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Magnetic helicity fluxes are investigated in a family of gasign which the contribution from ideal magne-
tohydrodynamics takes the form of a purely advective fluxntical simulations of magnetohydrodynamic
turbulence in this advective gauge family exhibit institiei$ triggered by the build-up of unphysical irrotational
contributions to the magnetic vector potential. As a reméldy vector potential is evolved in a numerically
well behaved gauge, from which the advective vector padkigiobtained by a gauge transformation. In the
kinematic regime, the magnetic helicity density evolvesilsirly to a passive scalar when resistivity is small
and turbulent mixing is mild, i.e. when the fluid Reynolds rh@nis not too large. In the dynamical regime,
resistive contributions to the magnetic helicity flux in #xvective gauge are found to be significant owing to
the development of small length scales in the irrotatioaat pf the magnetic vector potential.

PACS numbers: 96.60.Hv, 52.35.Ra, 11.15.-q

I. INTRODUCTION in small- and large-scale fields will have comparable magni-
tudes, so the quenching of the large-scale dynamo will oc-

Most astrophysical and laboratory plasmas are good corfur for weak large-scale fields. Thisquenching” increases
ductors. This, together with high-speed flows and largetteng With scale separation and endures for as long as magnetic he-
scales, nearly universal in the astrophysical context,emak liCity is nearly conserved, a resistive time that scale$ e
for large magnetic Reynolds numbers. In the limit of infilyite Magnetic Reynolds number Re= U L/7. The quenching is
large magnetic Reynolds number, and for domains with closegalled “catastrophic” because for the SunRe 10° and the
boundaries, total magnetic helicity is a conserved quantit Galaxy Re; ~ 10'%, and their resistive timescales are prob-
Here, an analogy can be drawn with mass conservation in déématically long. This rapid pre-resistive saturationtu tly-
mains whose boundaries are closed to mass flux. Furthermor@amo generated field poses clear difficulties in applying the
in open domains, the change in total mass is governed by tHfY t0 astronomical systems, but it may be possible to allevi
mass flux across open surfaces. In ideal magnetohydrodynarte the problem through magnetic helicity fluk@sit should
ics (MHD), a similar property holds for the total magnetic also be pointed out that probl_ems with catast_roph|c quench-
helicity. But unlike mass, magnetic helicity depends on theg are often not clearly seen in present-day smula%ﬁ%
choice of gauge. In the special case of the advective gaug¥/hile trend lines suggest that catastrophic quenchingoeil
the magnetic helicity flux is given by the velocity times the CUr, simulations at currently achievable, low to internageli
magnetic helicity densify making this gauge particularly in- F_%eM and scale separation have shown significant large-scale
teresting for studying pointwise properties of magnetiiche fields.
ity. This is an important goal of this paper. There exists reasonable observational evidence is supiport

Magnetic helicity plays an important role in many fields of such fluxes of magnetic helicity. The Sun’s surface magnetic
plasma physics and astrophysics, and has applications ranfigld shows helical structur&®*. Further, it was shows that
ing from tokamaks and other plasma confinement machineghe S-shaped (helical) regions which are active in the @ron
to dynamo action in the Sun and the Galaxy. Our physical unare precursors of coronal mass ejections (CMEs) andfater
derstanding of the role of magnetic helicity in MHD is grgatl that those regions are more likely to erupt. This suggesits th
aided by concepts such as Taylor relaxadjeelective decay  the Sun sheds magnetic helicity via CMEs. Since the Sun’s
and the inverse cascade of magnetic helfcity large-scale magnetic field is believed to be generated by a

Furthermore, magnetic helicity is a crucial ingredientwft helical dynamé’8 this shedding of magnetic helicity could
turbulent dynamos which are believed to be the source of thelay an important role in the 11 year solar cycle. Physically
equipartition magnetic fields in astrophysical bodies §tas ~ magnetic helicity fluxes out of the domain can be mediated in
and galaxie® In all such cases the characteristic length scalegany ways, such as the aforementioned CMEs for thé=Sun
of the dynamo generated magnetic field exceed those of ther fountain flows in the case of galaxiés In direct sim-
fluid’s energy carrying scale. In dynamo theory, the forma-ulations magnetic helicity fluxes are permitted by adjugtin
tion of such a large-scale magnetic field is typically pdssib the boundary conditions, e.g., to vertical field boundabes
through thea effect, which is non-zero for helical turbulent their actual presence can be difficult to ascertain. Intdrea
flows. In periodic boxes with helical turbulence, theef- licity fluxes have also been found to alleviateguenching?
fect becomes strongly quenched when the (appropriately noin systems with internal boundaries that separate zonegs-of o
malized) magnetic helicity in the small-scale field (i.eales  positely signed kinetic and magnetic helicities.
that are smaller than the energy-carrying scale of turttulen A difficulty in addressing the generation and transport of
fluid) is comparable to the helicity in the small-scale veloc magnetic helicity is its gauge dependence. We denote the
ity. Conservation of magnetic helicity implies that theibigy magnetic vector potential ad such thatB = V x A is
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the magnetic field. Magnetic helicityf = fV A-BdVis Atthe core of MHD is the induction equation,
independent of the gauge for perfectly conducting bouedari

