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We describe a new approach for evaluating hadronic correlation functions which combines

Laplacian-Heaviside quark smearing with a stochastic estimator of quark propagators. This

method utilizes noise dilution in a new way to reduce the variance in correlators. The efficacy

of the new algorithm is demonstrated on a number of systems, including disconnected diagrams

and multi-hadron correlators, on a small lattice where comparisons with the results obtained with

exactly determined quark propagators are possible. On larger lattice volumes, the use of exact

propagators becomes prohibitively expensive, while the stochastic method is still computation-

ally feasible.
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1. Introduction

A long-term aim of our collaboration is the first-principlesdetermination of stable hadron
masses, and resonance energies and decay widths. To date, considerable progress has been made
in extracting finite-volume stationary-state energies in the isovector meson, kaon, and baryon sec-
tors [1, 2, 3]. These initial studies, which were performed at relatively heavy pion masses and
moderate lattice volumes, involved interpolating operators specifically designed to couple strongly
to single-hadron states. However, at lighter pion masses and larger spatial volumes, explicit multi-
hadron operators must be incorporated into the analysis. Until recently, the inclusion of multi-
hadron interpolators has been problematic because the resulting two-point functions may involve
quark lines which begin and end on the sink time slice and source operators on all spatial sites of
a time slice. Hence, a general treatment of multi-hadrons isnot amenable to conventional point-
to-all quark-propagator techniques. In analyses involving single-particle operators, disconnected
contributions to flavor-singlet meson correlators are similarly problematic, and little progress has
been made to date in determining theI = 0 meson spectrum from Monte Carlo simulations.

In this article, we describe a novel method [4] for evaluating hadronic correlation functions,
which combines quark-field smearing with a stochastic estimator. The new method facilitates the
precise evaluation of multi-hadron and flavor-singlet meson correlators, at a significantly lower
computational cost than previous approaches. First results obtained on intermediate lattice volumes
are presented, and we briefly discuss more recent studies performed on larger lattices.

2. An alternate quark-field smearing scheme

Our approach relies on the fact that generally in a spectroscopy calculation, gauge-covariant
smearing is applied to the quark fields in hadron interpolators in order to reduce the coupling of
these operators to very high-lying states. In the resultingcorrelation functions, the quark propagator
M−1 is always sandwiched between smearing operators:SM−1S, whereψ̃ = Sψ is the smeared
quark field. We define Laplacian-Heaviside [5], or LapH, quark-field smearing by

S= Θ
(

△̃+σ2) , Sab(x,y) ≈ δx4,y4

Nv

∑
k=1

v(k)a (x)v(k)b (y)∗ , (2.1)

with

△̃ab(x,y)v
(i)
b (y) =−λi(x4)v

(i)
a (x), v(i)∗(x)v( j)(x) = δ i j , (2.2)

where△̃ is a gauge-covariant Laplacian operator constructed from stout-smeared [6] link variables
Ũ :

△̃ab(x,y) =
3

∑
k=1

{

Ũab
k (x)δ (x+ k̂,y)+Ũ†ab

k (y)δ (x− k̂,y)−2δ (x,y)δ ab
}

. (2.3)

The use of smeared link variables in the quark-field smearingoperator has been shown to signifi-
cantly reduce the variance in hadronic correlation functions [7]. The eigenvalues of the Laplacian
operator,−λi , are negative(see Fig.1), and the Heaviside function in Eq.2.1 imposes a cutoff (
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Figure 1: The plot on the left shows the Monte Carlo estimate of low-lying λi ’s computed on a 163 spatial
lattice on dynamical ensembles with two different pion masses using stout-smeared link variables. The pion-
mass dependence of the Laplacian spectrum is seen to be very mild. The right-hand plot shows Laplacian
spectra computed on 2+1 flavors simulations performed on twodifferent lattice volumes. All other simu-
lation parameters match. The dashed horizontal lines are guides for the eye, showing that the density of
eigenmodes grows linearly with the spatial lattice volume.

