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We generalize the cosmic energy equation to the case when massive particles in-

teract via a modified gravitational potential of the form φ(a, r), which is allowed to

explicitly depend on the cosmological time through the expansion factor a(t). Using

the nonrelativistic approximation for particle dynamics, we derive the equation for

the cosmological expansion which has the form of the Friedmann equation with a

renormalized gravitational constant. The generalized Layzer–Irvine cosmic energy

equation and the associated cosmic virial theorem are applied to some recently pro-

posed modifications of the Newtonian gravitational interaction between dark-matter

particles. We also draw attention to the possibility that the cosmic energy equation

may be used to probe the expansion history of the universe thereby throwing light

on the nature of dark matter and dark energy.
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I. INTRODUCTION

Almost half a century ago, Layzer & Irvine [1], and independently Zeldovich & Dmitriev

[2], demonstrated that in an expanding universe, the peculiar kinetic (K) and potential (U)

energies of a large system of pressureless particles interacting via the Newtonian potential

φ ≡ −G/r satisfy the cosmic energy equation

Ė = −(2K + U)H , E = K + U , (1)

where (see also [3, 4])

K =
1

2

∑

i

miv
2
i , (2)

and

U = −
G

2

∫

[ρ(r1)− ̺] [ρ(r2)− ̺]

|r1 − r2|
d3r1d

3r2 (3)

are, respectively, the peculiar kinetic and potential energies of a system of particlesmi having

coordinates ri and peculiar velocities vi. Here, ρ(r) is the mass density of these particles,

̺ is its cosmological background average, and H = ȧ/a is the Hubble parameter describing

the cosmic expansion. For the discrete distribution ρ(r) =
∑

i miδ(r − ri), the integral in

(3) should avoid the configuration r1 = r2.

One can introduce the correlation function ξ(r):

〈[ρ(r0 + r)− ̺] [ρ(r0)− ̺]〉 = ̺2ξ(r) (4)

with the obvious property

∫

ξ(r) d3r = 4π

∫

ξ(r) r2dr = 0 . (5)

Then Eq. (1) can be averaged to yield the corresponding equation per unit mass

〈Ė〉 = − [2〈K〉+ 〈U〉]H (6)

with E = E/M , U = U/M , and

〈U〉 = −2πG̺

∫

ξ(r)rdr . (7)

Here, M = ̺V is the total mass of the system in a large volume V .

Two important limiting cases of Eq. (1) need mention [3, 4]:

(i) For noninteracting particles, we have U = 0, and the relation K̇ = −2HK corresponds

to the kinematic decay of the peculiar velocities with time vi ∝ 1/a(t).
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(ii) Once the clustering has entered a stationary regime, the condition Ė = 0 results in the

virial relation

2K + U = 0 . (8)

A breakdown of (8) for galaxies belonging to the Coma cluster led Zwicky [5] to suggest

that a large amount of dark matter might dominate the dynamics of Coma. While dark

matter appears to be ubiquitous, its nature remains elusive. Indeed it is now believed that,

to properly account for the energy budget of the universe, dark matter (DM) must be supple-

mented by an even more enigmatic ‘substance’ called dark energy (DE), which, on account

of its large negative pressure, causes the universe to accelerate instead of decelerating.

Our current theoretical understanding of DM and DE can be broadly divided into ideas

that are mainstream and those that are radical. Mainstream notions suggest that DM is

formed of nonbaryonic particles of relic origin while DE consists of the cosmological constant

or a relic scalar field such as quintessence. Radical notions suggest that the purported

existence of DM/DE may be pointing to a breakdown of Newtonian/Einsteinian gravity on

large scales. Theoretical models which incorporate this latter set of ideas include Braneworld

and f(R) gravity theories in the case of DE, and Modified Newtonian Dynamics (MOND)

and the screened gravitational interaction model in the case of DM (see also [6, 7]).