as well as periodic boundaries so longAss also required 9B _ V x (U x B—nJ) (1)
to be periodic. However, if one wishes to study the transport ot ’

of magnetic helicity for physically motived systems & non-\ynere is the velocity and is the molecular magnetic dif-
volume integral formulation will be needed. Magnetic helic fusivity. Equation (1) can be uncurled to give an evolution

ity density, h = A - B, the quantity we will be working with,  ¢quation for the magnetic vector potenti&) but only up to

clearly depends on the gauge choice for The gauge de- 5 gauge choice. In the Weyl gauge, indicated by a superscript
pendence of fluxes of mean magnetic helicity contained in th€y; o, the magnetic vector potential, we just have

fluctuating fields was examined via direct numerical simula-

tions (DNS) for three different gaug@sand it was found that, AW
averaged over time, they do not depend on the gauge choice. ot UxB-nd, )

This is a result of the fact that, for sufficient scale sepanat . . ] ]

the magnetic helicity of the fluctuating field can be exprdsse but by adding the gradient of a scalar field, the vector paent
as the density of linkages, which in turn is gauge-invaflant can be obt_alned in any other gauge. Of particular interest to
This result implies that the study of specific but useful gaug this paper is the advective gauge,

ch0|ce§ isa meanlngful-task. . . . A" = AW 4 yAWaE 3)

In this work we examine the properties of magnetic helic-
ity density in a particularly interesting gauge-family whiwe  whereAW:* is the gauge potential that transforms frot\V
call “advective” because in this gauge the effect of velogit 19 A2, We demand th3?
the evolution equation of magnetic helicity takes the forfim o a
a purely advective term. In previous weérthis gauge choice DA}
was shown to be crucial to understanding magnetic helicity Dt

fluxes in the presence of shear, including the Vishniac-Ch@yge D/Dt = 8/dt+U - V is the advective derivative. Con-

flux?2. Unfortunately, evolvingA in this gauge proves nu- sequently one can show that'* obeys the evolution equa-
merically unstable. This may be related to earlier findimgs i ;5 (see Appendixh)

smoothed particle MHD calculatiof&®*. There, the prob-

lem was identified as the result of what is known as the ten- DAW:a W

sile instability in smoothed particle hydrodynamics arkega Dt -U-A". (5)
the form of a clumping instability that might be connected ) ) .

with poor accuracy with respect to “reverse-advectionetyp Thus, to obtaimA®, one can either solve EqI(4) directly or, al-
term<3. Our present work suggests that this instability is in-ternatively, solve Eq{2) together with EQI (5) and use BY.
stead related to the excessive build-up of irrotationakigon  t0 obtainA®. A possible initial condition fo\V:* would be
butions to the magnetic vector potential. These contrimsti  A"* = 0, in which caseA® = A" initially. For numer-

have no physical meaning, but discretization errors atlsmaical reasons that will be discussed in more detail below, we
length scales can spoil the solution dramatically. shall consider the indirect method of obtaining the magneti

We shall therefore describe a novel method for obtaiming vector _potential in the advectiye gauge, bl.Jt starting_fromem
in this gauge by evolving it first in a numerically robust gaug numerically stable gauge which will be discussed in the next

and then applying a gauge transformation with a simultaneSection. ) L
Variants on the advective gauge have seen significant use,

ously evolved gauge potential. This will be referred to as th i : : ;
A method throughout the text. Next, we show that the magparncularly In DNS_W'th constant 'mposed shear. AIthou_gh
netic helicity density in the advective gauge tends to bellsmat® magnetic field in such simulations must obey shearing-
even pointwise, provided turbulent effects are still wemsig ~ Periodic boundary condition the vector potential need not.
discuss the analogy with passive scalar transport. We cor{[;1 paTt'CU'afa tg_e_ evolut|ﬁn equatiofi] (2) _d?es hr_1|0t Impose
clude by pointing out that resistive terms break the analogy’ earlng-ptf,;rlo 'Cr'lw on the \-/eé:.tor poter_ltlal, w '|ea§@ “
with passive scalar advection through the emergence of a tuf'€S, €nabling shearing-periodic numerical Simufattomns

bulently diffusive magnetic helicity flux. terms ofA.
HEmY AT anet ey For our purposes, the importance of Eg. (4) lies in the form

of the magnetic helicity density evolution equation. By twri
ing the induction equation in the form

