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1. Introduction

The analysis of gluon properties is an important key poictaafy the nonperturbative aspects
of QCD [.[2,[B]. In particular, the gluon propagatie,, the two-point Green function is one of the
most basic quantities in QCD, and has been investigatedmuiith interests[[1] 4] 5]. Dynamical
gluon-mass generation is also an important subject retattie infrared gluon propagation. While
gluons are perturbatively massless, they are conjectaredtduire a large effective mass as the
self-energy through their self-interaction in a nonpdraitive manner[[3]6]. Actually, glueballs,
color-singlet bound states of gluons, are theoreticalgdmted to be fairly massives.g, about
1.5GeV for the lowest 0" and about 2GeV for the lowest 2, in lattice QCD calculationd]7].

For the direct investigation of the gluon field, gauge fixisgto be done. Among gauges,
the Landau gauge is one of the most popular gauges in QCDt &adps Lorentz covariance and
global SUN;) symmetry. In Euclidean QCD, the Landau gauge has a globaiitiefi to minimize
the global quantityR= [ d*x Tr{A, (X)A,(X)} = 3 [ d*xAq (x)A (x) by gauge transformation. The
local conditiond, A, (x) = 0 is derived from the minimization d®. The global quantityk can be
regarded as “total amount of the gluon-field fluctuation” irckdean space-time. In the global def-
inition, the Landau gauge has a clear physical interpagiatiat it maximally suppresses artificial
gauge-field fluctuations relating to gauge degrees of freeifld.

In lattice QCD, the Landau gauge is defined by the maximinatiRa = S« Y ReTtJ,(x),
with the link-variableU,,(x) = €294 (a: lattice spacingg: QCD gauge coupling). The gluon
field is defined as\,(x) = 2|ag{Uu( X) — U“( X)} — (trace part. In the Landau gauge, the mini-
mization of gluon-field fluctuations justifies the expandiyrsmall lattice spacing. In Euclidean
metric, the gluon propagator is defined by the two-point ﬁamr:asDW(x y) = (A% (X X)AD (y)).
Here, owing to the symmetries and the transverse propegycdlor and Lorentz structure of the
gluon propagator is uniguely determined in the Landau gauge

In this paper, using SU(3) lattice QCD Monte Carlo calcolagi, we study the functional
form of the Landau-gauge gluon propagatd(y) = 3(N2 )Daa( X) = 3(N2 ) (AG(X)A5(0)), as
a function of 4D Euclidean distange= (x,x,)Y2. We mainly deal with the coordinate-space
propagatoD(r) for the infrared and intermediate regionrof 0.1 ~ 1.0fm, which is relevant for
qguark-hadron physics. Based on the obtained function fdrtheogluon propagator, we aim at a
nonperturbative description of gluon properties,

2. Functional form of Landau-gauge gluon propagator

The SU3) lattice QCD Monte Carlo calculations are performed at thenghed level using
the standard plaquette action wih= 2N./g?=5.7, 5.8, and 6.0, on the lattice size 01632,
20° x 32, and 33, respectively. The lattice spacimags found to bea = 0.186,0.152, and QL04fm,
at B = 5.7, 5.8, and 6.0, respectively, when the scale is deteunso as to reproduce the string
tension as,/o = 427MeV from the static 6 potential [B]. Here, we choose the renormalization
scale afy = 4GeV for 3 = 6.0, and make corresponding rescaling 8e75.7 and 5.8[[1].

Figure 1(a) and (b) show the coordinate-space gluon propager) and the momentum-
space gluon propagat®(p?) = [ d*x éP*D(r), respectively. Our lattice QCD result Bf(p?) is
consistent with that obtained in previous lattice studathough recent huge-volume lattice studies
[Al] indicate a suppression of the gluon propagator in thepElBeregion @ < 0.5GeV).
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Figure 1: (a) Lattice QCD results (symbols) of the Landau-gauge gluapagatoD(r) = D, (x)/24 in
coordinate space, and 4D Yukawa-type funcii®dkawa(r) = Ame ™ /r (solid line) withm = 0.624GeV
andA = 0.162. The dash-dotted line denotes a typical example of thesivexvector propagattﬁ?rmass{r)

(b) The Landau-gauge gluon propagdﬁnilpz) in the momentum space @i, = £ sm( i £). The solid line

denotes 4D Fourier-transformed Yukawa-type propagaéarDyukawa( p2) = 4m2AM(p? + m@)~3/2,

We find that the lattice gluon propagatbd(r) cannot be described by the free massive Eu-
clidean propagatdDmasdr) = (gn‘)’4e 'pxp2+mz 4n2 K1 (mr) (Ky(2): modified Bessel function)
[B] in the whole region of = 0.1 ~ 1.0fm, as shown in Fig.1(a).