Ever since its discovery, the cosmic energy equation (1) has been one of the bulwarks of

modern cosmology, and its many applications include estimates of the matter density and its

gravitational binding energy [3, 4, 8]. In this paper, we show how the cosmic energy equation

can be generalized to incorporate more flexible forms of the gravitational interaction of dark

matter, some of which have been suggested in the literature.

Our assumption is that nonrelativistic dark-matter particles interact with each other via

the two-particle potential φ(a, r) so that the potential energy between two particles is

m1m2φ (a, |r1 − r2|) . (9)

As indicated in (9), we allow the two-particle potential to depend explicitly on the cosmo-

logical time through the scale factor a(t), which is characteristic of some class of the models

to be considered below. We consider the universe dominated by these dark-matter particles

and by the uniform dark energy.

In Sec. II, using the nonrelativistic theory, we obtain the law of cosmological expan-

sion for our universe, which turns out to have the Friedmannian form with a renormalized

gravitational constant. In Sec. III, we then derive the generalized cosmic energy equation

and the corresponding virial relations, which are analogs of the corresponding Layzer–Irvine

equation (1) and virial relation (8). In Sec. IV, we comment on the results obtained.
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II. COSMOLOGICAL EXPANSION

In this section, we will derive the law of cosmological expansion given the interaction

potential (9). The universe model can be taken to be spatially flat since we are dealing with

spatial scales much smaller than the Hubble length. We describe particle dynamics within

a large volume using the nonrelativistic approximation with respect to comoving particle

velocities.

A. Expansion law in the ΛCDM model

The Lagrangian for a nonrelativistic particle is given by the expression [3]

L =
1

2
mṙ2 −mΦ(r, t) , (10)

where Φ(r, t) is the full potential acting on the particle. In the ΛCDM (cosmological con-

stant Λ + cold dark matter) model, in which dark-matter particles interact via Newtonian

potential, for a pointlike matter distribution ρ(r, t) =
∑

i miδ(r − ri), the potential Φ(r, t)

is given by

Φ(r, t) = −G
∑

j

mj

|r − rj|
−

Λ

6
r2 . (11)

Proceeding to the comoving coordinates x = r/a and making a canonical transformation

L → L−
d

dt

(

1

2
maȧx2

)

, (12)

one transforms the one-particle Lagrangian (10) to

L =
1

2
ma2ẋ2 −mϕ , (13)

where the new potential is given by

ϕ = Φ +
1

2
aäx2 . (14)

In the Newtonian case, with account taken of (11), the new potential is

ϕ = −
G

a

∑

j

mj

|x− xj |
+

1

2

(

aä−
Λa2

3

)

x2 . (15)

The law of cosmological expansion can be derived directly from (15) under the require-

ment that the potential ϕ should not exert force on a test particle in the limit of a homoge-

neous distribution of matter ρ(r) ≡ ̺. To see this, we note that, in particular, the Laplacian
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of the potential should vanish in this limit. Now, we have

∇2ϕ = 4πGa2
∑

j

mj δ(r − rj) + 3aä− Λa2

→ 4πGa2̺+ 3aä− Λa2 . (16)

Whence, we obtain one of the Friedmann laws of expansion

ä

a
= −

4πG

3
̺+

Λ

3
. (17)

B. Expansion law in the case of general potential

In the case of a general two-particle potential (9), the derivation that led to the cosmo-

logical potential (15) for a particle can be repeated and generalized to

ϕ =
∑

j

mjφ(a, a|x− xj|) +
1

2

(

aä−
Λeffa

2

3

)

x2 , (18)

where Λeff is the time-dependent ingredient in the universe which describes dark energy and

replaces the cosmological constant and, in particular, whose interaction with dark matter

makes the potential (9) time-dependent. Our equations below will be general and will not

require the specific knowledge of this term; we will only assume that it does not cluster,

remaining homogeneous in space. One such field-theoretic example is considered in Sec. IIC

below (example a).