parametrized byσ2 ) on high-momentum modes. The level of quark smearing is increased by low-
ering the cutoff, thereby excluding more Laplacian eigenmodes. To evaluate hadronic correlation
functions involving LapH-smeared quark fields, one does notneed to compute the quark-propagator
components directly, instead only the matrix elements of the propagator between a subset of Lapla-
cian eigenvectors are required. For a high enough level of quark smearing, i.e., a small enough
subset of eigenvectors, it is feasible to compute hadron correlation functions which are currently
beyond the reach of conventional lattice techniques [5]. Inpractice, however, the volume depen-
dence of the Laplacian eigenmode distribution is a significant limitation when computingSM−1S
exactly. Although the quark-mass dependence of the Laplacian spectrum is mild, the density of
eigenmodes scales linearly with the spatial lattice volume. Therefore, while an exact treatment of
SM−1Smay work well on smaller lattice volumes as it stands, the increased density of eigenmodes
makes this approach impractical on larger lattices.

2.1 Stochastic estimation

To mitigate the volume dependence, the LapH smearing schemecan be combined with a
stochastic estimator. To proceed, we write

SM−1S= SM−1|v〉E
(

ηη†)〈v|. (2.4)

E
(

ηη†
)

denotes an expectation value over the outer product of noisevectors whose components
satisfy

E (ηiα(t)) = 0, E(ηiα (t)η∗
jβ
(

t ′
)

) = δi j δαβ δtt ′ , (2.5)
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wherei( j) andα(β ) are eigenmode and spin indices, respectively. Note that thenoise vectors have
neither color nor spatial indices. The number of quark-matrix inversions required to estimate the
smeared quark line in this way is determined by the number of stochastic vectors employed rather
than the number of Laplacian eigenvectors used in the smearing. However, in general, this naive
estimate for the smeared quark line is too noisy to be of practical use, and we must apply a variance
reduction scheme to obtain an improved stochastic estimate.

In a number of systems, noise partitioning, or dilution, turns out to be a particularly effec-
tive variance reduction technique [8]. Dilution is implemented by choosing noise vectors whose
components have unit norm, i.e.,Zn orU(1) noise, and partitioning the noise vector indices, eigen-
mode, time and spin, into disjoint sets. To each set of indices, d, we assign a projection operator
P[d] which acts on the noise vectors, with components

P[d]
i j αβ

(

t, t ′
)

= 1 if (t, i,α) and(t, j,β ) ∈ d,

P[d]
i j αβ

(

t, t ′
)

= 0 otherwise. (2.6)

The naive noise averageE
(

ηη†
)

is replaced by an expectation value involving diluted noisevec-
tors∑d E

(

η [d]η [d]†
)

, whereη [d] =P[d]η . In the maximal dilution limit, the exact smearing scheme
is recovered. We refer to the combination of the LapH smearing scheme with a dilute stochastic
estimator as the Stochastic LapH method.

3. Implementation

In practice, the estimates for the smeared quark propagatorare implemented in terms of pseud-
ofermion fields which we call quark-line ends. For each diluted noise vectorη [d], we form a quark-
line sourceρ [d], with components

ρ [d]
αa(x) =∑

i

η [d]
iα (x4)via (x) . (3.1)

For each source field, there is a corresponding quark-line sink φ [d] = SM−1ρ [d]. The smeared quark
line can then be written

SM−1S= ∑
d

E
(

φ [d]ρ [d]†
)

. (3.2)

In addition, the fact that the quark propagator satisfies

M−1(y;x) = γ5
[

M−1(x;y)
]† γ5 (3.3)

and the hermiticity of the quark smearing operator lead to a second expression for the smeared
quark line

SM−1S=∑
d

E
(

ρ [d]φ [d]†
)

, (3.4)

whereρ [d] = γ5ρ [d] andφ [d]
= γ5φ [d].
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On a typical lattice, the complete set of pseudofermion fields needed to implement the quark-
line estimate is too large to save to disk. Instead, to store the quark-line estimates on a given
configuration, we save the set of low-lying Laplacian eigenvectors used in the smearing, the diluted
noise vectorsη [d] 1 , and, for each noise vector, a tensor with elements

Π(i,α ,x4;d) = ∑
x a

v∗ia (x)φ [d]
αa(x). (3.5)

Using these components, the pseudofermion source and sink fields can be quickly reconstructed
when needed. Only the Laplacian eigenvectors require a significant amount of storage, which is
however independent of the number of quark lines to be estimated and the number of noise vectors
and the dilution schemes used.