By the functional-form analysis, we find that the Landauggagluon propagatdd(r) in the
coordinate space is well described by the 4D Yukawa-typetion [f}]

1 aa e—mr
D(r) = 24Duu( )= AmTa (2.1)
with m=0.624(8)GeV andA=0.1622) in the range of = 0.1 ~ 1.0fm, as shown in Fig.1(a). The
gluon propagatoﬁ(pz) in the momentum space is also well described by 4D Fourrstormed

Yukawa-type function aB(p?) = 5,03 (p?) = (pz“f% for 0.5GeV< p < 3GeV [11.

3. Analytical applications

In this section, as applications of the Yukawa-type gluooppgator, we derive analytical
expressions for the zero-spatial-momentum propadaggr), the effective mas#es(t), and the
spectral functiorp(w) of the gluon field [[L]. All the derivations can be analytigafierformed,
starting from the Yukawa-type gluon propaga®ykawa(r). Although the real gluon propagator
has some deviation from the Yukawa-type in UV region, thighod is found to be workable to
reproduce lattice QCD results, as shown below.

3.1 Zero-spatial-momentum propagator of gluons

First, we consider zero-momentum gluon propagBigit) = 2i4 YA (XA (0,0)) = 54D(r),
wherer = /X2 4-t2 is the 4D Euclidean distance. For the simple argument, we theal with the
continuum formalism with infinite space-time. Startingrfraghe Yukawa-type gluon propagator
Dyukawa(r ), we derive the zero-spatial-momentum propagatof]as [1]

2

X 2
d®x D VX242 4rrAm/ AX——— e ™ _ ATALK, (mit 3.1
/ Yukawa( ) m l( ) ( )
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Figure2: (a) The zero-spatial-momentum propag&gft) of gluons in the Landau gauge. (b) The effective
massMef () of gluons in the Landau gauge. The symbols are the lattice @@t®on 32 atB = 6.0, and the
solid line is the theoretical curve derived from 4D Yukawae propagator witln=0.624GeV and\=0.162.

In Fig.2(a), we show the theoretical curve @§(t) in Eq.(3.1) withm=0.624GeV andA\=0.162,
together with the lattice QCD result 8f(t) in the Landau gauge. For the actual comparison with
the lattice data, we take account of the temporal perigdjfiit The lattice QCD data are found to
be well described by the theoretical curve, associated twhYukawa-type gluon propagator.

3.2 Effective mass of gluons

Second, we investigate the effective md&s(t) of gluons. The effective mass plot is often
used for hadrons as a standard mass measurement in latt@eF@€the simple notation, we use
the lattice unit ofa = 1 in this subsection. In the case of large temporal size, fieetve mass is
defined adMef(t) = In{Do(t)/Do(t+1)}.

In Fig.2(b), we show the lattice result Meg(t), where we take account of the temporal peri-
odicity. The effective gluon mass exhibits a significaniesaependence, and it takes a small value
at short distances. Quantitatively, the effective gluorssria estimated to be about 4066600MeV
in the infrared region of about 1fr|[1]. This value seems &siast with the gluon mass suggested
by Cornwall [3], from a systematic analysis of nonpertuiesQCD phenomena.

Now, we consider the consequence of 4D Yukawa-type propa@8atkawa(r) of gluons. For
simplicity, we here treat the three-dimensional space asartious infinite-volume space, while
the temporal variableis discrete. We obtain an analytical expression of the tffeenass|[L],

Do(t) tKl(mt)

Mer ) =N Bt 1) — " T DRe(mit 1)) 52

when the temporal periodicity can be neglected. In Fig,2¢e)add by the solid line the theoretical
curve of Meg(t) in Eq.(3:2) withm=0.624GeV. The lattice QCD data Me(t) are found to be
well described by the theoretical curve derived from theai&-type gluon propagator. From the
asymptotic formKy(z) O z ¥/2eZ, the effective mass of gluons is approximated[fs [1]

1 1 1
Megr(t) &~ m— > In(1+ ?) ~m—o (for large t). (3.3)
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This functional form indicates th&iles(t) is an increasing function and approachesom below,
ast increases. Then, the mass parameter 600MeV in the Yukawa-type gluon propagator has a
definite physical meaning of the effective gluon mass in itfi&red region.