The class of theories under consideration in this paper could, in fact, be defined by the

property that the potential acting on a single dark-matter particle has the form (18). This

complicated potential already includes the response of the universe, with all its field-theoretic

ingredients, to the presence of dark-matter particles at specified spatial positions. In this

subsection, we are going to derive the modified expansion law by taking the Laplacian of

(18) and demanding that it vanish in the case of a spatially uniform distribution of matter.

Suppose that the gravitational two-particle potential has the form (we suppress the de-

pendence on a as it is not relevant here)

φ(r) = −
G

r
f(r) , (19)

with a sufficiently regular function f(r) [in particular, lim
r→0

rf ′(r) = 0], as will be the case in

all our concrete examples. Then, calculating its Laplacian, we have

∇2
r
φ(r) = −Gf(r)∇2

r

1

r
− 2G∇r

1

r
· ∇rf(r)−

G

r
∇2

r
f(r)

= 4πGf(0) δ(r) +
2G

r2
f ′(r)−

G

r

[

f ′′(r) +
2

r
f ′(r)

]

= 4πGf(0) δ(r)−
G

r
f ′′(r) . (20)
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Applying this to (18) and requiring that ∇2ϕ ≡ 0 for uniformly distributed matter, we

obtain the equation
ä

a
= −

4πGeff

3
̺+

Λeff

3
, (21)

where the effective gravitational constant is given by

Geff = G lim
r→∞

[f(r)− rf ′(r)] . (22)

The derivation works as long as the limit in (22) exists and is finite, which we assume

to be the case. For the Newtonian potential φ = −G/r, we have f ≡ 1, and Eq. (22)

returns the usual gravitational constant G. However, if the potential decays faster than

1/r at large distances, Eq. (22) may imply Geff = 0, so that the gravity of matter will not

influence the rate of cosmic expansion. Note that the effective gravitational constant will be

time-dependent if the function f in (19) depends on time.

C. Examples

To give examples to which our results can be applied, we consider some simple modifica-

tions of the gravitational interaction between dark-matter particles:

(a) The screened potential discussed in [9] has the form

φ(a, r) = −
G

r

(

1 + βe−r/rs
)

, (23)

where β is a dimensionless constant of order unity, and the time-dependent screening

length rs(t) is a comoving constant, i.e., rs(t) ∝ a(t), such that rs(t0) ≃ 1 Mpc. The

potential arises in the field-theoretic model of interaction of dark matter with dark energy

via the scalar field [10] in the version with two dark-matter families. A subdominant

relativistic family is used to stabilize the value of the scalar field; then the dominant

nonrelativistic dark-matter particles have constant mass and interact via gravity as well

as via the scalar field so that the two-particle interaction potential (23) is generated.

A dark-matter particle then moves in potential (18) with φ given by (23), so that our

analysis is applicable to this situation. One arrives at the Friedmann equation (21) with

constant dark-energy term Λeff , just as in the field-theoretic approach of [9, 10]. The

potential (23) leads to faster evacuation of matter from voids and to an earlier epoch

of structure formation, which could be perceived as an advantage for this model over

ΛCDM [9].

Using the potential (18) and the equations of motion for a dark-matter particle x(t),

ẍ+ 2Hẋ = −
1

a2
∇ϕ , (24)
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and proceeding along the same lines as in [3], Sec. 27, one easily obtains the exact nonlin-

ear evolution equation for the Fourier components δk of the density contrast ρ(x)/̺− 1

in this theory:

δ̈k + 2Hδ̇k = 4πG̺

[

1 +
β

1 + (a/krs)
2

]

δk + Ak − Ck , (25)

where the nonlinear term Ak and the velocity term Ck are given by

Ak = 4πG̺
∑

k
′ 6=0,k

[

kk′

k′2
+

βkk′

k′2 + (a/rs)
2

]

δk−k
′δk′ (26)

and

Ck =
∑

i

mi

M
(kẋi)

2 eikxi , (27)

respectively. The linear part of (25) reproduces equation (6) of [9] and leads to a more

rapid development of gravitational instability than in ΛCDM.