DB;
Dt

computingD(A?*- B)/Dt = A*-DB/Dt+ B-DA?*/Dt, and
In this work we remain within non-relativistic MHD and "0ting that the4,U; ; B; terms from both equations cancel,
hence neglect the Faraday displacement current. So the ci€ find that
rent density is given by = V x B, whereB is the magnetic Oh?

field and we use units where the vacuum permeability is unity. 5 = - B-V-F° (7

= Uy = J. (4

Il. MAGNETIC EVOLUTION EQUATIONS

= +Ui7ij — (V . U)Bl — (V X ’I]J)i, (6)
A. Weyl and advective gauges




with with
F?* = h*U +nd x AY, (8) F¥ = U —n(V - A")B +nd x AY. (14)

where we have defindd* = A* - B as the magnetic helicity For comparison, the evolution equation of the magnetic he-
density in the advective gauge. Equatibh (7) takes the fornicity density in the resistive gauge is given by an equation
of an advection equation, along with some unusual resistiveimilar to [I3), but withk?" being replaced by,* and F2"
source and flux terms. This so-called advective gauge wilbeing replaced by

allow us to study both the nature of the fluid motion’s contri-

bution to the magnetic helicity density flux as wellasthe na- F* =p'U - (U-A"+nV - A")B +nJ x A", (15)
ture of the resistive contributions for high magnetic Rdgso

numbers. Note that the latter is non-trivial even for larggR  which contains a non-advective velocity driven flux of the
as the resistive energy dissipatigd? tends to a finite imk  form (U - A*)B — even in the ideal case.

asn — 0 and a similar finite limit can be imagined for mag-

netic helicity fluxes, but not for the source terif - B.

C. Numerical details

B. Resistiveand advecto-resistive gauges We perform simulations for isotropically forced, triplype

) ) riodic cubic domains with sides of leng#r, as was done in
_ Ther_e are two important issues to be npted about the equaarlier work8. ThenJ - B term in [7) implies (and past simu-
tions discussed above. Firstly, for numerical reasons(&q. |ations have shown) that such a system will experience a slow

is often replaced by but steady production of magnetic helicity. This is the eric
. to pay for a system which is both helical, providing us with

oA =U x B+nV?A", (9) asignal, and homogeneous, so avoiding extraneous magnetic
ot helicity fluxes. In addition to the uncurled induction eqaat

where A* is the magnetic vector potential in the resistive (® and the gauge transformation evolution equafion (12), w

gauge and we have assumed that= const; otherwise solve

there would be an additional gradient term of the magnetic DU L

diffusivity?’. This gauge choice introduces an explicit, nu- DL —c2Vlnp+ —J x B+ Fyisc + f, (16)

merically stabilizing diffusion term for each component4f P

Secondly, and again for numerical reasons, Eq. (5) should be Dinp =-V-U, (17)

solved with a small diffusion term proportional ?AW:2. Dt

These two issues are actually connected and can be resolv

ideri ; erecs (= t) is the isothermal sound speedljs the
by considering the gauge transformation ¢s (= const) peed]

density,Fyisc = p~'V - (2pv8S) is the viscous forces;; =
+(Uij+Ujs) — %6:;V - U is the rate of strain tensa,is the
kinematic viscosityf the forcing term, and;, = 1 is a pref-
actor that can be put toto turn off the Lorentz force in kine-
matic calculations. As in earlier wo¥kthe forcing function
consists of plane polarized waves whose direction and phase

Aar — AI‘ _|_ V[\I‘Za,r7 (10)

which allows us to obtain the magnetic vector potendat
in the advecto-resistive gauge obeying

DA " . change randomly from one time step to the next. The modu-
Dt = =U;i AT + V=AY, (11)  |us of its wavevectors is taken from a band of wavenumbers
around a given average wavenumber The magnetic vec-
by solving Eq.[(®) forA* together with tor potential is initialized with a weak non-helical sinewea
along one direction. In some cases we shall also consider so-
DAmar LU AT 4 TR AT (12) lutions to the passive scalar equation in the incompressibl
Dt g case,
and finally using the gauge transformation EqJ (10). Forla ful DC )
derivation of this equation we refer to Appenfiik B. Note that Dt KV=C, (18)

the microscopic magnetic diffusivity automatically ersténe

Arar equation as a diffusion term, which implies that Xi&"  where is the passive scalar diffusivity. Following earlier

equation is numerically well behaved. work??, we impose a linear gradient @1, i.e.C = Gz + ¢,
The magnetic helicity densify®* = A?"- B in the advecto- and solve for the departure from this gradiéht.e.