To illustrate how the quark-line ends can be combined to forma hadron correlator, consider
the simple meson two-point function

Cmn(t) = 〈0|ψ̃Ωmψ̃ (t) ψ̃Ω†
nψ̃ (0) |0〉, (3.6)

whereΩm(Ωn) is an arbitrary combination of gauge-covariant spatial displacement operators and
spin matrices acting on the quark fields. For compactness, all indices apart from the time label have
been suppressed. Wick contracting the quark fields, and using both Eq. 3.2 and Eq. 3.4, we obtain
an estimate for the connected component of this correlator

Cmn
conn(t) ≈ −

〈 1
NrNs

∑
r 6=s

∑
dr ds

[

φ [dr ]†
r Ωmφ [ds]

s (t)ρ [ds]†
s Ω†

nρ [dr ]
r (0)

]〉

, (3.7)

where the superscriptsr ands label different noise sources and〈...〉 denotes an average over the
gauge ensemble. Other estimates for the connected correlator, involving different combinations of
‘barred’ and ‘unbarred’ quark line ends, are also possible.However, since Eq. 3.7 involves the
quark sourcesρ [dr ]

r , ρ [ds]
s on a single time slice,t = 0, only, it has the advantage that both quark-line

estimates are automatically fully diluted in time.

Defining the mesonic ‘operators’O [dr ds]
Ωm[r̄ s] ≡ φ [dr ]†

r Ωmφ [ds]
s andO

[dr ds]
Ωn[r̄ s] ≡

(

ρ [dr ]†
r Ωnρ [ds]

s

)†
=

ρ [ds]†
s Ω†

nρ [dr ]
r allows the connected correlator to be written in a more compact form

Cmn
conn(t)≈−

〈 1
NrNs

∑
r 6=s

∑
dr ds

O
[dr ds]
Ωm[r̄ s] (t)O

[dr ds]
Ωn[r̄ s] (0)

〉

. (3.8)

The factorization of the correlator estimates into contributions from different hadron operators is an
extremely useful feature of the method. It facilitates the construction of correlator matrices involv-
ing large sets of interpolating operators and simplifies theevaluation of multi-hadron correlators.

4. First tests

Tests of the Stochastic LapH algorithm on connected hadron correlators, such as isovector-
meson and baryon two-point functions, have shown that, witha judiciously chosen dilution scheme,

1In practice, we simply record a random initial seed, the dilution scheme, and a rule for generating the noise vector
from the seed.
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this method yields statistical errors that are comparable to the errors obtained using an exact treat-
ment ofSM−1S , at a considerably lower computational cost. Moreover, thenew method is more
efficient than using diluted stochastic estimates with noises introduced on the entire lattice, as de-
scribed in Ref. [8]. This is clearly demonstrated in Fig. 2, which shows the ratios of standard
deviation on a single time slice of a nucleon correlator evaluated using different stochastic methods
to that obtained from exact LapH. The solid symbols denote the results obtained by introducing
noise on the lattice. The open symbols are results from the Stochastic LapH method. The nucleon
operator in question has gauge-covariant displacements inthree directions. These measurements
were performed on 100 2+1 flavor gauge-field configurations with a pion mass of approximately
400 MeV, on a 203×128 anisotropic lattice. The spatial lattice spacing was approximately 0.12 fm,
and the ratio of spatial to temporal lattice spacings was 3.5. The smearing uses the 64 lowest-lying
Laplacian eigenmodes on each time slice. The statistical uncertainties on the correlators were es-
timated using the Jackknife algorithm. The data here correspond to a temporal separation between
the source and sink operators oft = 5at , although the same qualitative behavior is observed for
other temporal separations. The minimal level of dilution included in this figure is full time di-
lution. The reason is that for a connected correlator evaluated on a single source time slice, the
inversion cost is the same regardless the time dilution scheme. Any non-full time dilution schemes
would only impose larger variance from the noises without any reduction of computational costs.
The eigenmode dilution schemes considered include partitioning the Laplacian eigenmodes into
blocks of adjacent modes, as well as choosing subsets consisting of eigenmodes that are separated
by some numbernof intermediate modes, known as interlacing. The Stochastic LapH estimates use
three independentZ4 noise vectors - the minimum number required to obtain unbiased stochastic
estimates. It is possible to improve the correlator estimates by averaging over different orderings of
the noise vectors. However, this average has not been performed on the examples presented here.