(b) A power-law correction to the Newtonian potential on large scales

φ(r) = −
G

r

[

1 +

(

r0
r + r0

)n]

, n ≥ 1 , (28)

which we have regularized on small scales to avoid a singularity. Potentials of this

form with n = 2 arise in the Randall–Sundrum model [11] with a single large extra

dimension. (However, in this case, r0 ≪ 1 mm, making the correction on cosmological

scales extremely small.)

(c) A logarithmic correction to the Newtonian potential

φ(r) = −
G

r
+

(

αG

r0
log

r

r0

)

e−r/rc . (29)

The influence of the ‘regularizing’ exponent is confined to very large scales rc ≫ r0.

For all these potentials the limit (22) gives

Geff = G , (30)

implying that the background cosmological evolution remains unmodified.
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III. GENERALIZED LAYZER–IRVINE EQUATION

The Lagrangian of the many particle system is obtained by the summation of (13) with

account taken of (18), (21) and (22) and is equal to L = K − U , where the peculiar kinetic

energy is [3, 4]

K =
a2

2

∑

i

miẋ
2
i . (31)

With consideration of Eq. (21), potential (18) can be written in the form

ϕ =

∫

[ρ(r′)− ̺]φ(a, |r − r′|) d3r′ , (32)

using which, one obtains

U =
1

2

∫

[ρ(r1)− ̺] [ρ(r2)− ̺]φ(a, r12) d
3r1d

3r2 , (33)

where, for the discrete distribution ρ(r) =
∑

i miδ(r − ri), the integral should avoid the

configuration r1 = r2. Here and below, we use the notation rij = |ri−rj| and xij = |xi−xj |.

The Hamiltonian of our system as a function of the canonical variables (xi,pi) is given

by

H = K + U =
1

2a2

∑

i

p2i
mi

+
1

2

∫

[ρ(x1)− ̺] [ρ(x2)− ̺] a6φ(a, ax12) d
3x1d

3x2 . (34)

Using the fact that the product a3 [ρ(r)− ̺] =
∑

i miδ(x − xi) − a3̺ does not depend

explicitly on time, we immediately obtain the equation for the peculiar energy of the system:

Ė ≡
d

dt
(K + U) =

∂H

∂t

= −2HK +
H

2

∫

[ρ(r1)− ̺] [ρ(r2)− ̺]

[

∂φ (a, r12)

∂r
r12 +

∂φ (a, r12)

∂a
a

]

d3r1d
3r2 . (35)

Similarly to (6) and (7), we can write the averaged equations for quantities per unit mass:

〈Ė〉 = −2H〈K〉+ 2πH̺

∫

ξ(r)

[

∂φ (a, r)

∂r
r +

∂φ (a, r)

∂a
a

]

r2dr , (36)

〈U〉 =
̺2

2M

∫

ξ(|r1 − r2|)φ(a, |r1 − r2|) d
3r1d

3r2 = 2π̺

∫

ξ(r)φ(a, r) r2dr . (37)

Equations (35)–(37) form the main results of this letter.

In the Newtonian case, we have ∂φ/∂r = −φ/r, ∂φ/∂a = 0, and Eqs. (35) and (36)

reduce to the corresponding Layzer–Irvine Eqs. (1) and (6). In the general case, Eqs. (35)

and (36) contain an unknown function φ(a, r). If one has a theory predicting the shape of

φ, one can, in principle, use (35) and (36) to test it.
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Once the system has decoupled from the Hubble expansion, its peculiar energy evolves

mainly because of the time-dependence of the potential φ(a, r):

〈Ė〉 ≈ 2πH̺

∫

ξ(r)
∂φ (a, r)

∂a
ar2dr . (38)