resistive gauge can be calculated from the magnetic hgeiicit

the resistive gauge through* = A"+ VA™"'. B, and it obeys % — kV2¢— GU., (19)

ahar ar
5 — J-B-V-F (13)  whereGU. acts essentially as a forcing term.
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We use the BNnciL CoDEY to solve the equations for forbid the preferential export of small-scale magnetiddiel
A", U, A", p, and in some cases also The calcula- ity and might call for alternate solutions to the catastioph
tions involving A*#" have been carried out with the pub- quenching problem than helicity fluxés
licly available revisiorir 15211 (or similar) of the module While in ideal MHD (; = 0) the resistive terms il {7) van-
speci al / advecti ve gauge. f 90. ish, resistive terms need not vanish in the limitipf— 0

The control parameters we use are the magnetic Reynoldbigh Rea,). For example, in a turbulent flow, Ohmic dissi-
number Rg;, the magnetic Prandtl number\pr and the pationnJ? tends to a finite value ag decreases. The need
Schmidt number, for non-resistive solutions to the build-up of magnetidd¢isi

is therefore not a given. We will examine this by performing
’ (20)  kinematic simulations where the Lorentz force is turned off
i.e. cr, = 0.
. . If the Lorentz force is significant, the fluctuationsdf and
whereu.n; is the root mean square velocity. We use=3k1 {7 might be correlated beyond simple turbulent diffusion con-
wheref,, the box wavenumber, is unity. The numerical res-cerns (j.e. the fluctuations éf* could drive flow patterns).
olution is varied betweef2® and 256> meshpoints for val- | the limit of incompressible flows, if the helicity is untfa,
ues of Re and Re between 3 and 300. In one case we Usedpen the only source terms for helicity patterns of firkitare
Rey ~ 800, which was only possible because in that casepe resistive terms. The terms are small compared to dimen-
we used Ry = 10, so that most of the energy gets dissi- sjonal estimates for the velocity terms whenRe> 1. We
pated viscously, leaving relatively little magnetic enesd il look for signals of magnetic helicity transport by exam
high wavenumbe#8, ining spectra of* andk?" as (pseudo) scalars, together with
spectra of a true passive scalar. As we will show, the advecto
resistive gauge is adequately efficient at turbulentlyudifig
1. IMPORTANCE OF MAGNETIC HELICITY DENSITY magnetic helicity that no inertial range for the magnetie he
licity density can be identified. However, the spectrahdf
help elucidate previous resusvhich found diffusive fluxes,
but at values well below turbulent diffusivities. Insteadir
spectra show clear diffusive behavior in the inertial rarmg

Magnetic helicity is not only of interest by being a con- {ne mere existence of the inertial range implies non-difeis
served quantity in ideal MHD, but also by being the basispanavior.

of a methodology to treat nonlinear helical MHD dynamos, s emphasize that our spectra/éfandh have nothing
. e .
namely dynamicak quenching’. This methodology relates 1, 4o with the usual magnetic helicity spectrum that obeys a

the current helicity in small scale fields with the magnege h o7 apjlity condition and whose integral gives the volsm
licity in small-scale fieldsj - b ~ k%a - b, and invokes the averaged magnetic helicity. Here we are looking instead at
magnetico effect. The evolution equation of the magnetic the power of the magnetic helicity density as a (pseudopscal
helicity density then becomes the evolution equation of theield. Our h;, measures the spatial variation bf In order

magnetic part of the effect and the nonlinear evolution of to avoid confusion, we shall refer to these spectra as scalar
the dynamo can be modeled. This methodology has been usggectra.

successfully in systems where no net helicity flux is possibl
and initial work invoking the methodology has captured the
behavior of at least one system with finite helicity flu¥e#\ IV. RESULTS
major prediction of the theory is that in the absence of pref-
erential helicity fluxes of small-scale fields, dynamo ati®

O . X The results reported below for the magnetic helicity dgnsit
quenched to sub-equamtlon mean f|e|9 strengths._ Thes ph h refer to the advecto-resistive gauge and have been obtained
nomenon is sometimes referred to as “catastrophic quenc

. y theA method, unless indicated otherwise. The results from
INg-". the direct method agreéllVA), but this method develops an
instability when nonlinear effects become importaiMB).