Note that the simple analytical expression reproducesnbmalous “increasing behavior” of
the effective masMe(t) of gluons. Thus, this framework with the Yukawa-type glusogagator
gives an analytical and quantitative method, and is founaeibreproduce lattice QCD results.

3.3 Spectral function of gluonsin the Landau gauge

As a general argument, an increasing behavior of the effeaiassMes(t) means that the
spectral function is not positive-definitg [1]. More preis the increasing property de(t) can
be realized, only when there is some suitable coexistenpesifive- and negative-value regions in
the spectral functiop(w) [fl. However, the functional form of the spectral functiohtiee gluon
field is not yet known.

The relation between the spectral functio(w) and the zero-spatial-momentum propagator
Do(t) is given by the Laplace transformatidd(t) = [5”dw p(w) e *t. When the spectral func-
tion is given by ad-function such ap(w) ~ d(w — ), which corresponds to a single mass
spectrum, one finds a familiar relation B(t) ~ e~“t, For the physical state, the spectral func-
tion p(w) gives a probability factor, and is non-negative definitehia tvhole region ofv. This
property is related to the unitarity of the S-matrix.

From the analytical expression of the zero-spatial-moomargropagatoDy(t) = 417AtK; (mt),
we can derive the spectral functipriw) of the gluon field, associated with the Yukawa-type gluon
propagator[[1]. For simplicity, we take continuum formaiisvith infinite space-time. Using the
inverse Laplace transformation of the modified Bessel fanctwe derive the spectral function
p(w) of the gluon field as[]1]

ATIA 4TA/v/2m
p(w):—ﬁ@(m—m—swrﬁé(w—m—s), (3.4)

with an infinitesimal positivee, which is introduced for a regularization. Hera,~ 600MeV is
the mass parameter in the Yukawa-type function for the Latgdauge gluon propagator. The first
term expresses a negative continuum spectrum, and thedsesrom ad-functional peak with the
residue including a positive infinite factor as¥/2 atw = m+ .

We show in Fig.3 the spectral functigm(w) of the gluon field. As a remarkable fact, the
obtained gluon spectral function(w) is negative-definite for all the region @ > m, except
for the positived-functional peak ato = m. The negative property of the spectral function in
coexistence with the positive peak leads to the anomaloseasing behavior” of the effective
massMeg(t) of gluons [1L]. Actually, Eq[(3]4) leads to Ef.(3.2), whickelwdescribes the lattice
result of the effective maddes(t), as shown in Fig.2(b).

We note that the gluon spectral functipriiw) is divergent atw = m+ ¢, and there aréwo
divergence structures: @functional peak with a positive infinite residue and a nisgatvider
power-damping peak. On finite-volume lattices, these $argies are to be smeared, apdw)
is expected to take a finite value everywherecon On the lattice, the spectral functigmw)
is conjectured to include a narrow “positive-valued peaehaming from thed-function in the
vicinity of w =m (+¢) and a wider “negative-valued peak” near~ min the region ofw > m{fl].
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Figure3: The spectral functiop(w) of the gluon field, associated with the Yukawa-type propagdthe
unit is normalized by the mass parameter 600MeV.p(w) shows anomalous behaviors: it has a positive
d-functional peak with the residue afo at w = m, and takes negative values for all the regiormuf m.

In this way, the Yukawa-type gluon propagator indicates @neeely anomalous spectral
function of the gluon field in the Landau gauge. The obtainkmry spectral functiorp(w) is
negative almost everywhere, and includes a complicatezt@iiwvice structure near the “anomalous
threshold”,w = m (+¢). Thus, this framework with the Yukawa-type gluon propagafiwes an
analytical and concrete expression for the gluon speciraitionp(w).

4. Effective dimensional reduction in gluonic vacuum by Parisi-Sourlas mechanism

We discuss the Yukawa-type gluon propagation and a posditslensional reduction due to
the stochastic behavior of the gluon field in the infraredaedl]. As shown before, the Landau-
gauge gluon propagator is well described by the Yukawa fondéh four-dimensional Euclidean
space-time. However, the Yukawa functieri™ /r is a natural form inthreedimensional Euclidean
space-time, since it is obtained by the three-dimensiopalkiér transformation of the ordinary
massive propagatdip® +m?)~1. In fact, the Yukawa-type propagator has a “three-dimerafo
property. In this sense, as an interesting possibility, wapgse to interpret this Yukawa-type
behavior of the gluon propagation as an “effective reductibthe space-time dimension”.