Taking into account (36), we obtain the generalized virial relation in the form

〈K〉 = π̺

∫

ξ(r)
∂φ (a, r)

∂r
r3dr . (39)

Next, we apply the generalized cosmic energy equation to the modifications of the gravi-

tational interaction between dark-matter particles that we listed in Sec. IIC:

(a) Substituting the screened potential (23) into (35), one finds, quite remarkably, that

the generalized cosmic energy equation reduces to its Layzer–Irvine form (1) with the

modified total potential U determined by (23) and (33). For a system decoupled from

the Hubble expansion, the energy evolution, according to (38), is given by

〈Ė〉 = −
2πβGH̺

rs

∫

ξ(r)e−r/rsr2dr , (40)

and the generalized virial relation (39) in this case reads

2〈K〉+ 〈U〉 =
2πβG̺

rs

∫

ξ(r)e−r/rsr2dr , (41)

On length scales r ≪ rs(t) ≤ 1 Mpc, we recover the usual Newtonian relations:

−
〈Ė〉

H
= 2〈K〉+ 〈U〉Newton =

2πβG̺

rs

∫

ξ(r)r2dr = 0 , (42)

where, in the last equality, we have used property (5), and

〈U〉Newton = −2π(1 + β)G̺

∫

ξ(r)rdr (43)

is the Newtonian virial gravitational energy per unit mass with renormalized gravita-

tional coupling.

It should be noted that, since rc ≃ 1 Mpc roughly corresponds to the Abell radius

associated with a cluster of galaxies, it is unlikely that (42) can be applied to galaxy

clusters. On these scales, the full form of the virial relation (41) should be used.

(b) The power-law correction to the Newtonian potential (28) leads to the cosmic energy

equation:

〈Ė〉 ≈ − [2〈K〉+ 〈U〉Newton]H + 2π(1 + n)GH̺

∫

ξ(r)

(

r0
r + r0

)n

rdr , (44)



10

and to the virial relation

2〈K〉+ 〈U〉Newton = 2π(1 + n)GH̺

∫

ξ(r)

(

r0
r + r0

)n

rdr , (45)

where 〈U〉Newton is the usual averaged Newtonian peculiar potential energy per unit mass

given by (7).

(c) The logarithmic correction to the Newtonian potential (29) leads to the usual cosmic

energy equation

〈Ė〉 ≈ − [2〈K〉+ 〈U〉Newton]H +
2παGH̺

r0

∫

ξ(r)r2e−r/rcdr ≈ − [2〈K〉+ 〈U〉Newton]H ,

(46)

where the last equality is valid in view of (5) if the correlation length of the system is

much smaller than the cutoff scale rc. The virial relation in this case is

2〈K〉+ 〈U〉Newton =
2παG̺

r0

∫

ξ(r)r2e−r/rcdr ≈ 0 . (47)

IV. DISCUSSION

We have investigated a cosmological theory which produces a modified and, perhaps,

time-dependent gravitational potential between matter particles in the form (9). For such

a theory, we have determined the background cosmological equation, which turned out to

have the Friedmann form possibly with a modified gravitational constant. We have also

derived the cosmic energy equation generalizing the Layzer–Irvine equation for the theory

under investigation.

We also note that the cosmic energy equation (6) or its generalization (36) can be used

to determine the cosmic expansion history. For instance, from (1) we obtain

H(t) = −
〈Ė〉

2〈K〉+ 〈U〉
. (48)

The Hubble parameter H(z) determined in this manner could shed light on the nature

of dark energy either through the Om diagnostic [12] or by means of the effective equation

of state of dark energy [13]

wDE(x) =
(2x/3) d lnH/dx− 1

1− (H0/H)2Ωm x3
, x = 1 + z . (49)

This determination of the cosmic expansion history H(z), via the energy equation, is com-

plementary to usual methods which rely either on standard candles (supernovae of type Ia)

or rulers (baryon acoustic oscillations). This possibility will be examined in detail elsewhere.
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