Rey = urms, Pny = Sc=
nks

)

ENIAN

A. Implicationsof (@) for dynamo theory

B. Magnetic helicity as passive scalar
A. Agreement between A and direct methods

In the advective and advecto-resistive gauges, the veloc-
ity appears in the evolution equations of the magnetic helic To test the agreement between thanethod and directly
ity density, Eqs.[{[7) and(13), only as advection terms in thesolving the induction equation in the advecto-resistivegg
fluxes, Eqs.[(8) and(14) . In the limit of ideal, incomprefsib  we plot the normalized rms magnetic helicitg:, . with re-
kinematic MHD, Eq.[(¥) is the evolution equation for a passiv spect to time (Figl]1). Note that the non-dimensional ratio
scalar. Even in non-ideal MHD, if the fluctuations/of due  ki1h2: /B2 . has a well-defined plateau during the kinematic
to the velocity fieldU were purely advective in nature (i.e. stage. Below we shall study the average value of this plateau
passive), magnetic helicity transport would only be résst as a function of magnetic Reynolds and Prandtl numbers. At

large-scale advective, and/or turbulently diffusive.Shhiould  the end of the kinematic phase, there is a slow saturatiosgpha
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FIG. 1: Time dependence of the normalized helicity for theeatb-
resistive gauge with the direct method and Ahmethod. Both curves
agree perfectly just until the moment when the code devedogs-
stability in the direct calculation. Time is normalized érrs of the
magnetic diffusion time. The fitis an exponential relaxatio a con-
stant value proportional tb—exp(—2nkZ At), WhereAt = t —tguy
is the time after the small-scale magnetic field has sam#snd
km = 1.4k1 has been chosen for a good fit.

B rms/ B eq

on a resistive time scale during which the large-scale fiéld o
the dynamo develog® The results of the two calculations
agree just unltil th_e mor_n.ent when the direct.calculgtion.bleve lines). In each case, time on the abscissa is normalizedetyrtwth
opsa num.encal instability, whose nature wil be dI_SCUSBed rate A\, whose value is given in each panel in units of the inverse
more detail below. The perfect agreement until this momen,.nover time ! = w,...k;. The ends of each line mark the point
can be taken as confirmation that thenethod works and is  \when the solution became unstable.

correctly implemented in the code.

FIG. 2: Evolution ofB,ms/ Beq for small values of Rg betweent.3
(top) and 2.1 (bottom), usingR® (solid lines) and34® (dashed, red

in a fictitious highk increase in the velocity field (third panel)
B. Natureof theinstability that produces the numerical instability. The results of Big
suggest that the power &f(remembering thaf includes that

In Fig.[2 we show time series for a range of modest valueghe third derivative of\) drops slowly enough at high that
of Reyr and two resolutionsj2? and64%. Reducing the mag- numerlcal_ st_a_blllty can only be achieved by enforcing an-ade
netic Reynolds number may stabilize the system somewhafuate resistivity) to dampA for only modest wavenumbers.
but changing the resolution has no clear effect. In Fig. 3 wdndeed, any gauge with large power i for high k is ex-
present data from equivalent runs that So've eir (11)_0r apeCted to -be numenca”y Unstable, and the method S.ketChed
ternatively [9) and{d2). We can see that the solutions matcH! AppendiX A olB may be used to make the connection be-
up until timet = 220/c.ks, where the run that solveE{11) tween analytical results in such a numerically unstableygau
becomes unstable. and numerical results produced in a stable gauge.

The key point is that when we evolid (9) ahdl(1®)never
enters the equations for physical quantities. However,nwhe . o .
we evolve[(Tl), the magnetic field includes a t&¥frx (VA), C. Evolution of rms helicity density
which, when computed numerically, is not zero. The first
panel in Fig[B shows the power spectra of the vector poten- In Fig.[4 we present a time series of the normalized rms
tial. Comparing the advecto-resistive gauge (dashedwied) magnetic helicity density in the kinematic regime (Lorentz
resistive gauge (dotted/blue) we see that = A"+ VA has  force turned off, i.ec;, = 0). In both the advecto-resistive
significantly more power at high than A*. Numerics can- and resistive gauges, there is an initial adjustment of tme n
not adequately handle the requirement tfatc VA = 0 at  dimensional ratid: h.ms/ B2, t0 a certain value, followed by
high & in the direct method, introducing errorsB), as can be a plateau. In the kinematic regime the magnetic helicity-den
seen in the second panel. This fictitious increase in magnetsity is passive and the advection term in the advecto-resist
power at hight (and the attendant increase in current) resuligauge merely serves to turbulently diffuse any local concen



105K T i -- advecto-resistive gauge
0.30} — resistive gauge

1
2
rms

o
[av]
o~
o
@
—_
o
—_
V)
—_
N

klh’rms/B

0.05 0.10 0.15 0.20 0.25
ki t

1073
107*

FIG. 4: Time dependence of the rms values for the helicityhin t

advecto-resistive (solid/red) and resistive (dashedjbfiauges with

the Lorenz force switched off, i.e;, = 0 in both cases.

