen can be used to sample a random A1 ∈ F`×2n
q along

with a basis of length O(
√
n log q) < ν/ω(

√
log n). Finally, we observe that for any Fq-vector space V , any

nonzero Fq-linear function f : V k → V is 1-solution-bounded.

Lemma A.3. Let q be a prime, and letA andB be uniformly random matrices in Fn×mq and let VA and VB be
the vector spaces spanned by their rows respectively. If m < 3n/2, then the probability that VA + VB = Fmq
is 1− negl(n).

Proof. By a standard argument, the probability that 2n > m + (n/2) random vectors in Fmq span all Fmq
is 1 − negl(n). Hence, VA + VB , which is spanned by the 2n rows of A and B, will span all of Fmq with
probability 1− negl(n).

Theorem A.4. Suppose y2k < n log q. Then the linearly homomorphic signature scheme described above is
s-weakly context hiding for s = O(1).

Proof. The proof is exactly analogous to the proof of Theorem 4.3. The condition y2k < n log q allows us
to conclude that ν > ηε(Λ1 ∩ Λ2) for negligible ε with overwhelming probability. This condition can be
relaxed if ν is increased and the unforgeability statement is correspondingly weakened; see Remark 4.4.
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