For a given number of quark-matrix inversions, the error on the correlator computed using
Stochastic LapH is much smaller than the error on the correlator estimate involving stochastic
quark propagators. Fig. 2 also shows that there is no significant difference between using blocked
eigenmode dilution projectors or interlaced eigenmode projectors.

Fig. 3 compares the same error ratios for Stochastic LapH estimates of the nucleon correlator
on two different spatial lattice volumes. Results for the 203 spatial volume are plotted together with
results from a smaller, 163 lattice. 32 Laplacian eigenvectors are used to smear the quark field on
the 163 volume, such that eigenvalue cutoffs on the two lattices areapproximately the same. All
other input parameters are kept fixed. Increasing the spatial lattice volume for a fixed eigenvalue
cutoff and dilution scheme does lead to some increase in the statistical error. However, this increase
is modest for all dilution schemes considered and the difference in errors between the two volumes
decreases with higher levels of dilution.

5. Disconnected and multi-hadron correlators

While the results presented for the connected hadron correlators are promising, the true test
of the Stochastic LapH method lies in its application to disconnected diagrams and multi-hadron
correlators. In this section, we compare results obtained for these systems using both the Stochastic
and exact LapH schemes. Due to the large number of quark-matrix inversions required to imple-
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Figure 2: Ratio of standard deviation on time slice 5 of a triply-displaced nucleon correlator evaluated
using different stochastic estimators to the standard deviation on the exact LapH estimate of the correlator
at the same time separation. The filled symbols denote measurements obtained using noise introduced on
the entire lattice and the open symbols are results from the Stochastic LapH approach. For every dilution
scheme considered, Stochastic LapH significantly outperforms the lattice noise approach [9].
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Figure 3: The statistical errors on a triply-displaced nucleon correlator at a source-sink separation of 5at

on two different lattice volumes. The correlator was computed using the stochastic smearing scheme with
varying levels of dilution. The open symbols are results obtained on a 163 spatial lattice volume, where the
quark-smearing operator used 32 Laplacian eigenvectors. Closed symbols denote results on a 203 spatial
volume using 64 Laplacian eigenmodes. The growth in statistical error which comes from increasing the
spatial volume while the smearing cutoff and the number of quark-matrix inversions per configuration are
kept fixed is modest [9].
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Figure 4: Disconnected contribution to anI = 0 pseudoscalar correlator evaluated on 52 2+1 flavor con-
figurations on a 163×128 lattice. The pion mass is approximately 400 MeV. The circles are results obtained
using the exact LapH smearing scheme, and the triangular data points are Stochastic LapH estimates. The
dilution scheme is interlaced 16 in time, full spin dilution, and interlace 8 in Laplacian-eigenmode space.
Although the error estimates from both methods are similar,for this particular correlator, the stochastic
approach requires a factor of 32 fewer quark matrix inversions than are needed in the exact scheme.

ment the exact scheme, the comparison could only be performed on the smaller 163×128 lattice on
a limited number of configurations. The exact method requires additional quark-matrix inversions
for each sink time slice. However, the number of quark-matrix inversions needed for the stochastic
estimate is drastically reduced by applying only partial time dilution to the quark lines at the sink.
In that case, the optimal dilution schemes are expected to involve projectors which are interlaced
in time.