< 107®
1077

10-8 We fit the data points in figurgl(5) with functions of the form

Ky h?
B2

rms

= cRe" (1+ bR . (21)

k/k,

. _ The fit results for the parameters are presented in Table I. Of
FIG. 3. Power spectra o, B, andU f‘.;[ two runs that are iden- 0 ot isc, which increases with Rr and scales approxi-
tical except that the first run solves fet®" directly while the sec- ) /2 . o
ond solves forA™ and A. In the top panel we plot the spectrum of Mately with Pt/*. A more general, albeit less accurate fit is
A obtained either visA* = A" + VA (dashed) or directlyAd;, given by

(solid/red), and compare witA" (dotted/blue), showing that the vec-

tor potential in the advecto-resistive gauge has much monepat fey AT ReM/Prl/?’ 2
high k. The inset shows the time evolution of the normalizeds 12 ~ 3 Re1\_/11 14 [ 2 M ’ (22)
shortly before the time of the numerical instability. Theskialotted Bis 50

line indicates the time for which the power spectra are takethe
second panel we present magnetic energy spectra obtaitieeldt  see Fig[T.
rect gauge (solid/red), with th& method (dashed/black) as wellas | is clear that high wavenumber fluid eddies (which are

kA (dotted/blue), showing that there is significant power iith . . O
rotational part ofA. We see that in the direct calculation 4f* the damped for small Re, i.e. largepr contribute significantly

numerics is unable to adequately handle the high wavenupdvesr 10 A, for ReM > 190’ while from F'g'@ we see that t_hey
of A®" with consequences for the velocity seen in the last pane. Th_cIO not contribute t_dlr_ms' That these eddies could contribute
three spectra are all taken for= 210/c.k;. in the advecto-resistive gauge is to be expected as the advec

tive nature of that gauge implies the existence of an efficien
turbulent cascade; the fact that they do contribute thede an
that thenJ x A* andn(V - A*")B terms remain important
implies that resistive terms both become important at small
?ength scales and have non-dissipative effects. This is ex-
plained by the fact that\** develops a strong high-ail; see
also Fig.[B. This is confirmed in Fifl 8, which shows that
the resistive magnetic helicity fluxes in the advecto-tess

In Figs[B and® we plot the height of the rms-magnetic he-gauge are proportional to Re In this gauge the rms resistive
|icity density p|ateau as a function of Refor several values heIicity fluxes are therefore independent of the actualevalu
of the magnetic Prandtl number and constant forcing amplithe resistivity, staying finite even in the high f®dimit. This
tude. The differences between the evolution equation*for is quite different from the resistive magnetic helicity fasin
andh?®* are contained entirely in the flux terms so the volumethe resistive gauge, and the global magnetic helicity pigssi
integral of h is the same in the two gauges. Any differencetion (which is gauge-independent): both terms are only pro-
between the rms values bftherefore is due to spatial fluctu- portional to Réf and, after multiplying withn these terms
ations generated by the flux terms. tend to zero for Rg — co.

trations of h?*. Therefore there cannot be any spontaneou
growth of h2*, except for effects from the resistive terms in
the early adjustment phase. Turbulent diffusion itselfttos
other hand, cannot generate variancé vt
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FIG. 6: Ras dependence df; hl,,./ B2, for the kinematic phase.

Values are averages over times where they reach a statistadey A
—1/4 power law can be seen.

D. Comparison with passive scalar
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FIG. 7: Dependence ofkih2, /B2, scaled by Ff\l/{g on

Rau/Per{S for the kinematic phase andr= 1 (filled circles),
5 (open circles), and 10 (plus signs). The solid line reprissthe fit

of Eq. (22).
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FIG. 8: Reau scaling of the rms value of x A, normalized by
Rev B2, for the advecto-resistive and resistive gauges. The solid
line represents constant scaling, iy x A* = const, while the
dashed line represents inverse square root scalingJ.ex A" «
Re,,'/?, for three runs with Ri = 1 in the saturated regime. The
dotted/blue line shows thatJ?, properly normalized, is approxi-
mately constant.

and for the passive scalar concentratignn the kinematic

In Fig.[9 we present scalar spectra of the magnetic helicgarhitrary units) and saturated regimes. The passive rscala

ity density for both the resistive and advecto-resistiveggs

TABLE I: Fit parameters for equatiof (P1) and Hig. 5.