Such a “dimensional reduction” sometimes occurs in stdaghagstems, as Parisi and Sourlas
pointed out for the spin system in a random magnetic figld [®Jact, on the infrared dominant
diagrams, thé-dimensional system coupled to the Gaussian-random extéetd is equivalent
to the (D — 2)-dimensional system without the external field, due to aémdgUSY structure.

We note that the gluon propagation in the QCD vacuum resentbhéesituation of the system
coupled to the stochastic external field. Actually, as isdatkd by a large positive value of the
gluon condensatéG?,Gh") = 2(HZ — E3) > 0 in the Minkowski space, the QCD vacuum is filled
with a strong color-magnetic fiel@f ILO], which can contrispontaneous chiral-symmetry break-
ing [L3], and the color-magnetic field is considered to bélyigandom at the infrared scale. Since
gluons interact with each other, the propagating gluonatewitly scattered by the other gluons in
the randomly-oriented color-magnetic fields of the infda€@CD vacuum, as shown in Fig.4.

Actually at the infrared scale, the gluon field shows a stroamgdomness due to the strong
interaction, and this infrared strong randomness is censdlto be responsible for color confine-
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color-magnetic fields propagating gluon

Figure4: A schematic figure for a propagating gluon. The QCD vacuuntiéglfivith color-magnetic fields
which are stochastic at an infrared scale, and the gluorggiates in the random color-magnetic fields.

ment, as is indicated in strong-coupling lattice QCD. Eviterahe removal of fake gauge degrees
of freedom by gauge fixing, the gluon field exhibits a strongdmamness accompanying a quite
large fluctuation at the infrared scale.

As a generalization of the Parisi-Sourlas mechanism, wgctme that the infrared structure
of a theory in the presence of quasi-random external fieldsgher-dimensional space-time has
a similarity to the theory without the external field in londimensional space-tim¢][1]. From
this point of view, the Yukawa-type propagation of gluonsyriralicate an “effective reduction of
space-time dimension” by one, reflecting the interactiotwben the propagating gluon and the
other gluons in randomly-oriented color-magnetic fieldthminfrared QCD vacuum.

In any case, it is an interesting and important subject tafgléhe nonperturbative QCD
vacuum structure in terms of gluonic propertifs [2] inchgithe gluon propagatiof][1].

Acknowledgements
H.S. is supported by Grant-in-Aid for Scientific Researdd)[No. 19540287, Priority Areas
“New Hadrons” (E01:21105006)]. The lattice calculations done on SX-8R at Osaka University.
References
[1] T.Iritani, H. Suganuma, and H. lid®hys. RevD80 (2009) 114505, and references therein;
H. Suganuma, T. Iritani, A. Yamamoto, and H. lid@S(QCD-TNT09) (2009) 044.
[2] A. Yamamoto and H. Suganumihys. Rev. Lettl01 (2008) 241601Phys. RevD79 (2009) 054504.
[3] J.M. Cornwall,Phys. RevD26 (1982) 1453.

[4] I.L. Bogolubsky, E.-M. llgenfritz, M. Miller-Preusskeand A. Sternbeckhys. LettB676 (2009) 69;
A. Sternbeck, E.-M. ligenfritz, M. Mueller-Preussker, aadSchiller,Phys. RevD72 (2005) 014507;
A. Cucchieri, T. Mendes, O. Oliveira, and P.J. SilPdys. RevD76 (2007) 114507.

[5] K. Amemiya and H. Suganum®&hys. RevD60 (1999) 114509.
[6] A.C. Aguilar, D. Binosi, and J. Papavassilidehys. RevD78 (2008) 025010.

[7] C.J. Morningstar and M.J. Peardd?hys. RevD60 (1999) 034509;
N. Ishii, H. Suganuma, H. MatsufurBhys. RevD66 (2002) 094506Phys. RevD66 (2002) 014507.

[8] H. Suganumat al,, Color Confinement and Hadrons in Quantum Chromodynariicsld Scientific,
2004, p.249; T.T. Takahasht al., Phys. RevD65 (2002) 114509Phys. Rev. Let86 (2001) 18.

[9] G. Parisiand N. Sourlaghys. Rev. Letéd3 (1979) 744.

[10] G.K. Sawvidy,Phys. LettB71(1977) 133; N.K. Nielsen and P. Olesétycl. PhysB144 (1978) 376;
J. Ambjorn and P. Oleseiucl. PhysB170 (1980) 60.

[11] H. Suganuma and T. Tatsumi, Ann. Ph288, 470 (1991); Prog. Theor. Phy&0, 379 (1993).