Disregarding contact terms, the disconnected contributions to flavor-singlet meson correlators
can be evaluated using a single diluted noise vector. We havecomputed the disconnected contribu-
tions to the isosinglet pseudoscalar and scalar correlators using the interpolating operators̄ψl γ5ψl

andψ̄l ψl , respectively, where the subscriptl denotes a light quark flavor. Fig. 4 and Fig. 5 show
results for the disconnected contributions. These resultswere obtained on 52 configurations and
the correlators were averaged over 128 source time slices. The legends list the dilution schemes
used in the quark-line estimates. [F,F,F] denotes full dilution in time, spin and eigenmode space,
which corresponds to the exact smearing scheme. [I16,F,I8]indicates that dilution projectors are
interlaced in time, with projectors containing every sixteenth time slice; the Stochastic LapH es-
timates employ full spin dilution, which was found to significantly reduce the variance in certain
disconnected diagrams, and interlace eight eigenmode dilution. In both channels, the exact smear-
ing scheme result and the dilute Stochastic LapH estimate have similar errors. However, the total
number of quark-matrix inversions required for the exact estimate is 128×4×32= 16384, while
the stochastic method involves just 16×4×8= 512 matrix inversions.

As an aside, the reader may have noticed a discrepancy between the exact and Stochastic LapH
results for the contact term in Fig. 4, and, more obviously, in Fig. 5. This is due to the use of a

8



0 2 4 6 8 10 12 14 16
τ/a

t

0

1

2

3

C
(τ

)

[F,F,F]
[I16,F,I8]

Figure 5: Disconnected contribution to an isosinglet scalar correlation function estimated using the exact
and Stochastic LapH methods. The correlator shown was obtained after the subtraction of a large vev term.
The discrepancy atτ = 0 arises because in the Stochastic LapH estimate a single diluted noise vector has
been used for both the source and sink operators.

single noise vector for both source and sink operators, giving a biased correlator estimate when the
temporal separationτ = 0, but having no effect on the measurement of spectral quantities.

Note that the scalar correlator shown in Fig. 5 was obtained after the subtraction of a large vac-
uum expectation value contribution. The quality of this signal, obtained on just 52 configurations,
suggests that considerable progress can be made in the isosinglet meson sector using the Stochastic
LapH method.

In the evaluation of disconnected diagrams, it is also possible to use different dilution schemes
for the source and sink operators. One can, for example, use fully time-diluted noise vectors,
borrowed from the calculation of the connected correlator component, to estimate the contracted
source operator in the disconnected contribution. However, in this case, an average over all time
slices is impractical. We tested this alternate estimate ofthe disconnected contribution, averaging
the correlator over four randomly chosen source times. However, on a moderate number of config-
urations using a lower level of time dilution but averaging correlator estimates over all lattice time
slices was found to give a cleaner signal, although the discrepancy between the estimates decreases
on larger ensembles.

The inclusion of multi-hadron operators is a particular challenge for lattice hadron spec-
troscopy. Not only are the quark-line diagrams much more complicated, but we also need to
evaluate correlators involving states whose constitutenthadrons have non-zero momenta.

The box diagram shown in Fig. 6 contributes to two-pion correlators in theI = 0,1 sectors. The
contribution of this diagram to an S-wave two-pion correlator measured on the 163×128 lattice is
displayed in Fig. 7. The interpolating operator used is simply the product of two zero-momentum
single-pion interpolators. Once again, the circles denoteresults obtained using the exact smearing
scheme, and the triangular data points are results from Stochastic LapH. In the stochastic scheme,
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Figure 7: The box-diagram contribution to the S-wave, two-pion correlator evaluated with exact and
Stochastic LapH. These results were again obtained on the 163×128 lattice. The correlator has been aver-
aged over 4 well-separated source time slices. The stochastic estimate uses just one diluted noise vector per
quark line. In the stochastic scheme, quark lines connecting source and sink time slices are fully time dilute,
while quark lines which begin and end on a single time slice use the interlaced 8 time dilution scheme. Once
again, the results from the stochastic method are as accurate as results from the exact smearing scheme.

the quark lines connecting operator source and sink time slices are fully time diluted, while the
quark lines which begin and end on a single time slice employ the interlaced 16 time dilution
scheme. The stochastic estimate uses just one diluted noisevector per quark line. In both cases,
the correlator estimates have been averaged over four source times.