P | a | b | ¢ | linetype
1 0.7 | 3x107% | 1.2 solid/blue
5 109 | 4x107* | 2.0 dashed/green
10 | 1.0 | 5x107° | 3.5 dotted/red

spectrum shows a peak at the forcing scal¢k; = 3, fol-
lowed by an approximate—>/3 subrange and an exponential
diffusive subrange. As long as the magnetic energy density
is still small compared with the kinetic energy density, the
field exhibits exponential growth and a Kazantsé«? energy
spectrum, which is well seen in simulations even at magnetic
Prandtl numbers of unity both with and without kinetic helic
ity in the velocity field®. This k3/2 spectrum is also reflected

in the scalar spectrum df**. The scalar spectrum df" is
somewhat steeper and closetfq indicating that:* is dom-



inated by white noise in space at large scales. kinematic regime
The saturated regime exhibits some interesting properties i b i
. 10.0000 ¢ PSP 3
The pronounced peak of the power of the passive scalar at the : PPtk - E

driving scale is easily understood as being due to the source 1.0000
of ¢. However, the magnetic helicity density in the resistive~ .
gauge shows a significant peak there as well, while it does n :
in the advecto-resistive gauge. This implies that the veloc 0.0100 ¢
ity term in Eq. [I5) generates significant spatial variation i

0.1000 T

the magnetic helicity density — even in the absence of eatern 0.0010
modulations. As in dynamical quenching}. influences the 0.0001 :
a effect, this suggests a way to quantify the appropriateness 1 10 100

of different gauge choices: systems where spatial and tempo
ral fluctuations inoe can be adequately constrained would al-
low one to determine whether spatial fluctuations jias seen
in Fig.[d, are fictitious as suggested by the advecto-resisti
gauge or not.

The spectra of®" in the saturated regime does not present &
a clear inertial range, so we cannot draw strong conclusions 7]
as to possible non-diffusive turbulent fluxes. Howewérol-

, : . 5| R
lows the same cascade as the passive scalar. Previoussstudie 10

in that gaugé found that magnetic helicity fluxes were best 1078 N

treated as diffusive, although the fits were imperfect. Tife d ‘

fusive nature is clearly seen in the spectrum while the imper 1 10 100
fections of the diffusive fit can be seen in the generation of a k/k,

peak at the driving scale. This evidence in support of difteis
magnetic helicity fluxes gives us the confidence to predict a|t:
yvhat Ray QIffuswe magnetlc_hellplty fluxes will play a dom- kinematic regime (top) and the nonlinear saturated reglmé&dgm)
inant role in dynamo saturation, i.e. when the diffusivedsix ¢, pe — g0 with Pry; — Sc= 1. In the kinematic regime, the dash-
have a greater effect on magnetic helicity evolution tha th yotted lines have slopes2 for h*, +3/2 for h**, and—3/2 for ¢
resistive terms. This will be done §Vlwhere we re-analyze (top) and—5/3 for ¢ in the saturated regime.

simulation data from earlier wo?k

IG. 9: Power spectra df°, h*", and the passive scalarboth in the

Here, bothh; andV - F; are a gauge-dependent, but if there
V. REVISITING EARLIER WORK is a steady state, and/if is constant, the@h/dt = 0, and
since both€ - B andj - b are gauge-invarian¥ - F; must
Earlier work®32 on magnetic helicity fluxes in inhomoge- also be gauge-invariant. Numerical values&oiB, 7 - b, and
neous open systems confirmed that the magnetic helicity denv . F'; were given earlie¥ for a particular simulation of a slab
sity of the small-scale field is gauge-invariant—even itthfa  of helically driven turbulence embedded in a poorly conduct
the large-scale field is not. The divergence of the mean magng non-helically driven turbulent halo. In Fig.]10 we show
netic helicity flux of the small-scale field is then also gauge the scaling of all three terms versusyreNote that—& - B
invariant, but its value is small compared with resistivegma is balanced mainly by - b. However, if the current trend,
netic helicity dissipation. We return to this work to estima ~ 7 . pe! LT~ Re /2 i
at what Re; diffusive magnetic helicity fluxes will begin to mig;)ht e;%\f:t :nctjrlczs_clj\,ter athgz 3 v>\</e1r§4jco”csoc;1, tltr;]lées’C%T_e
play a dominant role in dynamo saturation. - ing of € - B is expected to become shallower, following that
We emphasize that we are now discussing helicity propyf 7 . F;. Given that the largest Reaccessible today is of
erties of what we call the small-scale field. Such a field isyrger103, we may conclude that an alleviation of quenching
defined by introducing an averaged magnetic fid,indi-  through diffusive magnetic helicity fluxes will not be promi
cated by an overbar. Following earlier wétk? we restrict pent in simulations for the near future. Neverthelessoastr
ourselves here to planar (or horizontal) averaging. Thelsma physical systems such as the Sun are orders of magnitude be-
scale field is then given by = B — B, and the mean mag- yond the estimated critical point of Re~ 3 x 10%; and we
netic and current helicity densities of the fluctuating fedle  eypect their dynamo dynamics to behave accordingly.
thenh; = a-b andj - b, respectively, wher& x a = b
andj = V x b. Turbulent diffusion and the: effect imply
helicity transfer between scafés®through the mean electro- VI. CONCLUSIONS
motive force of the fluctuating fieldf = w x b, so that the
evolution equation fok; takes the form

In view of the fact that the time averaged magnetic helicity
Ohs _ - _ of the fluctuating fields is gauge-invariantin systems with s
o = 26 B-2j-b—V Fy (23)  ficient scale separation, the gauge-freedom can be exploite
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dissipation in turbulence, known as the law of finite energy
dissipatio®. This is interesting as the source term for the
volume integrated magnetic helicit/ does in fact tend to
zero ag) does. In this sense, the high Réehavior of mag-
netic helicity is richer than previously anticipated. lede
the generation of spatial magnetic helicity fluctuatieri-

hilo in non-advecto-resistive gauges is interesting, with po-
tentially testable implications. We expect that the maignet
helicity fluxes resulting from terms of the fornJ x A®' can

be modeled as turbulent Fickian diffusion-type fluxes down

0.001 ¢

DTN the gradient of mean magnetic helicity. However, it is clear
] that fluxes from turbulent diffusion provide only a poor es-
100 1000 10000 cape from catastrophie quenching, partly because they can-
Re,, not distinguish between large- and small-scale fields.Hewt
more, in simulations with such turbulent diffusion fluxdsit
contribution is still much smaller than the local resistiwag-
FIG. 10: Scaling o B, 7 - b, andV-F; versus Re forthe dataof ~ netic helicity dissipatiof?*2 However, the latter decreases
an earlier simulatio® of helically driven turbulence embedded in a faster - Rej;") with magnetic Reynolds number than the for-

poorly conducting non-helically driven turbulent halo.eTsymbols 71/2) so one may estimate that only for magnetic

. . ) ) mer (~ Re,
show actual data obtained from simulations, the dashed éinethe 4
extrapolation to high Re. Reynolds numbers of arouri®* one has a chance to see the

effects of turbulent diffusion. If true, however, such flaxe
would definitely be important for the magnetic Reynolds num-
bers relevant to stars and galaxies — even though such values
cannot be reached with present day computer power.

gain insights using gauges that are particularly revealitege
we have examined an interesting gauge, the advecto-vesisti
gauge. As the advecto-resistive gauge is inherently numeri
cally unstable, we had to implement a possibly universéi-tec
nigue to run numerical simulations in such unstable gauges b
running in a stable gauge while also solving a further eguati
for the gauge transformation.

The advecto-resistive gauge has allowed us to examine both National Supercomputer Centre in Linkdping and the Cen-
the consequences of finite resistivity for magnetic hglicit ter for Parallel Computers at the Royal Institute of Technol
density as well as the possibilities of turbulent transpbhte  ogy in Sweden. This work was supported in part by the
magnetic helicity flux, and in particular the contributionh ~ Swedish Research Council, grant 621-2007-4064, and the
nd x A" (properly normalized) reaches a constant value aguropean Research Council under the AstroDyn Research
n — 0. This behavior is similar to the behavior of energy Project 227952.
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8" http://pencil -code. googl ecode. com Appendix B: Derivation of Eq. (12)

provided Eq.[(b) is obeyed.

We present here the derivation of the transformation from
the resistive gauge to the advecto-resistive gauge, ptotge
analogously to the derivation presented in Appefdix A. How-
We begin by expressiny’ x B in terms ofA, ever, instead of EqL{A2) we now have

(U x B)i = UjAji — UjAi ;. (A1) DA
Dt

Appendix A: Derivation of Eq. (§)

=-U;; A5+ (U-A"),; +nV>A]. (B1)
The last term can be subsumed into an advective derivative

term for A. Using furthermoré/; A; ; = (U;A;) . — U;iA;,  Inserting Eq.[(I0) forA® = A — VA" we obtain an
we can write Eq.[([2) as Equation similar to[(AB),

DAY DA DA™

= —Uj_’iA}]v + (U . AW)J — 77Ji- (AZ) _ _Uj,iA?r + Uj,iAfj:'ar + (U . Ar),i

Dt Dt Dt
: W _ g2 _ wAWa +n VA — VAT (B2)
We now insert Eq[{3) ford A* — VAWV s0 which leads to
DA? DA\;Vd a W:a DAt
VA v AR D TUmAT —nVEAY =
+(U-AY) i —nJi.  (A3) DAriar
( ) vz ( Dt + U . Ar _ nVQAr:ar) ’ (83)

and note that

DA};V:ai DAW:a
- Dt '\ Dt

so we recover the evolution equation for the advecto-iiesist
> + Uj_,Z-AYJ‘»’:a. (A4)  gauge provided Eq(12) is obeyed.