In truth, Fig. 7 is not a fair comparison of the exact and Stochastic LapH schemes, since if
it is feasible to apply the exact method, one can place sourceoperators on all lattice time slices.
However, on larger lattices the exact smearing scheme is prohibitively expensive, and Stochastic
LapH is the only practical means of evaluating multi-hadroncorrelation functions. This figure does
demonstrate the potential for obtaining accurate estimates for multi-hadron correlation functions
using Stochastic LapH. A comparison of the error bars on the correlator estimates indicates that the
variance in the Stochastic LapH estimate is dominated by gauge-field fluctuations, and no increase
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Figure 8: Two-point function correlating āψγkψ source operator and a P-wave two-pion interpolator at the
sink. In this case, the signal from Stochastic LapH is somewhat noisier than the exact method, although still
reasonable. The exact method becomes computationally intractable on larger lattice volumes.

in the number of noise vectors or level of dilution is required.

As a final test of the Stochastic LapH method, we consider the two-point function correlating a
ρ-meson operator at the source with and two-pion state at the sink. TheI = 1 two-pion system is in
a P-wave state, which requires that the pions have non-zero back-to-back momenta. For the source
operator, we use the simple quark bilinear:ψ̄γkψ . This operator is correlated with an interpolating
operator for two pions with one unit of momentum each. As in the previous examples, the stochastic
estimate uses a single noise vector per quark line. In this case, the Stochastic LapH algorithm gives
a noticeably noisier result than exact smearing. However, the increase in error is moderate, and the
stochastic result could be improved at negligible extra cost by averaging the correlator over the two
possible ways of assigning noise vectors to the quark lines connecting source and sink time slices.

6. Recent developments

Motivated by the results from the 163 lattice, we have recently begun a systematic study of
the light hadron spectrum on a 243 × 128 lattice2, using, in addition to single-hadron operators,
interpolating operators for two-meson and meson-baryon states. To construct the required two-
hadron correlators, we need, for each valence quark mass, independent estimates for two quark
lines that begin and end on a single time slice together with estimates for five quark lines connecting
source and sink times. We use a single (diluted) noise vectorper quark-line estimate, and employ
the same dilution schemes that were applied to the disconnected and two-pion correlators on the 163

lattice. Connected correlators have been averaged over four randomized source times. The number
of quark matrix inversions needed to perform measurements using Stochastic LapH smearing is

2This corresponds to a spatial volume of approximately(2.9 fm)3.
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then a factor of 34 times smaller than the number of inversions needed to implement the exact
scheme.

The results obtained to date are promising. In particular, acomparison of isoscalar meson and
two-pion correlators measured on the 243 spatial volume with results from the 163 lattice confirms
that the mild volume dependence of the Stochastic LapH method in these systems. A detailed
study of the Stochastic LapH algorithm on the 243×128 lattice will be presented in a forthcoming
publication [10].

7. Summary and conclusions

We presented a new algorithm for estimating hadron correlation functions involving smeared
quark fields. Using Laplacian-Heaviside smearing, the number of quark matrix inversions needed
to accurately estimate certain hadron correlators can be drastically reduced. However, the strong
volume dependence of the smearing scheme means that an exacttreatment ofSM−1Sis impractical
on larger lattice volumes. We have outlined a way of implementing LapH smearing stochastically,
using noise dilution to control the variance. Tests involving nucleon correlators show that the
Stochastic LapH approach is more efficient than using dilutestochastic estimates for the quark
propagators. Crucially, we have found that Stochastic LapHexhibits a mild volume dependence in
this sector. The efficacy of this approach for disconnected correlators and multi-hadron correlators
has also been demonstrated. On a small lattice volume, it waspossible to compare the stochastic
implementation of the LapH smearing scheme with the exact method. We found that Stochastic
LapH gives results that are close to, or, in many cases, as accurate as the results obtained from the
exact method, at a fraction of the computational cost. Finally, we noted that recent studies using
Stochastic LapH performed on a larger lattice confirm excellent volume scaling for disconnected
and multi-hadron correlators.

This algorithm is an exciting development for our spectroscopy program. It is now possible
to include multi-hadron operators in our Monte Carlo measurements, and we can begin to extract
resonance energies and widths from the measured finite-volume spectra [11, 12, 13]. Our results
indicate that the isosinglet meson spectrum is also now accessible, although in that sector one
also has to take potential mixing with glueball states into account. The challenges that remain to
properly dilineate the low-lying hadron spectrum should not be underestimated, but, with continued
technical and theoretical advances, considerable progress can be made toward this goal in the near
future.
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